高三理科数学 专题五 立体几何

高三理科数学 专题五 立体几何
高三理科数学 专题五 立体几何

高三理科数学 专题五 立体几何

1.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.627 B.637

C.607

D.657

2.已知点B 是点A (3,7,-4)在xOz 平面上的射影,则OB →

2等于( ) A .10

B .25

C .5

D .13

3.正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AC 1→上,且AM →=12MC 1→

,N 为B 1B 的中点,则|MN →

|为( )

A.216

B.66

C.156

D.153

4.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32 B.22

C.223

D.233

5.二面角α-l -β等于120°,A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,且AB =AC =BD =1,则CD 的长等于________.

6.如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.

(1)求证:C 1B ⊥平面ABC ;

(2)设CE →=λCC 1→

(0≤λ≤1),且平面AB 1E 与BB 1E 所成的锐二面角的大小为30°,试求λ的值.

7.如图,在多面体ABCDEF中,底面ABCD是边长为2的的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.

(1)求证:平面BDGH∥平面AEF;

(2)求二面角H-BD-C的大小.

8.如图,△ABC是以∠ABC为直角的三角形,SA⊥平面ABC,SA=BC=2,AB=4.M,N,D

(1)求证:MN⊥AB;(2)求二面角S-ND-A的余弦值;(3)求点A到平面SND的距离.

9.如图,将长为4,宽为1的长方形折叠成长方体ABCD-A1B1C1D1的四个侧面,记底面上一边AB=t(0

(1)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的值;

(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由。

10.如图,四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,AD⊥

侧面P AB,△P AB是等边三角形,DA=AB=2,BC=1

2AD,E是线段AB的中点.

(1)求证:PE⊥CD;(2)求PC与平面PDE所成角的正弦值.

11.如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP 上一点,∠CDP =120°,AD =3,AP =5,PC =27.

(1)试确定点F 的位置,使得EF ∥平面PDC ;

(2)若BF =1

3BP ,求直线AF 与平面PBC 所成的角的正弦值.

.

12.如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,∠ABC =∠BAD =90°,AP =AD =AB =2,BC =t ,∠P AB =∠P AD =α.

(1)当t =32时,试在棱P A 上确定一点E ,使得PC ∥平面BDE ,并求出此时AE

EP 的值;

(2)当α=60°时,若平面P AB ⊥平面PCD ,求此时棱BC 的长.

高三理科数学 专题五 立体几何

1.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.627 B.637

C.607

D.657

2.已知点B 是点A (3,7,-4)在xOz 平面上的射影,则OB →

2等于( ) A .(9,0,16) B .25 C .5

D .13

解析 A 在xOz 平面上的射影为B (3,0,- 4),则OB →=(3,0,-4),OB →

2=25. 答案 B

3.正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AC 1→上,且AM →=12MC 1→

,N 为B 1B 的中点,则|MN →

|为( ) A.216 B.66

C.156

D.153

解析 如图,设AB →=a ,AD →=b ,AA 1→

=c , 则a ·b =b ·c =c ·a =0. 由条件知MN →=MA →+AB →+BN →

=-13(a +b +c )+a +12c =23a -13b +16c ,

∴MN →

2=49a 2+19b 2+136c 2=2136,

∴|MN →

|=216. 答案 A

4.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32

B.22

C.223

D.233

解析 如图,建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2),D (0,0,0),B (2,2,0),

∴D 1A 1→=(2,0,0),DA 1→=(2,0,2),DB →

=(2,2,0), 设平面A 1BD 的法向量n =(x ,y ,z ),

则?????n ·DA 1→=2x +2z =0,n ·

DB →=2x +2y =0.令x =1,则n =(1,-1,-1).

∴点D 1到平面A 1BD 的距离 d =|D 1A 1→·n ||n |=23=233.

答案 D

5.二面角α-l -β等于120°,A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,且AB =AC =BD =1,则CD 的长等于________. 解析 如图,∵二面角α-l -β等于120°, ∴CA →与BD →

夹角为60°.

由题设知,CA →⊥AB →

AB →⊥BD →,|AB →|=|AC →|=|BD →

|=1, |CD →|2=|CA →+AB →+BD →|2

=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=3+2×cos 60°=4,∴|CD →|=2. 6.如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.

(1)求证:C 1B ⊥平面ABC ;

(2)设CE →=λCC 1→

(0≤λ≤1),且平面AB 1E 与BB 1E 所成的锐二面角的大小为30°,试求λ的值.

(2)解 由(1)可知,AB ,BC ,BC 1两两垂直.以B 为原点,BC ,BA ,BC 1所在直线为x ,y ,z 轴建立空间直角坐标系.

则B (0,0,0),A (0,1,0),C (1,0,0), C 1(0,0,3),B 1(-1,0,3).

所以CC 1→=(-1,0,3), 所以CE →=(-λ,0,3λ),∴E (1-λ,0,3λ),则AE →

=(1-λ,-1,3λ),AB 1→

=(-1,-1,3).

设平面AB 1E 的一个法向量为n =(x ,y ,z ), 则?????n ⊥AE →,n ⊥AB 1→,得???(1-λ)x -y +3λz =0,

-x -y +3z =0,

令z =3,则x =3-3λ2-λ,y =3

2-λ,

,∴n =?

??

??

3-3λ2-λ,32-λ,3,

∵AB ⊥平面BB 1C 1C ,BA →

=(0,1,0)是平面的一个法向量, ∴|cos 〈n ,BA →

〉|=n ·BA →|n |·|BA →|

=32-λ

? ??

??3-3λ2-λ2+????32-λ2

+(3)2=3

2.

两边平方并化简得2λ2-5λ+3=0,所以λ=1或λ=3

2(

舍去).∴λ=1.

7.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点.

(1)求证:平面BDGH ∥平面AEF ; (2)求二面角H -BD -C 的大小.

(1)证明 在△CEF 中,因为G ,H 分别是CE ,CF 的中点. 所以GH ∥EF ,又因为GH ?平面AEF ,EF ?平面AEF , 所以GH ∥平面AEF . 设AC ∩BD =O ,连接OH , 因为ABCD 为菱形, 所以O 为AC 中点,

在△ACF 中,因为OA =OC ,CH =HF , 所以OH ∥AF ,

又因为OH ?平面AEF ,AF ?平面AEF , 所以OH ∥平面AEF .

又因为OH ∩GH =H ,OH ,GH ?平面BDGH , 所以平面BDGH ∥平面AEF

. (2)解 取EF 的中点N ,连接ON ,

因为四边形BDEF 是矩形,O ,N 分别为BD ,EF 的中点, 所以ON ∥ED ,

因为平面BDEF ⊥平面ABCD , 所以ED ⊥平面ABCD ,

所以ON ⊥平面ABCD ,

因为ABCD 为菱形,所以AC ⊥BD ,得OB ,OC ,ON 两两垂直. 所以以O 为原点,OB ,OC ,ON 所在直线分别为x 轴,y 轴,z 轴, 如图建立空间直角坐标系.

因为底面ABCD 是边长为2的菱形,∠BAD =60°,BF =3,

所以B (1,0,0),D (-1,0,0),E (-1,0,3),F (1,0,3),C (0,3,0),H ? ????1

2,32,32,

所以BH →=? ????-1

2,32,32,DB →=(2,0,0).

设平面BDH 的法向量为n =(x ,y ,z ), 则?????n ·BH →=0n ·

DB →=0????-x +3y +3z =0,2x =0,

令z =1,得n =(0,-3,1).

由ED ⊥平面ABCD ,得平面BCD 的法向量为DE →

=(0,0,3), 则cos 〈n ,DE →

〉=n ·DE →|n||DE →|

=0×0+(-3)×0+1×32×3 =12.

所以二面角H -BD -C 的大小为60°.

8.如图,△ABC 是以∠ABC 为直角的三角形,SA ⊥平面ABC ,SA =BC =2,AB =4.M ,N ,D 分别是SC ,AB ,BC 的中点.

(1)求证:MN ⊥AB ;

(2)求二面角S -ND -A 的余弦值; (3)求点A 到平面SND 的距离.

解 以B 为坐标原点,BC ,BA 为x ,y 轴的正方向,垂直于平面ABC 的直线为z 轴,建立空间直角坐标系(如图).

(1)证明 由题意得A (0,4,0),B (0,0,0),M (1,2,1),N (0,2,0),S (0,4,2),D (1,0,0).

所以:MN →=(-1,0,-1),AB →=(0,-4,0),MN →·AB →

=0,∴MN ⊥AB .

(3)∵AN →

=(0,-2,0), ∴点A 到平面SND 的距离 d =|AN →·m ||m |=63.

9.如图,将长为4,宽为1的长方形折叠成长方体ABCD -A 1B 1C 1D 1的四个侧面,记底面上一边AB =t (0

(1)当长方体ABCD -A 1B 1C 1D 1的体积最大时,求二面角B -A 1C -D 的值;

(2)线段A 1C 上是否存在一点P ,使得A 1C ⊥平面BPD ,若有,求出P 点的位置,没有请说明理由

解法一 (1)根据题意,长方体体积为V =t (2-t )×1=t (2-t )≤

???

?t +2-t 22

=1,

当且仅当t =2-t ,即t =1时体积V 有最大值为1,

所以当长方体ABCD -A 1B 1C 1D 1的体积最大时,底面四边形ABCD 为正方形, 作BM ⊥A 1C 于M ,连接DM ,BD ,

因为四边形ABCD 为正方形,所以△A 1BC 与△A 1DC 全等,故DM ⊥A 1C ,所以∠BMD 即为所求二面角的平面角.

(2)若线段A 1C 上存在一点P ,使得A 1C ⊥平面BPD ,则A 1C ⊥BD

又A 1A ⊥平面ABCD ,所以A 1A ⊥BD ,所以BD ⊥平面A 1AC .所以BD ⊥AC ,

底面四边形ABCD 为正方形,即只有ABCD 为正方形时,线段A 1C 上存在点P 满足要求,否则不存在.由(1)知,所求点P 即为BM ⊥A 1C 的垂足M , 此时,A 1P =A 1B 2A 1C =23

=23

3.

法二 根据题意可知,AA 1,AB ,AD 两两垂直,以AB 为x 轴,AD 为y 轴,AA 1为z 轴建立如图所示的空间直角坐标系:

(1)长方体体积为V =t (2-t )×1=t (2-t )≤

???

?t +2-t 22

=1,

当且仅当t =2-t ,即t =1时体积V 有最大值为1.

所以当长方体ABCD -A 1B 1C 1D 1的体积最大时,底面四边形ABCD 为正方形,则A 1(0,0,1),B (1,0,0),C (1,1,0),A 1B →=(1,0,-1),BC →

=(0,1,0),

设平面A 1BC 的法向量m =(x ,y ,z ),则?

????x -z =0,

y =0,

取x =z =1,得:m =(1,0,1),

同理可得平面A 1CD 的法向量n =(0,1,1), 所以,cos 〈m ,n 〉=m·n |m|·|n|=1

2, 又二面角B -A 1C -D 为钝角,故值是120°.

(也可以通过证明B 1A ⊥平面A 1BC 写出平面A 1BC 的法向量)

(2)根据题意有B (t ,0,0),C (t ,2-t ,0),D (0,2-t ,0),若线段A 1C 上存在一点P 满足要求,不妨A 1P →=λA 1C →

(λ>0),可得P (λt ,λ(2-t ),1-λ) BP →

=(λt -t ,λ(2-t ),1-λ), BD →

=(-t ,2-t ,0), ?????BP →·A 1C →=0,BD →·

A 1C →=0,即: ?

????t (λt -t )+λ(2-t )2-(1-λ)=0,-t 2+(2-t )2

=0, 解得:t =1,λ=23.

即只有当底面四边形是正方形时才有符合要求的点P ,位置是线段A 1C 上A 1P ∶PC =2∶1处. 10.如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面P AB ,△P AB 是等边三角形,DA =AB =2,BC =1

2

AD ,E 是线段AB 的中点.

(1)求证:PE ⊥CD ;

(2)求PC 与平面PDE 所成角的正弦值.

解 (1)证明:因为AD ⊥侧面P AB ,PE ?平面P AB ,所以AD ⊥PE . 又因为△P AB 是等边三角形,E 是线段AB 的中点,所以PE ⊥AB . 因为AD ∩AB =A ,所以PE ⊥平面ABCD . 而CD ?平面ABCD ,所以PE ⊥CD .

(2)以E 为原点,建立如图所示的空间直角坐标系E -xyz .

则E (0,0,0),C (1,-1,0),D (2,1,0),P (0,0,3). ED →=(2,1,0),EP →=(0,0,3),PC →

=(1,-1,-3). 设n =(x ,y ,z )为平面PDE 的法向量. 由?

????

n ·ED →=0,n ·EP →=0,即???

2x +y =0,3z =0,

令x =1,可得n =(1,-2,0). 设PC 与平面PDE 所成的角为θ, 则sin θ=|cos 〈PC →

,n 〉|=|PC →

·n ||PC →||n |=35.

所以PC 与平面PDE 所成角的正弦值为3

5

.

11.如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段

BP 上一点,∠CDP =120°,AD =3,AP =5,PC =27.

(1)试确定点F 的位置,使得EF ∥平面PDC ;

(2)若BF =1

3

BP ,求直线AF 与平面PBC 所成的角的正弦值.

(2)以DC 为x 轴,过D 点作DC 的垂线为y 轴,DA 为z 轴建立空间直角坐标系.在△PDC 中,由PD =4,PC =27,∠CDP =120°,及余弦定理,得CD =2, 则D (0,0,0),C (2,0,0),B (2,0,3),P (-2,23,0),A (0,0,3), 设F (x ,y ,z ),则BE →=(x -2,y ,z -3)=13BP →=????-43,233,-1, ∴F ????23,233,2.AF →=????23,233,-1.

设平面PBC 的法向量n 1=(a ,b ,c ), CB →=(0,0,3),PC →

=(4,-23,0), 由?????

n 1·CB →=0,n 1·

PC →=0,得???

3z =0,4x -23y =0,

令y =1,可得n 1=??

?

?32,1,0.

cos 〈AF →

,n 1〉=AF →·n 1|AF →||n 1|

=62135,

∴直线AF 与平面PBC 所成的角的正弦值为621

35

.

12.如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,∠ABC =∠BAD =90°,AP =AD =AB =2,BC =t ,∠P AB =∠P AD =α.

(1)当t =32时,试在棱P A 上确定一点E ,使得PC ∥平面BDE ,并求出此时AE

EP 的值;

(2)当α=60°时,若平面P AB ⊥平面PCD ,求此时棱BC 的长.

解 (1)连接AC 、BD 交于点F ,在平面PCA 中作EF ∥PC 交P A 于E ,连接DE ,BE . 因为PC ?平面BDE ,EF ?平面BDE , 所以PC ∥平面BDE .

因为AD ∥BC ,所以AF FC =AD BC =13,

因为EF ∥PC ,所以AE EP =AF FC =1

3

.

以O 为坐标原点,分别以OG →,OB →,OP →

的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz .

则O (0,0,0),P (0,0,1),A (-1,0,0),B (0,1,0),D (0,-1,0),G (1,0,0),C ??

?

?22t ,1-22t ,0,

故P A →=(-1,0,-1),PB →=(0,1,-1), PC →=????22t ,1-22t ,-1,PD →

=(0,-1,-1).

设平面P AB 的法向量为m =(x 1,y 1,z 1),

则?????

m ·P A →=0,m ·

PB →=0,即?????

-x 1-z 1=0,y 1-z 1=0,

不妨令x 1=-1,可得m =(-1,1,1)为平面P AB 的一个法向量. 设平面PCD 的法向量为n =(x 2,y 2,z 2), 则?????

n ·

PC →=0,n ·PD →=0,即?????

22tx 2+????1-22t y 2-z 2=0,-y 2-z 2=0,

不妨令y 2=1,可得n =????1-22t ,1,-1为平面PCD 的一个法向量.

由m ·n =0,解得t =22,即棱BC 的长为2 2.

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

届高三文科数学立体几何专题训练

2015届高三数学(文)立体几何训练题 1、如图3,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A 、B 的一点. ⑴求证:平面PAC ⊥平面PBC ; ⑵若PA=AB=2,∠ABC=30°,求三棱锥P -ABC 的体积. 2、如图,已知P A ?⊙O 所在的平面,AB 是⊙O 的直径,AB =2,C 是⊙O 上一点,且AC =BC =P A ,E 是PC 的中点,F 是PB 的中点. (1)求证:EF 3、如图,四棱柱1111D C B A ABCD -中,A A 1?底面ABCD ,且41=A A . 梯 形ABCD 的面积为6,且AD 平面DCE A 1与B B 1交于点E . (1)证明:EC D A 111A ABB 4、如图,已知正三棱柱ABC —A 1B 1C 1,AA 1=AB =2a ,D 、E 分别为CC 1、A 1B 的中 点. (1)求证:DE ∥平面ABC ; (2)求证:AE ⊥BD ; (3)求三棱锥D —A 1BA 的体积 . 5.如图,矩形ABCD 中,3AB =,4=BC .E ,F 分别在线段BC 和AD 上,EF ∥AB , 将矩形ABEF 沿EF 折起.记折起后的矩形为MNEF ,且平面⊥MNEF 平面ECDF . (Ⅰ)求证:NC ∥平面MFD ; P A B C O E F A B C D E A 1 B 1 C 1 D 1 A D F

F E A (Ⅱ)若3EC =,求证:FC ND ⊥; (Ⅲ)求四面体CDFN 体积的最大值. 6、如图,在三棱锥P ABC -中,PA ⊥底面ABC,090=∠BCA ,AP=AC, 点D ,E 分别在棱,PB PC 上,且BC (Ⅰ)求证:D E ⊥平面PAC ; (Ⅱ)若PC ⊥AD ,且三棱锥P ABC -的体积为8,求多面体ABCED 的体积。 7、如图:C 、D 是以AB 为直径的圆上两点,==AD AB 232,BC AC =,F 是AB 上一点, 且AB AF 3 1 =,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD 上,已知2=CE . (1)求证:⊥AD 平面BCE ; (2)求证://AD 平面CEF ; (3)求三棱锥CFD A -的体积. 8、如图甲,在平面四边形ABCD 中,已知45,90,105,o o o A C ADC ∠=∠=∠=A B BD =,现将四边 形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点. (1)求证:DC ⊥平面ABC ;

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

2015年高考理科数学试题汇编(含答案):立体几何-小题

2015年高考理科数学试题汇编(含答案):立体几何-小题

(新课标1)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为 一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有() A.14斛 B.22斛 C.36斛 D.66斛 【答案】B 考点:圆锥的体积公式 (新课标1)(9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为A.36π B.64π C.144π D.256π 【答案】C

试题分析:因为α,β是两个不同的平面,m是 直线且mα?.若“mβ∥”,则平面、 αβ可能相交 也可能平行,不能推出// αβ, αβ,反过来若// mα ?,则有mβ∥,则“mβ∥”是“αβ∥”的必要而不充分条件. 考点:1.空间直线与平面的位置关系;2.充要条件. (福建)7.若,l m是两条不同的直线,m垂直于平面α,则“l m⊥”是“//lα的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】B 考点:空间直线和平面、直线和直线的位置关系.(湖南)10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学专题复习:立体几何平行、垂直问题 【基础知识点】 一、平行问题 1.直线与平面平行的判定与性质 定义判定定理性质性质定理 图形 条件a∥α 结论a∥αb∥αa∩α=a∥b 2. 面面平行的判定与性质 判定 性质 定义定理 图形 条件α∥β,a?β 结论α∥βα∥βa∥b a∥α 平行问题的转化关系: 二、垂直问题 一、直线与平面垂直 1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论 文字语言图形语言符号语言 判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平 面垂直 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面

文字语言 图形语言 符号语言 性质定理 垂直于同一个平面的 两条直线平行 4.直线和平面垂直的常用性质 ①直线垂直于平面,则垂直于平面内任意直线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直 1.平面与平面垂直的判定定理 文字语言 图形语言 符号语言 判定定理 一个平面过另一个平 面的垂线,则这两个平 面垂直 2.平面与平面垂直的性质定理 文字语言 图形语言 符号语言 性质定理 两个平面垂直,则一个 平面内垂直于交线的直线垂直于另一个平 面 类型一、平行与垂直 例1、如图,已知三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D 为PB 中点, 且△PMB 为正三角形。(Ⅰ)求证:DM ∥平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ; (Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。 M D A P B C

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

高三理科数学《立体几何》测试题带答案.doc

高三理科数学《立体几何》测试题(带答案) 1、如图,在 C 中, C 45 ,点在上,且 C 2 ,平3 面 C , D // , D 1 .2 1 求证:// 平面 C D ; 2 求二面角CD 的余弦值.( 1)明:因PO 平面 ABC ,D// 所以 DA AB, PO AB 又 DA AO 1 PO ,所以AOD 4 ????????2 分2 又 AO 1 PO,即 OB OP, 所以 OBP ,即 OD // PB, ??????.4分2 4 又 PB 平面 COD, OD 平面 COD, 所以 PB // 平面 COD 。??????.6分 ( 2)解:A作AM DO,垂足为 M,过 M作MN CD于N ,连接 AN , ANM 即为二面角 O CD A的平面角。??????.8分 设 AD a,在等腰直角AOD 中,得 AM 2 a,在直角COD 中,得 MN 3 a,2 3 在直角AMN 中,得 AN 30 a,所以 cos ANM 10 ?????? .12分6 5 2、如图,在棱长为2的正方体CD11C1D1中,、F分别为1D1和CC1的中点. 1 求证:F// 平面CD1; 2 求异面直线 F 与所成的角的余弦值; 3 在棱 1 上是否存在一点,使得二面角C的 大小为 30 ?若存在,求出的长;若不存在,请说明理 由. 解:如分以DA、DC、DD1所在的直x 、 y 、 z 建立

空 直角坐 系 D-xyz , 由已知得 D (0 , 0, 0) 、 A (2 , 0, 0) 、 B (2 , 2, 0) 、 C (0 , 2, 0) 、 B 1(2 , 2, 2) 、 D 1(0 , 0,2) 、 E (1 , 0, 2 ) 、 F (0 , 2, 1) . (1) 取 AD 1 中点 G , G ( 1, 0, 1), CG =(1, -2 , 1),又 EF = ( -1 , 2, -1 ),由 EF = CG , ∴ EF 与 CG 共 .从而 EF ∥ CG,∵ CG 平面 ACD 1, EF 平 面 ACD 1,∴ EF ∥平面 ACD 1. ???????????????????????? 4 分 (2) ∵ AB =(0,2 , 0) , cos< EF , AB >= EF AB 4 6 , | EF | | AB | 2 6 3 ∴异面直 EF 与 AB 所成角的余弦 6 . ??????????????????? 8 分 3 (3) 假 足条件的点 P 存在,可 点 P (2 , 2,t )(0< t ≤2) ,平面 ACP 的一个法向量 n =( x , y , z ) , n AC 0, AC =(-2 , 2, 0) , ∵ AP =(0 , 2, t ), n AP 0. 2x 2 y 0, 2 ∴ tz 取 n (1,1, ) . 2 y 0, t 易知平面 ABC 的一个法向量 BB 1 (0,0,2) , 依 意知, < BB 1 , n >=30°或 < BB 1 , n >=150 °, | 4 | 3 ∴ |cos< BB 1 , n >|= t 4 , 2 2 2 2 t

2019年高考试题汇编文科数学--立体几何

(2019全国1文)16.已知90ACB ∠=?,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC 的距 P 到平面ABC 的距离为 . 答案: 解答: 如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的 垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ?中,由2,PC PF == ,可得出1CF =,同 理在Rt PCE ?中可得出1CE =,结合90ACB ∠=?,,OE CB OF CA ⊥⊥可得出1OE OF ==,OC = , PO == (2019全国1文)19.如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=, ,,E M N 分别是11,,BC BB A D 的中点. (1)证明://MN 平面1C DE (2)求点C 到平面1C DE 的距离. 答案: 见解析 解答: (1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG . ,,E M N 分别是 11,,BC BB A D 的中点. 于是可得到1//NG C D ,//GH DE , 于是得到平面//NGHM 平面1C DE , 由 MN ?平面NGHM ,于是得到//MN 平面1C DE

(2) E 为BC 中点,ABCD 为菱形且60BAD ∠= DE BC ∴⊥,又 1111ABCD A B C D -为直四棱柱,1DE CC ∴⊥ 1DE C E ∴⊥,又 12,4AB AA ==, 1DE C E ∴=,设点C 到平面1C DE 的距离为h 由11C C DE C DCE V V --=得 1111 143232 h ?=?? 解得h = 所以点C 到平面1C DE (2019全国2文)7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面 答案:B 解析: 根据面面平行的判定定理易得答案. (2019全国2文)16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

立体几何-2019年高考理科数学解读考纲

05 立体几何 (三)立体几何初步 1.空间几何体 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图. (3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. (4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 2.点、直线、平面之间的位置关系 (1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. ? 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. 公理2:过不在同一条直线上的三点,有且只有一个平面. 格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90πB.63π C.42πD.36π 【答案】B 【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规

则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解. 考向二 球的组合体 样题4 (2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B . 3π4 C . π2 D . π4 【答案】B 【解析】绘制圆柱的轴截面如图所示: 由题意可得:, 结合勾股定理,底面半径, 由圆柱的体积公式,可得圆柱的体积是,故选B. 【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 样题5 (2017江苏)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12 O O 的体积为1V ,球O 的体积为2V ,则 1 2 V V 的值是 .

高三文科数学立体几何专题练习加详细答案

高三文科数学专题立体几何 1. (2013汕头二模)设I、m是不同的两条直线, 题中为真命题的是() A ?若I ,,则I// C .若I m, // ,m ,则1 【答案】D 【解析】T I ,// ,?- I ,- .■ m D .若I , // ,m ,则I m 2. (2013东城二模)给出下列命题: ①如果不同直线m、n都平行于平面,则m、n—定不相交; ②如果不同直线m、n都垂直于平面,则m、n—定平行; ③如果平面、互相平行,若直线m ,直线n ,则m//n ; ④如果平面、互相垂直,且直线m、n也互相垂直,若m 则n 则真命题的个数是() A . 3 B . 2 C. 1 D. 0 【答案】C 【解析】只有②为真命题. 3. 设I为直线,,是两个不同的平面,下列命题中正确的是 A .若I // ,I// ,贝U // B.若1 ,I ,则// C .若1 ,I// ,贝U // D .若,I// ,则I 【解析】B 4. (2013 东莞 -模)如图,平行四边形ABCD 中,CD 1, BCD 60,且BD CD ,正方形ADEF和平面ABCD垂直,G, H是DF ,BE的中点. (1)求证:BD 平面CDE ; (2)求证:GH //平面CDE ; (3)求三棱锥D CEF的体积. C 是不重合的两个平面,则下列命 B.若I// , ,则I//

【解析】(1)证明:平面 ADEF 平面ABCD ,交线为AD , ?/ ED AD , ? ED 平面 ABCD , ?- ED BD ? 又 BD CD , ?- BD 平面 CDE . (2) 证明:连接 EA ,则G 是AE 的中点, ??? EAB 中,GH//AB , 又 AB//CD , ? GH // CD , ? GH // 平面 CDE ? (3) 设Rt BCD 中BC 边上的高为h , 是棱PA 上的动点. (1) 若Q 是PA 的中点,求证: PC // 平面BDQ CQ ; (2) PC , PB PD ,求证:BD 解析:证明:(1)连结AC ,交BD 于O ,如图: 若 PB 3, ABC 60°,求四棱锥P ABCD 即:点C 到平面 DEF 的距离为 … V D CEF V C DEF _3 2 _3 3 5.(2013丰台二模)如图所示,四棱锥P ABCD 中, 底面ABCD 是边长为2的菱形,Q

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

2017年高考数学空间几何高考真题

2017年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 一.选择题(共9小题) 1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() A.B.C. D. 2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.πB.C.D. 3.在正方体ABCD﹣A 1B 1 C 1 D 1 中,E为棱CD的中点,则() A.A 1E⊥DC 1 B.A 1 E⊥BD C.A 1 E⊥BC 1 D.A 1 E⊥AC 4.某三棱锥的三视图如图所示,则该三棱锥的体积为() A.60 B.30 C.20 D.10

5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是() A.+1 B.+3 C.+1 D.+3 6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D ﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α 7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A.90πB.63πC.42πD.36π

1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为() A.10 B.12 C.14 D.16 2.已知直三棱柱ABC﹣A 1B 1 C 1 中,∠ABC=120°,AB=2,BC=CC 1 =1,则异面直线 AB 1与BC 1 所成角的余弦值为() A. B.C.D. 二.填空题(共5小题) 8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为. 9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为. 10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.

高考文科数学专题5 立体几何 高考文科数学 (含答案)

专题五 立体几何 第一讲 空间几何体 1.棱柱、棱锥 (1)棱柱的性质 侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质 侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图 (1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题 (1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长. (2)柱、锥的内切球找准切点位置,化归为平面几何 问题. 4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式 ①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l ); ③圆台的表面积S =π(r ′2 +r 2 +r ′l +rl ); ④球的表面积S =4πR 2 . (2)体积公式 ①柱体的体积V =Sh ; ②锥体的体积V =1 3 Sh ;

③台体的体积V =1 3(S ′+SS ′+S )h ; ④球的体积V =43 πR 3 . 1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A .4 B.143 C.16 3 D .6 答案 B 解析 由三视图知四棱台的直观图为 由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=14 3. 2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是 ( )

历年全国理科数学高考试题立体几何部分含答案

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥 O ABCD -的体积为 。 3.如图,四棱锥P —ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。 (一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直

角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{ n AB n PB ?=?=u u u r u u u r 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{ PB BC ?=?=u u u r u u u r 可取m=(0,-1,3-) 27 cos ,27 m n = =- 故二面角A-PB-C 的余弦值为 27 7 - (二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 3 C 2 3 D 6 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?u u u v u u u v 的最 小值为

高三数学立体几何专题复习课程

高三数学立体几何专 题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空 间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三 视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的 高宽高分别为,,m n k = =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4 a b ?+≤当且仅当2a b ==时取等号.

《立体几何》专题(文科)

高三文科数学第二轮复习资料 ——《立体几何》专题 一、空间基本元素:直线与平面之间位置关系的小结.如下图: 二、练习题: 1. 1∥ 2,a ,b 与 1, 2都垂直,则a ,b 的关系是 A .平行 B .相交 C .异面 D .平行、相交、异面都有可能 2.三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是 A . V 21 B .V 31 C .V 41 D .V 3 2 3.设α、β、γ为平面, m 、n 、l 为直线,则m β⊥的一个充分条件是 A .,,l m l αβαβ⊥=⊥ B .,,m αγαγβγ=⊥⊥ C .,,m αγβγα⊥⊥⊥ D .,,n n m αβα⊥⊥⊥ 4.如图1,在棱长为a 的正方体ABCD A B C D -1111中, P 、Q 是对角 D 1 B 1

线A C 1上的点,若 a PQ= 2 ,则三棱锥P BDQ -的体积为 A3 B3 C3 D.不确定 5.圆台的轴截面面积是Q,母线与下底面成60°角,则圆台的内切球的表面积是 A 1 2Q B 2 3 Q C 2 π Q D 2 3π Q 6.在正方体ABCD—A1B1C1D1中,E、F、G、H分别为棱BC、CC1、C1D1、AA1的中点,O为AC与BD的交点(如图),求证: (1)EG∥平面BB1D1D; (2)平面BDF∥平面B1D1H; (3)A1O⊥平面BDF; (4)平面BDF⊥平面AA1C. 7.如图,斜三棱柱ABC—A’B’C’中,底面是边长为a的正三角形, 侧棱长为 b,侧棱AA’与底面相邻两边AB、AC都成450角,求 此三棱柱的侧面积和体积. 8.在三棱锥P—ABC中,PC=16cm,AB=18cm,PA=PB=AC=BC=17cm,求三棱锥的体积V P-ABC.

相关文档
最新文档