高三理科数学 专题五 立体几何

合集下载

高考数学立体几何专项知识点精选全文完整版

高考数学立体几何专项知识点精选全文完整版

可编辑修改精选全文完整版高考数学立体几何专项知识点高中数学平面几何不时是数学的一大难点,下面是小编整理的数学平面几何专项知识点,对提高数学效果会有很大的协助。

(1)空间几何体① 看法柱、锥、台、球及其复杂组合体的结构特征.② 能画出复杂空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的平面模型,会用斜二侧法画出它们的直观图.③ 了解球、棱柱、棱锥、台的外表积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系① 了解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:假设一条直线上的两点在一个平面内,那么这条直线上一切的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只要一个平面.◆公理3:假设两个不重合的平面有一个公共点,那么它们有且只要一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线相互平行◆定理:空间中假设一个角的两边与另一个角的两边区分平行,那么这两个角相等或互补.② 以平面几何的上述定义、公理和定理为动身点,看法和了解空间中线面平行、垂直的有关性质与判定.了解以下判定定理:◆假设平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆假设一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆假设一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆假设一个平面经过另一个平面的垂线,那么这两个平面相互垂直.了解以下性质定理,并可以证明:◆假设一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆假设两个平行平面同时和第三个平面相交,那么它们的交线相互平行◆垂直于同一个平面的两条直线平行◆假设两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③ 能运用公理、定理和已取得的结论证明一些空间位置关系的复杂命题.温习关注:平面几何试题着重考察空间点、线、面的位置关系的判别及几何体的外表积与体积的计算,关注画图、识图、用图的才干,关注对平行、垂直的探求,关注对条件或结论不完备情形下的开放性效果的探求小编为大家提供的2021-2021高考数学平面几何专项知识点大家细心阅读了吗?最后祝考生们学习提高。

高三高考数学总复习《立体几何》题型归纳与汇总

高三高考数学总复习《立体几何》题型归纳与汇总

(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,

高考立体几何的知识点总结

高考立体几何的知识点总结

高考立体几何的知识点总结立体几何作为高考数学中的一个重要考点,是让很多学生头痛的内容之一。

但只要掌握了一些基本的知识点和解题方法,立体几何也能够拿到不错的分数。

本文将总结高考立体几何的知识点,希望对广大考生有所帮助。

首先,让我们来回顾一下几何体的基本定义。

几何体是由平面图形旋转、平移、折叠等操作得到的立体图形。

常见的几何体有立方体、长方体、圆柱体、圆锥体、球等。

这些几何体都有自己的特点和性质,下面我们依次进行介绍。

一、立方体立方体是一种六面相等、相互平行的多面体,其所有面都是正方形。

立方体的特点是:所有的棱和面都相等,体对角线的长度等于边长的根号2,对称线的交点为几何体的中心。

二、长方体长方体是一种六面相等、相互平行的多面体,其相邻面都是矩形。

长方体的特点是:对称线的交点为几何体的中心,底面的面积与高的乘积等于体积,侧面的面积等于底面的周长乘以高。

三、圆柱体圆柱体是一种两个底面相同且平行的多面体,其侧面是一个弯曲的矩形。

圆柱体的特点是:侧面积等于底面周长乘以高,体积等于底面面积乘以高。

四、圆锥体圆锥体是一种一个底面和一个顶点的多面体,其侧面是一个弯曲的三角形。

圆锥体的特点是:侧面积等于底面周长乘以高的一半,体积等于底面积乘以高的一半。

五、球球是一种所有点到球心的距离相等的立体图形。

球的特点是:表面积等于4πr²,体积等于4/3πr³。

其中,r是球的半径。

在解决立体几何题目时,我们需要运用到许多的定理和性质,下面我们来总结一些常用的定理。

首先,平行线截立体当一个平面与两个或多个平面平行时,它截断的各部分与截断的立体对应的部分全等。

其次,等角面截立体当两个平面相交的两个直角相等时,它截断的各部分与截断的立体对应的部分全等。

再次,等比线段截圆柱以圆柱母线上一点为一定点,引过它的直线交柱面于两点,这两点的连线与圆柱底面上所对的两点的连线等长。

最后,底面面积比与体积比如果两个立体的底面面积比相等,那么这两个立体的体积比也相等。

高三理科立体几何知识点

高三理科立体几何知识点

高三理科立体几何知识点立体几何是数学中的一个重要分支,它研究的是空间内的几何学性质和关系。

在高中阶段的数学学习中,了解和掌握立体几何的知识点是必不可少的。

本文将介绍高三理科立体几何的一些主要知识点。

一、立体几何的基础概念1. 点、线、面和体的概念:点是没有大小和形状的,它只有位置,用字母表示;线是由无数个点连在一起形成的,用两个点的首字母表示;面是由线围成的平面,具有长度和宽度,用大写字母表示;体是由面围成的空间,具有长度、宽度和高度,用大写希腊字母表示。

2. 平行和垂直:平行的线或面永不相交,垂直的线或面相交成直角。

3. 空间图形的投影:将一个立体图形沿着某个方向投影到一个平面上形成的图形。

二、立体几何的主要图形1. 球体:所有点到球心的距离相等的空间图形。

2. 锥体:一个顶点和一个底面围成的空间图形。

3. 圆柱体:两个平行相等底面和连接这两个底面的侧面围成的空间图形。

4. 长方体:六个相互平行的面所围成的空间图形。

5. 正方体:六个相等正方形面所围成的空间图形。

三、立体几何的体积和表面积计算1. 球的体积和表面积计算:球的体积公式为V = (4/3)πr³,表面积公式为A = 4πr²,其中r是球的半径,π取近似值3.14。

2. 锥体的体积和表面积计算:锥体的体积公式为V = (1/3)πr²h,表面积公式为A = πr(r+√(r²+h²)),其中r是锥体的半径,h是锥体的高度,π取近似值3.14。

3. 圆柱体的体积和表面积计算:圆柱体的体积公式为V = πr²h,表面积公式为A = 2πr² + 2πrh,其中r是圆柱体的半径,h是圆柱体的高度,π取近似值3.14。

4. 长方体的体积和表面积计算:长方体的体积公式为V = lwh,表面积公式为A = 2lw + 2lh + 2wh,其中l、w、h分别是长方体的长度、宽度和高度。

高三立体几何必考知识点

高三立体几何必考知识点

高三立体几何必考知识点几何学是数学的一个重要分支,而立体几何则是数学中的一个关键概念。

在高三数学考试中,立体几何是一个必考的内容,掌握好立体几何的知识点对于取得好成绩至关重要。

本文将介绍高三立体几何的必考知识点,帮助同学们更好地备考。

一、多面体的性质多面体是指由多个平面多边形组成的立体图形。

在高三数学考试中,多面体的性质是经常被考察的知识点。

以下是几个常见的多面体及其性质:1. 正四面体: 正四面体是最简单的四面体,它的底面为等边三角形,上面的顶点与底面的重心连线垂直。

常用的性质有底面三角形的面积、体积计算公式,以及各个面和边的关系等。

2. 正六面体: 正六面体也被称为立方体,它的六个面都是正方形。

立方体有着很多独特的性质,例如它的对角线相等、面对面的平行线互相垂直等。

3. 正八面体和正十二面体: 正八面体和正十二面体是比较常见的多面体,它们的性质和计算方法也会在考试中出现。

二、平行四边形的性质平行四边形是由四条平行线组成的四边形,它的性质也是高三数学考试中的重点内容之一。

以下是几个和平行四边形相关的必考知识点:1. 三角形面积公式: 在平行四边形中,可以根据两条边和夹角的关系计算三角形的面积。

常用的计算公式有海伦公式和正弦定理等。

2. 平行四边形的面积公式: 平行四边形的面积可以使用底边长乘以高的公式进行计算。

如果已知两条边和夹角,则可以使用正弦定理计算面积。

3. 对角线的性质: 平行四边形的对角线互相平分,并且对角线的长度相等。

这一性质在高三数学考试中很常见,同学们一定要牢记。

三、圆锥、圆台的性质圆锥和圆台是高考中经常出现的立体图形,了解它们的性质对于解题非常有帮助。

以下是一些圆锥和圆台的必考知识点:1. 圆锥的体积公式: 圆锥的体积可以使用底面积乘以高再除以3进行计算,这个公式在高考中经常会被使用。

2. 圆台的体积和表面积公式: 圆台的体积可以使用平均半径乘以高再乘以π进行计算。

而圆台的表面积则是底面面积加上底面周长乘以斜高的一半。

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。

[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。

[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。

[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。

[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误![快速审题](1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。

高考数学专题复习第二编专题整合突破专题五立体几何第二讲点直线平面之间的位置关系理市赛课公开课一等奖省

高考数学专题复习第二编专题整合突破专题五立体几何第二讲点直线平面之间的位置关系理市赛课公开课一等奖省
22/53
题型 2 面面平行的判定与性质 典例 3 如图,在三棱锥 S-ABC 中,平面 SAB⊥平 面 SBC,AB⊥BC,AS=AB.过 A 作 AF⊥SB,垂足为 F, 点 E,G 分别是棱 SA,SC 的中点.求证:
(1)平面 EFG∥平面 ABC; (2)BC⊥SA.
23/53
[证明] (1)因为 AS=AB,AF⊥SB,垂足为 F,所以 F 是 SB 的中点.又因为 E 是 SA 的中点,所以 EF∥AB.
27/53
考点 空间垂直关系的证明 典例示法 题型 1 线线、线面垂直的判定与性质 典例 4 [2016·山西四校联考] 如图,在直三棱柱 ABC-A1B1C1 中,底面是正三角形,点 D 是 A1B1 的中点, AC=2,CC1= 2.
28/53
(1)求三棱锥 C-BDC1 的体积; (2)证明:A1C⊥BC1.
18/53
有两个直角,所以 DE 不可能垂直于 A1C.因为 MB 綊12A1F, 由图可知 A1F 在平面 A1DE 内,所以存在某个位置使得 MB∥ 平面 A1DE.
19/53
考点 空间平行关系的证明 典例示法 题型 1 线面平行的判定与性质 典例 2 如图,直三棱柱 ABC-A1B1C1 中,D,E 分 别是 AB,BB1 的中点.
9/53
热点考向探究
10/53
考点 线、面位置关系与命题真假的判断 典例示法 典例 1 (1)[2016·广州五校联考]已知 a,b 是空间中两 条不同的直线,α,β 是空间中两个不同的平面,下列命题中 正确的是( ) A.若直线 a∥b,b⊂α,则 a∥α B.若平面 α⊥β,a⊥α,则 a∥β C.若平面 α∥β,a⊂α,b⊂β,则 a∥b D.若 a⊥α,b⊥β,a∥b,则 α∥β

高中数学 专题1.立体几何(立体图形的三视图、表面积、体积及外接球)

高中数学 专题1.立体几何(立体图形的三视图、表面积、体积及外接球)

专题五 立 体 几 何1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD 1=1,AB =BC =AA 1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是( )2:如图,在长方体1111ABCD A B C D -中,点P 是棱CD 上一点,则三棱锥11P A B A -的侧视图是( )A .B .C .D .3.一只蚂蚁从正方体ABCD -A 1B 1C 1D 1的顶点A 处出发,经正方体的表面,按最短路线爬行到顶点C 1处,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是( )A .(1)(2)B .(1)(3)C .(2)(4)D .(3)(4)1.已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )2.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱C .四棱锥 D .四棱柱3.若某几何体的三视图如图所示,则这个几何体的直观图可以( )二、根据三视图还原几何体的直观图一、根据几何体的结构特征确认其三视图A.B.C.D.1.如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A.B.C.D.2.(2018·南宁一模)一个简单几何体的正视图、侧视图如图所示,则其俯视图可能是( )①长、宽不相等的长方形;②正方形;③圆;④椭圆.A.①②B.①④C.②③D.③④3.一个几何体的三视图中,正视图和侧视图如图所示,则俯视图不可以为()A.B.C.D.4.中国古代数学名著《九章算术》中,将底面是直角三角形的直棱柱称为“堑堵”.已知“堑堵”的正视图和俯视图如图所示,则该“堑堵”的侧视图的面积为()A.18 6 B.18 3 C.18 2 D.27221.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.5π18+B.6π18+C.8π6+D.10π6+2.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.8+3π B.8+4πC.8+5π D.8+6π3.(2017·全国卷Ⅰ,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A.10B.12C.14D.164..如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π三、已知几何体的三视图中某两个视图,确定另外一种视图四、根据几何体的三视图计算表面积五、根据几何体的三视图计算体积1.(2019·江苏卷)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥EBCD的体积是_______2.(2017·山东卷,13)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三理科数学 专题五 立体几何1.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.627 B.637C.607D.6572.已知点B 是点A (3,7,-4)在xOz 平面上的射影,则OB →2等于( ) A .10B .25C .5D .133.正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AC 1→上,且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( )A.216B.66C.156D.1534.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32 B.22C.223D.2335.二面角α-l -β等于120°,A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,且AB =AC =BD =1,则CD 的长等于________.6.如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:C 1B ⊥平面ABC ;(2)设CE →=λCC 1→(0≤λ≤1),且平面AB 1E 与BB 1E 所成的锐二面角的大小为30°,试求λ的值.7.如图,在多面体ABCDEF中,底面ABCD是边长为2的的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(1)求证:平面BDGH∥平面AEF;(2)求二面角H-BD-C的大小.8.如图,△ABC是以∠ABC为直角的三角形,SA⊥平面ABC,SA=BC=2,AB=4.M,N,D(1)求证:MN⊥AB;(2)求二面角S-ND-A的余弦值;(3)求点A到平面SND的距离.9.如图,将长为4,宽为1的长方形折叠成长方体ABCD-A1B1C1D1的四个侧面,记底面上一边AB=t(0<t<2),连接A1B,A1C,A1D.(1)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的值;(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由。

10.如图,四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,AD⊥侧面P AB,△P AB是等边三角形,DA=AB=2,BC=12AD,E是线段AB的中点.(1)求证:PE⊥CD;(2)求PC与平面PDE所成角的正弦值.11.如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP 上一点,∠CDP =120°,AD =3,AP =5,PC =27.(1)试确定点F 的位置,使得EF ∥平面PDC ;(2)若BF =13BP ,求直线AF 与平面PBC 所成的角的正弦值..12.如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,∠ABC =∠BAD =90°,AP =AD =AB =2,BC =t ,∠P AB =∠P AD =α.(1)当t =32时,试在棱P A 上确定一点E ,使得PC ∥平面BDE ,并求出此时AEEP 的值;(2)当α=60°时,若平面P AB ⊥平面PCD ,求此时棱BC 的长.高三理科数学 专题五 立体几何1.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.627 B.637C.607D.6572.已知点B 是点A (3,7,-4)在xOz 平面上的射影,则OB →2等于( ) A .(9,0,16) B .25 C .5D .13解析 A 在xOz 平面上的射影为B (3,0,- 4),则OB →=(3,0,-4),OB →2=25. 答案 B3.正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AC 1→上,且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( ) A.216 B.66C.156D.153解析 如图,设AB →=a ,AD →=b ,AA 1→=c , 则a ·b =b ·c =c ·a =0. 由条件知MN →=MA →+AB →+BN →=-13(a +b +c )+a +12c =23a -13b +16c ,∴MN →2=49a 2+19b 2+136c 2=2136,∴|MN →|=216. 答案 A4.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32B.22C.223D.233解析 如图,建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2),D (0,0,0),B (2,2,0),∴D 1A 1→=(2,0,0),DA 1→=(2,0,2),DB →=(2,2,0), 设平面A 1BD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0,n ·DB →=2x +2y =0.令x =1,则n =(1,-1,-1).∴点D 1到平面A 1BD 的距离 d =|D 1A 1→·n ||n |=23=233.答案 D5.二面角α-l -β等于120°,A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,且AB =AC =BD =1,则CD 的长等于________. 解析 如图,∵二面角α-l -β等于120°, ∴CA →与BD →夹角为60°.由题设知,CA →⊥AB →,AB →⊥BD →,|AB →|=|AC →|=|BD →|=1, |CD →|2=|CA →+AB →+BD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=3+2×cos 60°=4,∴|CD →|=2. 6.如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:C 1B ⊥平面ABC ;(2)设CE →=λCC 1→(0≤λ≤1),且平面AB 1E 与BB 1E 所成的锐二面角的大小为30°,试求λ的值.(2)解 由(1)可知,AB ,BC ,BC 1两两垂直.以B 为原点,BC ,BA ,BC 1所在直线为x ,y ,z 轴建立空间直角坐标系.则B (0,0,0),A (0,1,0),C (1,0,0), C 1(0,0,3),B 1(-1,0,3).所以CC 1→=(-1,0,3), 所以CE →=(-λ,0,3λ),∴E (1-λ,0,3λ),则AE →=(1-λ,-1,3λ),AB 1→=(-1,-1,3).设平面AB 1E 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AE →,n ⊥AB 1→,得⎩⎨⎧(1-λ)x -y +3λz =0,-x -y +3z =0,令z =3,则x =3-3λ2-λ,y =32-λ,,∴n =⎝⎛⎭⎪⎫3-3λ2-λ,32-λ,3,∵AB ⊥平面BB 1C 1C ,BA →=(0,1,0)是平面的一个法向量, ∴|cos 〈n ,BA →〉|=n ·BA →|n |·|BA →|=32-λ1×⎝ ⎛⎭⎪⎫3-3λ2-λ2+⎝⎛⎭⎫32-λ2+(3)2=32.两边平方并化简得2λ2-5λ+3=0,所以λ=1或λ=32(舍去).∴λ=1.7.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点.(1)求证:平面BDGH ∥平面AEF ; (2)求二面角H -BD -C 的大小.(1)证明 在△CEF 中,因为G ,H 分别是CE ,CF 的中点. 所以GH ∥EF ,又因为GH ⊄平面AEF ,EF ⊂平面AEF , 所以GH ∥平面AEF . 设AC ∩BD =O ,连接OH , 因为ABCD 为菱形, 所以O 为AC 中点,在△ACF 中,因为OA =OC ,CH =HF , 所以OH ∥AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF , 所以OH ∥平面AEF .又因为OH ∩GH =H ,OH ,GH ⊂平面BDGH , 所以平面BDGH ∥平面AEF. (2)解 取EF 的中点N ,连接ON ,因为四边形BDEF 是矩形,O ,N 分别为BD ,EF 的中点, 所以ON ∥ED ,因为平面BDEF ⊥平面ABCD , 所以ED ⊥平面ABCD ,所以ON ⊥平面ABCD ,因为ABCD 为菱形,所以AC ⊥BD ,得OB ,OC ,ON 两两垂直.所以以O 为原点,OB ,OC ,ON 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系.因为底面ABCD 是边长为2的菱形,∠BAD =60°,BF =3,所以B (1,0,0),D (-1,0,0),E (-1,0,3),F (1,0,3),C (0,3,0),H ⎝ ⎛⎭⎪⎫12,32,32, 所以BH →=⎝ ⎛⎭⎪⎫-12,32,32,DB →=(2,0,0). 设平面BDH 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BH →=0n ·DB →=0⇒⎩⎨⎧-x +3y +3z =0,2x =0, 令z =1,得n =(0,-3,1).由ED ⊥平面ABCD ,得平面BCD 的法向量为DE →=(0,0,3),则cos 〈n ,DE →〉=n ·DE →|n||DE →|=0×0+(-3)×0+1×32×3=12.所以二面角H -BD -C 的大小为60°.8.如图,△ABC 是以∠ABC 为直角的三角形,SA ⊥平面ABC ,SA =BC =2,AB =4.M ,N ,D 分别是SC ,AB ,BC 的中点.(1)求证:MN ⊥AB ;(2)求二面角S -ND -A 的余弦值;(3)求点A 到平面SND 的距离.解 以B 为坐标原点,BC ,BA 为x ,y 轴的正方向,垂直于平面ABC 的直线为z 轴,建立空间直角坐标系(如图).(1)证明 由题意得A (0,4,0),B (0,0,0),M (1,2,1),N (0,2,0),S (0,4,2),D (1,0,0).所以:MN →=(-1,0,-1),AB →=(0,-4,0),MN →·AB →=0,∴MN ⊥AB .(3)∵AN →=(0,-2,0),∴点A 到平面SND 的距离d =|AN →·m ||m |=63.9.如图,将长为4,宽为1的长方形折叠成长方体ABCD -A 1B 1C 1D 1的四个侧面,记底面上一边AB =t (0<t <2),连接A 1B ,A 1C ,A 1D .(1)当长方体ABCD -A 1B 1C 1D 1的体积最大时,求二面角B -A 1C -D 的值;(2)线段A 1C 上是否存在一点P ,使得A 1C ⊥平面BPD ,若有,求出P 点的位置,没有请说明理由解法一 (1)根据题意,长方体体积为V =t (2-t )×1=t (2-t )≤⎝⎛⎭⎫t +2-t 22=1,当且仅当t =2-t ,即t =1时体积V 有最大值为1,所以当长方体ABCD -A 1B 1C 1D 1的体积最大时,底面四边形ABCD 为正方形,作BM ⊥A 1C 于M ,连接DM ,BD ,因为四边形ABCD 为正方形,所以△A 1BC 与△A 1DC 全等,故DM ⊥A 1C ,所以∠BMD 即为所求二面角的平面角.(2)若线段A 1C 上存在一点P ,使得A 1C ⊥平面BPD ,则A 1C ⊥BD又A 1A ⊥平面ABCD ,所以A 1A ⊥BD ,所以BD ⊥平面A 1AC .所以BD ⊥AC ,底面四边形ABCD 为正方形,即只有ABCD 为正方形时,线段A 1C 上存在点P 满足要求,否则不存在.由(1)知,所求点P 即为BM ⊥A 1C 的垂足M ,此时,A 1P =A 1B 2A 1C =23=233. 法二 根据题意可知,AA 1,AB ,AD 两两垂直,以AB 为x 轴,AD 为y 轴,AA 1为z 轴建立如图所示的空间直角坐标系:(1)长方体体积为V =t (2-t )×1=t (2-t )≤⎝⎛⎭⎫t +2-t 22=1, 当且仅当t =2-t ,即t =1时体积V 有最大值为1.所以当长方体ABCD -A 1B 1C 1D 1的体积最大时,底面四边形ABCD 为正方形,则A 1(0,0,1),B (1,0,0),C (1,1,0),A 1B →=(1,0,-1),BC →=(0,1,0),设平面A 1BC 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧x -z =0,y =0, 取x =z =1,得:m =(1,0,1),同理可得平面A 1CD 的法向量n =(0,1,1),所以,cos 〈m ,n 〉=m·n |m|·|n|=12,又二面角B -A 1C -D 为钝角,故值是120°.(也可以通过证明B 1A ⊥平面A 1BC 写出平面A 1BC 的法向量)(2)根据题意有B (t ,0,0),C (t ,2-t ,0),D (0,2-t ,0),若线段A 1C 上存在一点P 满足要求,不妨A 1P →=λA 1C →(λ>0),可得P (λt ,λ(2-t ),1-λ)BP →=(λt -t ,λ(2-t ),1-λ),BD →=(-t ,2-t ,0),⎩⎪⎨⎪⎧BP →·A 1C →=0,BD →·A 1C →=0,即: ⎩⎪⎨⎪⎧t (λt -t )+λ(2-t )2-(1-λ)=0,-t 2+(2-t )2=0, 解得:t =1,λ=23.即只有当底面四边形是正方形时才有符合要求的点P ,位置是线段A 1C 上A 1P ∶PC =2∶1处.10.如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面P AB ,△P AB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求证:PE ⊥CD ;(2)求PC 与平面PDE 所成角的正弦值.解 (1)证明:因为AD ⊥侧面P AB ,PE ⊂平面P AB ,所以AD ⊥PE .又因为△P AB 是等边三角形,E 是线段AB 的中点,所以PE ⊥AB .因为AD ∩AB =A ,所以PE ⊥平面ABCD .而CD ⊂平面ABCD ,所以PE ⊥CD .(2)以E 为原点,建立如图所示的空间直角坐标系E -xyz .则E (0,0,0),C (1,-1,0),D (2,1,0),P (0,0,3).ED →=(2,1,0),EP →=(0,0,3),PC →=(1,-1,-3).设n =(x ,y ,z )为平面PDE 的法向量.由⎩⎪⎨⎪⎧ n ·ED →=0,n ·EP →=0,即⎩⎨⎧2x +y =0,3z =0, 令x =1,可得n =(1,-2,0).设PC 与平面PDE 所成的角为θ,则sin θ=|cos 〈PC →,n 〉|=|PC →·n ||PC →||n |=35. 所以PC 与平面PDE 所成角的正弦值为35. 11.如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP 上一点,∠CDP =120°,AD =3,AP =5,PC =27.(1)试确定点F 的位置,使得EF ∥平面PDC ;(2)若BF =13BP ,求直线AF 与平面PBC 所成的角的正弦值.(2)以DC 为x 轴,过D 点作DC 的垂线为y 轴,DA 为z 轴建立空间直角坐标系.在△PDC 中,由PD =4,PC =27,∠CDP =120°,及余弦定理,得CD =2,则D (0,0,0),C (2,0,0),B (2,0,3),P (-2,23,0),A (0,0,3),设F (x ,y ,z ),则BE →=(x -2,y ,z -3)=13BP →=⎝⎛⎭⎫-43,233,-1, ∴F ⎝⎛⎭⎫23,233,2.AF →=⎝⎛⎭⎫23,233,-1. 设平面PBC 的法向量n 1=(a ,b ,c ),CB →=(0,0,3),PC →=(4,-23,0),由⎩⎪⎨⎪⎧ n 1·CB →=0,n 1·PC →=0,得⎩⎨⎧3z =0,4x -23y =0, 令y =1,可得n 1=⎝⎛⎭⎫32,1,0. cos 〈AF →,n 1〉=AF →·n 1|AF →||n 1|=62135,∴直线AF 与平面PBC 所成的角的正弦值为62135. 12.如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,∠ABC =∠BAD =90°,AP =AD =AB =2,BC =t ,∠P AB =∠P AD =α.(1)当t =32时,试在棱P A 上确定一点E ,使得PC ∥平面BDE ,并求出此时AE EP的值; (2)当α=60°时,若平面P AB ⊥平面PCD ,求此时棱BC 的长.解 (1)连接AC 、BD 交于点F ,在平面PCA 中作EF ∥PC 交P A 于E ,连接DE ,BE . 因为PC ⊄平面BDE ,EF ⊂平面BDE ,所以PC ∥平面BDE .因为AD ∥BC ,所以AF FC =AD BC =13, 因为EF ∥PC ,所以AE EP =AF FC =13.以O 为坐标原点,分别以OG →,OB →,OP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz .则O (0,0,0),P (0,0,1),A (-1,0,0),B (0,1,0),D (0,-1,0),G (1,0,0),C ⎝⎛⎭⎫22t ,1-22t ,0, 故P A →=(-1,0,-1),PB →=(0,1,-1), PC →=⎝⎛⎭⎫22t ,1-22t ,-1,PD →=(0,-1,-1). 设平面P AB 的法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ m ·P A →=0,m ·PB →=0,即⎩⎪⎨⎪⎧-x 1-z 1=0,y 1-z 1=0, 不妨令x 1=-1,可得m =(-1,1,1)为平面P AB 的一个法向量. 设平面PCD 的法向量为n =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ n ·PC →=0,n ·PD →=0,即⎩⎪⎨⎪⎧22tx 2+⎝⎛⎭⎫1-22t y 2-z 2=0,-y 2-z 2=0,不妨令y 2=1,可得n =⎝⎛⎭⎫1-22t ,1,-1为平面PCD 的一个法向量. 由m ·n =0,解得t =22,即棱BC 的长为2 2.。

相关文档
最新文档