(专题)数列求和的几种方法_.ppt
合集下载
高三数学最新复习课件数列求和(共42张PPT)

数列的通项的和,分别求出每个数列的和,从
而求出原数列的和.
例1
求下面数列的前 n 项和: 1 1 1 1+1,a+4, 2+7,…, n-1+3n-路点拨】
1 1 1 【解】 Sn= (1+ 1)+( + 4)+ ( 2+ 7)+…+ ( n-1+ 3n a a a - 2) 1 1 1 = (1+ + 2+…+ n-1)+ [1+4+ 7+…+(3n-2)]. a a a 1 1 1 令 Bn= 1+ + 2+…+ n-1, a a a an-1 ∴当 a= 1 时, Bn= n;当 a≠ 1 时, Bn= n n- 1, a -a 3n-1 n Cn= 1+ 4+ 7+…+(3n- 2)= . 2
【名师点评】
利用错位相减法求和时,转化为
等比数列求和.若公比是参数(字母),则应先对参
数加以讨论,一般情况下分等于1和不等于1两种
情况分别进行求和.
裂项相消法求和 裂项相消是将数列的项分裂为两项之差,通过
求和相互抵消,从而达到求和的目的.
例3 (2011 年博州质检 )已知数列 {an}中, a1= 1,
错位相减法求和 一般地,如果数列{an}是等差数列,{bn}是等比 数列,求数列{an· bn}的前n项和时,可采用错位 相减法.
例2
知数列{an}满足a1,a2-a1,a3-a2,…,an
-an-1,…是首项为1,公比为a的等比数列. (1)求an; (2)如果a=2,bn=(2n-1)an,求数列{bn}的前n项 和 S n.
等比数列,再求解.
4.裂项相消法 把数列的通项拆成两项之差求和,正负相消剩 下首尾若干项. 5.倒序相加法 把数列正着写和倒着写再相加(即等差数列求和
公式的推导过程的推广).
专题数列求和的几种方法.ppt

求: bn 的前n项和
1 1(1 1 ) an an1 d an an1
}
满足
Sn b1 b2 b3 bn
1 ( 1 1 ) 1 ( 1 1 ) 1 ( 1 1 )
d a1 a2 d a2 a3
d an an1
1(1 1 1 1 d a1 a2 a2 a3
1 1 ) an an1
数 列 求和
1运用公式法
等差或等比数列直 接应用求和公式
2 分组求和法 3 错位相减法 4 裂项相消法 5 倒序相加法
化归思想转化 成等差、等比 数列求
1 2 2 3 3 4 n(n 1)
分析:设数列的通项为bn,则
bn
n(n 1)
6( 1 n
1) n 1
Sn
b1
b2
bn
6[(1
1) 2
(1 2
1) 3
(1 n
1 )] n 1
6(1 1 ) 6n n1 n1
例4、设{1an bn anan1
解: bn
}是公差d 不为零的等差数列 ,{bn
1(1 1 ) n .
d a1 an1
a1an 1
若
an
( An
1 B)(
An
C)
,则求Sn用 裂项相消法
.
常见的拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
1.公式法:
即直接用求和公式,求数列的前n和Sn
①等差数列的前n项和公式:
Sn
n(a1 2
1 1(1 1 ) an an1 d an an1
}
满足
Sn b1 b2 b3 bn
1 ( 1 1 ) 1 ( 1 1 ) 1 ( 1 1 )
d a1 a2 d a2 a3
d an an1
1(1 1 1 1 d a1 a2 a2 a3
1 1 ) an an1
数 列 求和
1运用公式法
等差或等比数列直 接应用求和公式
2 分组求和法 3 错位相减法 4 裂项相消法 5 倒序相加法
化归思想转化 成等差、等比 数列求
1 2 2 3 3 4 n(n 1)
分析:设数列的通项为bn,则
bn
n(n 1)
6( 1 n
1) n 1
Sn
b1
b2
bn
6[(1
1) 2
(1 2
1) 3
(1 n
1 )] n 1
6(1 1 ) 6n n1 n1
例4、设{1an bn anan1
解: bn
}是公差d 不为零的等差数列 ,{bn
1(1 1 ) n .
d a1 an1
a1an 1
若
an
( An
1 B)(
An
C)
,则求Sn用 裂项相消法
.
常见的拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
1.公式法:
即直接用求和公式,求数列的前n和Sn
①等差数列的前n项和公式:
Sn
n(a1 2
数列求和的几种方法的课件

x 0 x 1 x 1
探究:求和方法
探究一:等差、等比数列求和公式 是用何种方法推导出来的?
倒序相加法
错位相减法
求和方法二:倒加序相
3 、已知对x R,有f x +f 1 x =1成立,则 例 1 f 0 f 0.2 f 0.4 f 0.6 f 0.8 f 1 ___
1 (2)S f 2011 2 f 2011 2010 f 2011
课前检测
1.S 1 3 5 (2n 1) (n 1)
2.S 2 2 2 2 2
2 3 n n 1
2
2
n 2
3.Sn 1 x x x x
2 3 n
Sn
1, n, 1 x n 1 x
求和方法五:分组求和
例4:求数列 n 2
n
的前n项和。
答案:
n(n 1) n 1 2 2 2
求和方法五:分组求和
练习 .S 1 2 2 3 n (n 1) n( n 1)(n 2)
3
总结:
常见求和方法 直接求和 (公式法) 倒序相加法 错位相减法 裂项相消法 适用范围及方法 等差、或等比数列用求和公 式,常数列直接运算。 类比等差数列的求和方法。 数列{ anbn}的求和,其中{an}是 等差数列,{bn}是等比数列。 数列{k/f(n)g(n)}的求和,其中 f(n),g(n)是一次函数的形式。 把通项分解成几项,从而出现 几个等差数列或等比数列进行 求和,如 {an+bn}。
数列求和
高一数学备课组
高三数学一轮总复习 第五章 数列 5.4 数列求和课件.ppt

12
n
4.一个数列{an},当 n 是奇数时,an=5n+1;当 n 为偶数时,an=22 ,则这 个数列的前 2m 项的和是__________。
解析:当 n 为奇数时,{an}是以 6 为首项,以 10 为公差的等差数列;当 n 为偶 数时,{an}是以 2 为首项,以 2 为公比的等比数列。所以,S2m=S 奇+S 偶=ma1+mm2-1 ×10+a211--22m
7
2 种思路——解决非等差、等比数列求和问题的两种思路 (1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往 通过通项分解或错位相减来完成。 (2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和。
8
3 个注意点——应用“裂项相消法”和“错位相减法”应注意的问题 (1)裂项相消法,分裂通项是否恰好等于相应的两项之差。 (2)在正负项抵消后,是否只剩下第一项和最后一项,或有时前面剩下两项,后 面也剩下两项,未消去的项有前后对称的特点。 (3)在应用错位相减法求和时,若等比数列的公比含有参数,应分 q=1 和 q≠1 两种情况求解。
=6m+5m(m-1)+2(2m-1) =6m+5m2-5m+2m+1-2 =2m+1+5m2+m-2。 答案:2m+1+5m2+m-2
13
5.已知数列{an}的前 n 项和为 Sn 且 an=n·2n,则 Sn=__________。
解析:∵an=n·2n, ∴Sn=1·21+2·22+3·23+…+n·2n。① ∴2Sn=1·22+2·23+…+(n-1)·2n+n·2n+1。② ①-②,得-Sn=2+22+23+…+2n-n·2n+1 =211--22n-n·2n+1=2n+1-2-n·2n+1 =(1-n)2n+1-2。 ∴Sn=(n-1)2n+1+2。 答案:(n-1)2n+1+2
数列求和及综合应用中小学PPT教学课件

例题:冲刺强化训练(14)T12
前两小问略 下面主要研究第(3)问
第三部分:数列与其他知识的交汇综合
1
1 问1:能否相消?
Cn
2
3n1
1
3n
1
问2:是否需
要相消?
将Tn表示出来并不困难
解题目标?
Tn C1 C2 Cn
2n
1 32
1
1 30
1
1 33
1
1 32
1
1 3n 1
1 3n1 1
bn Sn Sn1(n 2)"
可化简得 2S 2Sn1 1 Sn • Sn1
1 11
Sn Sn1 2
Sn 与bn
关系?
第二部分:基本数列之间的综合
思路2: 由 Sn 进一步求 bn
1 n时需1 要注意什么?
1(n 1)
bn
2 n(n 1)
(n
2)
第二部分:基本数列之间的综合
第一课 文化与社会
画卷
“巨幅画轴” “巨幅画轴”
水墨画
海上丝绸之路
孔子三千弟子
活字印刷术
礼 乐
礼乐
太极
刘欢和莎拉.布莱曼唱起了《我和你》
刘欢和莎拉.布莱曼唱起了《我和你》
回忆:
1、第29届奥林匹克运文动会化开形幕式式多中,有 那些文艺节目?请写在文黑种化板多现上样。象无
n(n 1)
其中 (n 1)n 的大小理科生可以用数归法解决。 n n 1 也可得到第3项最大
第三部分:数列与其他知识的交汇综合
4、与解析几何知识的交汇综合
例:已知直线ln : y x 2n与圆Cn :
x2 y2 2an n 2交于不同的两点An , Bn,
前两小问略 下面主要研究第(3)问
第三部分:数列与其他知识的交汇综合
1
1 问1:能否相消?
Cn
2
3n1
1
3n
1
问2:是否需
要相消?
将Tn表示出来并不困难
解题目标?
Tn C1 C2 Cn
2n
1 32
1
1 30
1
1 33
1
1 32
1
1 3n 1
1 3n1 1
bn Sn Sn1(n 2)"
可化简得 2S 2Sn1 1 Sn • Sn1
1 11
Sn Sn1 2
Sn 与bn
关系?
第二部分:基本数列之间的综合
思路2: 由 Sn 进一步求 bn
1 n时需1 要注意什么?
1(n 1)
bn
2 n(n 1)
(n
2)
第二部分:基本数列之间的综合
第一课 文化与社会
画卷
“巨幅画轴” “巨幅画轴”
水墨画
海上丝绸之路
孔子三千弟子
活字印刷术
礼 乐
礼乐
太极
刘欢和莎拉.布莱曼唱起了《我和你》
刘欢和莎拉.布莱曼唱起了《我和你》
回忆:
1、第29届奥林匹克运文动会化开形幕式式多中,有 那些文艺节目?请写在文黑种化板多现上样。象无
n(n 1)
其中 (n 1)n 的大小理科生可以用数归法解决。 n n 1 也可得到第3项最大
第三部分:数列与其他知识的交汇综合
4、与解析几何知识的交汇综合
例:已知直线ln : y x 2n与圆Cn :
x2 y2 2an n 2交于不同的两点An , Bn,
2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

跟踪训练2 (2023·重庆模拟)在①a1=1,nan+1=(n+1)·an,② 2a1 + 2a2 +…+2an =2n+1-2这两个条件中任选一个,补充在下面的问题中并作答. 问题:在数列{an}中,已知________. 注:如果选择多个条件分别解答,按第一个解答计分. (1)求{an}的通项公式;
(2)若bn=
2an 1 3an
,求数列{bn}的前n项和Sn.
由(1)可知 bn=2n3-n 1,
则 Sn=311+332+…+2n3-n 1,
①
13Sn=312+333+…+2n3-n 3+23nn-+11.
②
两式相减得23Sn=13+322+323+…+32n-23nn-+11=13+2911--313n1-1-23nn-+11
教材改编题
2.数列{an}的前 n 项和为 Sn.若 an=nn1+1,则 S5 等于
A.1
√B.56
C.16
D.310
因为 an=nn1+1=1n-n+1 1, 所以 S5=a1+a2+…+a5=1-12+12-13+…-16=56.
教材改编题
3.Sn=12+12+38+…+2nn等于
2n-n-1 A. 2n
第六章 数 列
§6.5 数列求和
考试要求
1.熟练掌握等差、等比数列的前n项和公式. 2.掌握非等差数列、非等比数列求和的几种常用方法.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练
第
一 部 分
落实主干知识
知识梳理
数列求和的几种常用方法
1.公式法
直接利用等差数列、等比数列的前n项和公式求和.
数列求和(23张PPT)

n 1 n 1 n 1 n 1 (1 6n 5) (a1 an ) 2 2 4 ( 1 4 ) a ( 1 4 ) 2 2 2 2 1 4 2 1 4
2
n2
9n 3n 14 6
2
例2. (天津卷)已知数列
问题解决
a n 的通项公式如下:
0 n 1 n 2 n
n n ,
则 Sn
(n 1)C nC
n n 0 n
n1 n 1 n
3C 2C C
2 n 1 n n 2 n
0 n n n
(n 1)C nC 3C
Sn (n 2) 2
0 n n1 1 n 3 n
2C
n n
n1 n
n b a x n (2)令 n
( x R) ,求知数列
a n 的通项公式如下:
,
6n 5 an n 2
n为奇数 n为偶数
。
s 求数列的前 n 项的和 n
例
a n 1. (北京 卷) 已 知数列 是等差 数列, 且
1 Sn 3 2 k 3 k 2k 1 思考题.已知 k 1
n
,
1 Sn 4 求证:
问题解决
C 2 C 3 C ( n 1 ) C 例3.求和
0 n 1 n 2 n n n
C 2 C 3 C ( n 1 ) C S 【解析】设 n
,
6n 5 an n 2
n为奇数 n为偶数
n n (a1 an 1 ) n 3 2 2 2 9 n 15n 8 a ( 1 4 ) 2 2 Sn 6 2 1 4 n2 2 2 9n 3n 14 n为奇数 6
2
n2
9n 3n 14 6
2
例2. (天津卷)已知数列
问题解决
a n 的通项公式如下:
0 n 1 n 2 n
n n ,
则 Sn
(n 1)C nC
n n 0 n
n1 n 1 n
3C 2C C
2 n 1 n n 2 n
0 n n n
(n 1)C nC 3C
Sn (n 2) 2
0 n n1 1 n 3 n
2C
n n
n1 n
n b a x n (2)令 n
( x R) ,求知数列
a n 的通项公式如下:
,
6n 5 an n 2
n为奇数 n为偶数
。
s 求数列的前 n 项的和 n
例
a n 1. (北京 卷) 已 知数列 是等差 数列, 且
1 Sn 3 2 k 3 k 2k 1 思考题.已知 k 1
n
,
1 Sn 4 求证:
问题解决
C 2 C 3 C ( n 1 ) C 例3.求和
0 n 1 n 2 n n n
C 2 C 3 C ( n 1 ) C S 【解析】设 n
,
6n 5 an n 2
n为奇数 n为偶数
n n (a1 an 1 ) n 3 2 2 2 9 n 15n 8 a ( 1 4 ) 2 2 Sn 6 2 1 4 n2 2 2 9n 3n 14 n为奇数 6
专题一 数列求和分组求和法 PPT

例4、1-22 + 32-42 + 52-62 +……+(2n-1)2-(2n)2 =? 分析: 解:Sn=(12-22)+(32-42)+……+[(2n-1)2-(2n)2] =-3-7-…-(2n-1)=-3-7-11-……-(4n-1) =-2n2-n
练习:已知Sn=-1+3-5+7+…+(-1)n(2n-1),
n(2 2n)
1 4
1
1 2n
2
1 1
2
n(n1)1 221 n1
(2)
an
(xn
1 xn
)2
x2n
1 x2n
2
S n ( x 2 x 1 2 2 ) ( x 4 x 1 4 2 ) L ( x 2 n x 1 2 n 2 )
(x 2 x 4 L x 2 n ) (x 1 2 x 1 4 L x 1 2 n ) 2 n
(1)求S20,S21
(2)求Sn
解:(1)S20= -1+3 + (-5)+7 +……+(-37)+39 =20
S21= -1+ 3+ (-5) + 7+(-9) +……+ 39+(-41)
=-1+(-2)×10=-21
(2)当n=2k(k∈Z)时, Sn=(1-3)+(5-7)+……+[(2n-3)-(2n-1)]=k×(-2)=-n、 当n=2k-1(k∈Z)时,
专题一:数列求与得方法 (1)
所谓特殊数列,指得就就是等差数列或等比数列;对于 特殊数列求与,采用公式直接求和即可。
练习:已知Sn=-1+3-5+7+…+(-1)n(2n-1),
n(2 2n)
1 4
1
1 2n
2
1 1
2
n(n1)1 221 n1
(2)
an
(xn
1 xn
)2
x2n
1 x2n
2
S n ( x 2 x 1 2 2 ) ( x 4 x 1 4 2 ) L ( x 2 n x 1 2 n 2 )
(x 2 x 4 L x 2 n ) (x 1 2 x 1 4 L x 1 2 n ) 2 n
(1)求S20,S21
(2)求Sn
解:(1)S20= -1+3 + (-5)+7 +……+(-37)+39 =20
S21= -1+ 3+ (-5) + 7+(-9) +……+ 39+(-41)
=-1+(-2)×10=-21
(2)当n=2k(k∈Z)时, Sn=(1-3)+(5-7)+……+[(2n-3)-(2n-1)]=k×(-2)=-n、 当n=2k-1(k∈Z)时,
专题一:数列求与得方法 (1)
所谓特殊数列,指得就就是等差数列或等比数列;对于 特殊数列求与,采用公式直接求和即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:设数列的通项为bn,则
bn
n(n 1)
6( 1 n
1) n 1
1 11
11
Sn
b1
b2
bn
6[(1
)( 22
) 3
( n
)] n 1
6(1 1 ) 6n n1 n1
例4、设{1an bn anan1
解: bn
}是公差d 不为零的等差数列 ,{bn
{n
1 2n }
前n项和
解:
Sn
1
1 2
2
1 4
3 1 8
n
1 2n
①
1 2 Sn
11 1
11
1 4 2 8 3 16 (n 1) 2n n 2n1
②
两式相减:
1 2
Sn
1 2
1 4
1 8
1 2n
n
1 2n1
(1
1 a
1 a2
1 a n1
)
[1
47
(3n 2)]
当 当
a 1
a
时, Sn 1 时,Sn
n (1 3n 2)n 3n2 n
1 1 an
2
(1 3n 2)n
2
an 1
1 1
2
a n a n1
(3n
1)n 2
数列的几种求和方法
1.公式法:
即直接用求和公式,求数列的前n和Sn
①等差数列的前n项和公式:
Sn
n(a1 2
an
)
na1
n(n 1) 2
d
②等比数列的前n项和公式
na1(q 1)
Sn
a1
(1
q
n
)
1 q
a1 anq 1 q
(q
1)
常用到下列数列的前n项和:
的 数 列 的 前n项 和. n
2、求 1 1 1 1
1•2 2•3 3•4
n • (n 1)
4.错位相减法
例5、求和Sn =1+2x+3x2+……+nxn-1 (x≠0,1)
[分析] 这是一个等差数列{n}与一个等比数列{xn-1}的对应 相乘构成的新数列,这样的数列求和该如何求呢?
a
若an=(An+B)+qn,则求Sn用 分组求和法 .
练习
1、已知数列an的通项公式为 an 10 n n,求Sn.
2、若数列通项an=n(n+1),求该数列前n项的和。
3.裂项相消:
例3、求数列 6 , 6 , 6 , , 6 , 前n项和
1 2 2 3 3 4 n(n 1)
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
4.
1
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
5. 1 1 ( a b) a b ab
练习:
1.求 通 项 公 式 为an
1 1 2 3
数 列 求和
1运用公式法
等差或等比数列直 接应用求和公式
2 分组求和法 3 错位相减法 4 裂项相消法 5 倒序相加法
化归思想转化 成等差、等比 数列求
d a1 a2 a2 a3
an an1
1(1 1 ) n .
d a1 an1
a1an 1
若
an
( An
1 B)(
An
C)
,则求Sn用 裂项相消法
.
常见的拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
1 2
(1
1 2n
1 1
)
n 22n
n 2n1 )
2
1 2n1
n 2n
错位相减法:设数列{an}是公差为d的等差数列
(d不等于零),数列{bn }是公比为q的等比数列(q不
等于1),数列{cn}满足:cn anbn 则 {cn}的前n项和为:
③ 1 2 3 n n(n 1) 2
④ 1 3 5 (2n 1) n2
⑤ 12 22 32 n2 n(n 1)(2n 1) 6
⑥ 13 23 33 n3 [ n(n 1)]2 2
练习:已知数列{an} ①若an 2n 3 ,求Sn.
求: bn 的前n项和
1 1(1 1 ) an an1 d an an1
}
满足
Sn b1 b2 b3 L bn
1 ( 1 1 ) 1 ( 1 1 ) 1 ( 1 1 )
d a1 a2 d a2 a3
d an an1
1 ( 1 1 1 1 L 1 1 )
Sn =1 + 2x +3x2 + …… +nxn-1 ①
相减 xSn = x + 2x2 +……+ (n-1)xn-1 + nxn ②
(1-x)Sn =1 + x + x2+ …… + xn-1 - nxn
n项 这时等式的右边是一个等比数 列的前n项和与一个式子的和, 这样我们就可以化简求值。
练习、求数列
②若 an 3 2n ,求Sn.
2.分组求和: 例2、求数列
1
1
1
1
1 1 , a 4 , a2 7 , a3 10 , , an1 (3n 2) ,
的前n项和
解:设数列的通项为an,前n项和为Sn,则
1 an a n1 (3n 2)
Sn
Sn c1 c2 c3 L cn a1b1 a2b2 a3b3 L anbn
将上式各项乘以公比q
5、倒序相加法
例6:求 : sin2 1 sin2 2 sin2 3 sin2 89
问题:什么时候用倒序相加的方法求数列和?
倒序对应项相加均相等时,往往用倒序相加的方法。 例如:等差数列前n项和。