2010届高考物理复习难点突破9:弹簧类问题[1]

合集下载

弹簧类型题

弹簧类型题

弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。

弹簧类问题的几种模型及其处理办法

弹簧类问题的几种模型及其处理办法

精心整理弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。

其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。

还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。

根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。

一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形23,高考不1例1.m2此过程中,m分析:,分别是弹簧k1、k2当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。

答案:m2上升的高度为,增加的重力势能为,m1上升的高度为,增加的重力势能为。

点评:此题是共点力的平衡条件与胡克定律的综合题,题中空间距离的变化,要通过弹簧形变量的计算求出。

注意缓慢上提,说明整个系统处于动态平衡过程。

例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0??????B.4N,2N?????C.1N,6N???????D.0,6N分析:对于轻质弹簧来说,既可处于拉伸状态,也可处于压缩状态。

所以,此问题要分两种情况进行分析。

(1)若弹簧处于压缩状态,则通过对A、B受力分析可得:,(2,答案:点评:2例3.分析:(2弹力和剪断,方向水平向右。

点评:此题属于细线和弹簧弹力变化特点的静力学问题,学生不仅要对细线和弹簧弹力变化特点熟悉,还要对受力分析、力的平衡等相关知识熟练应用,此类问题才能得以解决。

突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”。

盘点高考物理复习弹簧类命题突破要点

盘点高考物理复习弹簧类命题突破要点

盘点高考物理复习弹簧类命题突破要点
同一弹性物体在一定范围内形变越大,具有的弹性势能就越多,反之,则越小。

以下是弹簧类命题突破要点,希望对考生复习有帮助。

1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段
时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-( kx22- kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式Ep= kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.
弹簧类命题突破要点的全部内容就是这些,查字典物理网预祝考生可以取得更好的成绩。

2019年高考第一轮复习备考专题已经新鲜出炉了,专题包含高考各科第一轮复习要点、复习方法、复习计划、复习试题,大家来一起看看吧~。

高考二轮物理复习专题 弹簧问题(附答案)

高考二轮物理复习专题 弹簧问题(附答案)

专题3 弹簧类问题高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。

弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。

高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。

不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。

弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。

如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。

在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。

由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。

(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。

)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。

高考物理之弹簧类问题

高考物理之弹簧类问题

高考物理之弹簧类问题由于弹簧与其相连接的物体构成的系统的运动状态具有很强的综合性和隐蔽性;由于弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律较多,因而多年来,弹簧试题深受高考命题专家们物理教师的青睐,在物理高考中弹簧问题频频出现已见怪不怪了。

弹簧问题不仅能考查学生分析物理过程,理清物理思路,建立物理图景的能力,而且对考查学生知识综合能力和知识迁移能力,培养学生物理思维品质和挖掘学生学习潜能也具有积极意义。

因此,弹簧问题也就成为高考命题专家每年命题的重点、难点和热点。

与弹簧相连接的物理问题表现的形式固然很多,但总是有规律可循,有方法可依,存在基于弹簧特性分析问题的突破口。

一、以弹簧遵循的胡克定律为分析问题的突破口弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即F=kx 或ΔF=kΔx。

显然,弹簧的长度发生变化的时候,胡克定律首先成了弹簧问题分析的突破口。

例1劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。

解析物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。

由匀变速直线运动公式及牛顿定律得:①G-kx-N=ma②N=0③解以上三式得:。

显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。

.二、以弹簧的伸缩性质为分析问题的突破口弹簧能承受拉伸的力,也能承受压缩的力。

在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的突破口。

G1固定的大环半径为R,轻弹簧原长为L(所示,小圆环重L<2R),其劲如图例21度系数为k,接触光滑,求小环静止时。

弹簧与竖直方向的夹角。

解析以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。

高考物理弹簧问题

高考物理弹簧问题

弹簧类问题难点分析
3.位移与形变问题 • 例3.如图所示,两木块质量分别为 m1 和 m2 ,两轻质弹簧的劲度系数分别为 k1 和 k2 ,上面的木块压在上面的弹簧上(但 不拴接),整个系统处于平衡状态,现缓慢上 提上面的木块,直到它刚离开上面弹簧,在 m 这个过程中,下面木块移动的距离为 k m1g/k1 A. B. m2g/k1 m m1g/k2 C. D. m2g/k2
Fmin=2ma Fmax=m(a+gsinθ)
思考: 1.如何求时间? (S=at2/2 s=x0-x) 2. 如何求x0和x? (开始时,整体平衡求x0,分离时求x.) 3. A B在弹簧恢复原长时分离吗?.(不是) 4. 整体受哪几个力?AB各受哪几个力? 请列出牛顿第二定律,并进行动态分析, 临界条件分析 5.开始时,A受合力为零,则F作用A瞬间,A 受合外力为F,对吗? (错)
弹簧类问题难点分析 “位移与形变”练习 题
例2中,若上面木块与弹簧拴接, 下面弹簧与地不拴接,缓慢上提 上面的木块,当下面弹簧刚要离 地时,两木块位移大小分别是 m 多少?
1
h2=x2=(m1+m2)g/k2 h1=h2+(x1+x1′)=(m1+m2)g(1/k1+1/k2)
k1 m2 k2
解:
弹簧类问题难点分析 位移与形变问题
• 本题是平衡问题,注意对象的选取 (隔离法与整体法) • 跟弹簧相连的物体的位移与弹簧的 形变有关,所以要确定弹簧初、末 状态的形变类型和形变大小,则位 移 h=︳x-x0︳ (或h=x+x0) • 上面物体的位移是多少?
h’=h+x1=m1g/k2+m1g/k1
t 2m( g a) ka

动量之弹簧类问题

动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。

求此过程中所加外力的最大和最小值。

图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。

一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。

图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。

今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。

现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

高考物理之弹簧类问题

高考物理之弹簧类问题

高考物理之弹簧类问题由于弹簧与其相连接的物体构成的系统的运动状态具有很强的综合性和隐蔽性;由于弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律较多,因而多年来,弹簧试题深受高考命题专家们物理教师的青睐,在物理高考中弹簧问题频频出现已见怪不怪了。

弹簧问题不仅能考查学生分析物理过程,理清物理思路,建立物理图景的能力,而且对考查学生知识综合能力和知识迁移能力,培养学生物理思维品质和挖掘学生学习潜能也具有积极意义。

因此,弹簧问题也就成为高考命题专家每年命题的重点、难点和热点。

与弹簧相连接的物理问题表现的形式固然很多,但总是有规律可循,有方法可依,存在基于弹簧特性分析问题的突破口。

一、以弹簧遵循的胡克定律为分析问题的突破口弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即F=kx 或ΔF=kΔx。

显然,弹簧的长度发生变化的时候,胡克定律首先成了弹簧问题分析的突破口。

例1劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。

解析物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。

由匀变速直线运动公式及牛顿定律得:G-kx-N=ma①N=0②③解以上三式得:。

显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。

二、以弹簧的伸缩性质为分析问题的突破口弹簧能承受拉伸的力,也能承受压缩的力。

在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的突破口。

例2如图1所示,小圆环重G1固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。

弹簧与竖直方向的夹角。

解析以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧类问题求解策略在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型.弹簧类问题多为综合性问题,涉及的知识面广,要求的能力较高,是高考的难点之一.●难点展台1.(★★★★)如图9-1所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为A.11k gm B.12k gm C.21k gm D.22k gm图9—1 图9—22.(★★★★)如图9-2所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1、m 2的物块1、2拴接,劲度系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.3.(★★★★★)质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x 0,如图9-3所示.一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m 时,它们恰能回到O 点.若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度.求物块向上运动到达的最高点与O 点的距离.●案例探究[例1](★★★★)如图9-4,轻弹簧和一根细线共同拉住一质量为m 的物体,平衡时细线水平,弹簧与竖直夹角为θ,若突然剪断细线,刚刚剪断细线的瞬间,图9-3物体的加速度多大?命题意图:考查理解能力及推理判断能力.B 级要求.错解分析:对弹簧模型与绳模型瞬态变化的特征不能加以区分,误认为"弹簧弹力在细线剪断的瞬间发生突变"从而导致错解.解题方法与技巧:弹簧剪断前分析受力如图9-5,由几何关系可知: 弹簧的弹力T =mg /cos θ 细线的弹力T ′=mg tan θ细线剪断后由于弹簧的弹力及重力均不变,故物体的合力水平向右,与T ′等大而反向,∑F =mg tan θ,故物体的加速度a =g tan θ,水平向右.[例2](★★★★★)A 、B 两木块叠放在竖直轻弹簧上,如图9-6所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值; (2)若木块由静止开始做匀加速运动,直到A 、B 分离的过 程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功. 命题意图:考查对物理过程、状态的综合分析能力.B 级要求.错解分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离.解题方法与技巧:当F =0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩量为x ,有kx =(m A +m B )g x =(m A +m B )g /k①对A 施加F 力,分析A 、B 受力如图9-7 对A F +N -m A g =m A a② 对B kx ′-N -m B g =m B a ′③可知,当N ≠0时,AB 有共同加速度a =a ′,由②式知欲使A 匀加速运动,随N 减小F 增大.当N =0时,F 取得了最大值F m,图9-5图9-6 图9-7即F m =m A (g +a )=4.41 N又当N =0时,A 、B 开始分离,由③式知, 此时,弹簧压缩量kx ′=m B (a +g ) x ′=m B (a +g )/k④ AB 共同速度 v 2=2a (x -x ′)⑤由题知,此过程弹性势能减少了W P =E P =0.248 J 设F 力功W F ,对这一过程应用动能定理或功能原理 W F +E P -(m A +m B )g (x -x ′)=21(m A +m B )v 2 ⑥联立①④⑤⑥,且注意到E P =0.248 J 可知,W F =9.64×10-2 J ●锦囊妙计一、高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.二、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.●歼灭难点训练1.(★★★)如图9-8所示,小球在竖直力F 作用下将竖直弹簧压缩,若将力F 撤去,小球将向上弹起并离开弹簧,直到速度变为零为止,在小球上升的过程中A.小球的动能先增大后减小B.小球在离开弹簧时动能最大C.小球的动能最大时弹性势能为零D.小球的动能减为零时,重力势能最大图9—8 图9—92.(★★★★)一轻质弹簧,上端悬挂于天花板,下端系一质量为M 的平板,处在平衡状态.一质量为m 的均匀环套在弹簧外,与平板的距离为h ,如图9-9所示.让环自由下落,撞击平板.已知碰后环与板以相同的速度向下运动,使弹簧伸长.A.若碰撞时间极短,则碰撞过程中环与板的总动量守恒B.若碰撞时间极短,则碰撞过程中环与板的总机械能守恒C.环撞击板后,板的新的平衡位置与h 的大小无关D.在碰后板和环一起下落的过程中,它们减少的动能等于克服弹簧力所做的功 3.(★★★)如图9-10所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒4.(★★★★)如图9-11所示,轻质弹簧原长L ,竖直固定在地面上,质量为m 的小球从距地面H 高处由静止开始下落,正好落在弹簧上,使弹簧的最大压缩量为x ,在下落过程中,空气阻力恒为f ,则弹簧在最短时具有的弹性势能为E p=________.图9-10图9-115.(★★★★)如图9-12(A )所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态.现将l 2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解:设l 1线上拉力为T 1,l 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡: T 1cos θ=mg ,T 1sin θ=T 2,T 2=mg tan θ剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度.因为mg tan θ=ma ,所以 加速度a =g tan θ,方向在T 2反方向.你认为这个结果正确吗?请对该解法作出评价并说明理由.(2)若将图A 中的细线l 1改为长度相同、质量不计的轻弹簧,如图9-12(B )所示,其他条件不变,求解的步骤与(1)完全相同,即a =g tan θ,你认为这个结果正确吗?请说明理由.6.(★★★★★)如图9-13所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v 0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为 v 0.(1)求弹簧所释放的势能ΔE .(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v 0,则弹簧所释放的势能ΔE ′是多少?(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为 2v 0,A 的初速度v 应为多大?图9-13参考答案[难点展台] 1.C 2.21k m 2(m 1+m 2)g 2;(2211k k )m 1(m 1+m 2)g 2 3.21x 0 [歼灭难点训练] 1.AD 2.AC3.B4.分析从小球下落到压缩最短全过程 由动能定理:(mg -f )(H -L +x )-W 弹性=0 W 弹性=E p =(mg -f )(H -L +x )5.(1)结果不正确.因为l 2被剪断的瞬间,l 1上张力的大小发生了突变,此瞬间 T 2=mg cos θ,a =g sin θ(2)结果正确,因为l 2被剪断的瞬间、弹簧l 1的长度不能发生突变、T 1的大小和方向都不变. 6.(1)31mv 02 (2)121m (v -6v 0)2 (3)4v 0。

相关文档
最新文档