北师大版八年级下册数学[《图形的平移与旋转》全章复习与巩固(基础)知识点整理及重点题型梳理]
北师大版八年级下册第三章图形的平移与旋转单元复习课件( 25张PPT)

(3)由勾股定理得:AC=3 2,点A旋转到 A’所经过
的路线长为¼ ×2π×3 2=√
√
知识回顾 知识探究 知识小结 练习提升
12.如图,在平面直角坐标系中,△ABC的各个定点坐标 是A(-2,3)、B(-4,-1)、C(2,0),点P(m,n)为 △ABC内的一点,△ABC平移后得到△A’B’C’,点P平移到 P’(m+6,n+1)处。 (1)直接写出点A’B’C’的坐标; (2)作出平移后的图形; (3)若点M(-3,b)为边AB上的点,则对应点M’的坐 标是什么? (4)如果将△A’B’C’看成是由△ABC经过一次平移得到 的,请指出这一平移的方向和平移的距离。
知识回顾 知识探究 知识小结 练习提升
解:(1)A’(4,4)B’(2,0) C’(8,1) (2)图形如图所示
(3)M’(3,b+1) (4) 平移的方向是由B到C(或B’)的方向,平移的距离是 √37个单位。
知识回顾 知识探究 知识小结 练习提升
13.如图,四边形ABCD是正方形,E、F分别是DC和CB延长 线上的点,且DE=BF,连接AE,AF,EF. (1)求证:△ADE≌△ABF (2)填空:△ABF可以由△ADE绕旋转中心( )点 ,按 顺时针方向旋转( )得到。 (3)若BC=8,DE=6,求△AEF的面积。
在平面直角坐标系中的平移:若图形依次沿x轴方向向右平移a(a>0) 个单位长度,再沿y轴方向向上(下)平移b(b>0)个单位长度,则 新图与原来的图相比,对应点的横坐标都增加(减少)了a,纵坐标 都增加(减少)了b。
一个图形依次沿着x轴方向、y轴方向平移后所得图形,可 以看成是由原来的图形经过一次平移得到的。
知识回顾 知识探究 知识小结 练习提升
北师大版八年级数学下册 第三章 图形的平移和旋转 复习课件(共22张PPT)

B
F
C
A(C)
E
►考点二 旋转及作图
例2、如图,平面上有两个边长都为8㎝的正方形ABCD和正方 形A1B1C1D1,且正方形EFGH的顶点E为正方形ABCD的中心,当 正方形EFGH绕点E旋转时,两个正方形重合部分的面积始终 是一个固定值, 是多少并说明为什么?
A E
D H
N
B
M
C
G
F
例3、
O 提示:1、对应点到旋转中心的距离相等;
将图(1)作为“基本图形”绕着A点经过逆时针连 续旋转得到图(2).图(1),图(2)中旋转的角度分
别为( ) A
A.45°,90° B.90°,45° C.60°,30° D.30°,60°
图3-9
4
下列图案都是由字母“m”经过变形、组合而
成的,其中不是中心对称图形的是( B )
5
45°
盘点提升
图3-11
6
► 课后作业---链接中考
(1)中心对称 定义:如果把一个图形绕着某一点旋转180°,能够 与另一个图形重合,那么就说这两个图形关于这个点 对称或中心对称,这个点叫做它们的对称中心. (2)中心对称图形 把一个图形绕某个点旋转180°,如果旋转后的图形 与原来的图形重合,那么这个图形叫做中心对称图形, 这个点叫做它的对称中心. 性质:成中心对称的两个图形中,对应点所连线段经 过对称中心,且被对称中心平分.
3、决定平移的方向和距离: 如果已知一个图形和它平移后的图形的某
些点的对应点,那么连结原图上的点和对应 点所成射线的方向就是其平移方向,两对应 点的距离就是平移距离。
4、平移的特征:(1)对应线段平行(或在一 直线上)且相等;对应点所连的线段平行(或 在一直线上)且相等。 (2)对应角分别相等,且对应角的两边分别 平行、与原角的方向ቤተ መጻሕፍቲ ባይዱ致。 (3)平移后的图形与原图形的形状、大小不 变,即平移只改变图形的位置。
北师大版八年级数学下册第三章图形的平移与旋转复习课件

易错点
学以致用
7. 如图Z3-8所示,点P是正方形ABCD的边CD上一 点,连接AP,∠BAP的平分线交BC于点Q,求证: AP=DP+BQ.
学以致用
证明:如答图Z3-2,将△ABQ绕点A逆时针旋转90° 得到△ADE,则 DE=BQ,∠E=∠AQB,∠ADE=∠B=90°. ∵∠ADC=90°,∴∠ADE+∠ADC=180°. ∴点E,D,P三点共线. ∵AQ平分∠BAP, ∴∠PAQ=∠BAQ=∠DAE. ∴∠PAE=∠DAE+∠PAD=∠PAQ+∠PAD=∠DAQ. 在正方形ABCD中,AD∥BC, ∴∠DAQ=∠AQB. ∵∠AQB=∠E,∴∠PAE=∠E. ∴AP=PE. ∵PE=DP+DE=DP+BQ, ∴AP=DP+BQ.
学以致用 5. 图Z3-6是几种名车标志,其中属于中心对称图形 的是( B )
A. 1个
B. 2个
C. 3个
D. 4个
学以致用 6. 下列四个图形中,不是中心对称图形的是( B )
易错点
易错点4 因忽略说明三点共线而致答案不完整 在旋转变换过程中,图形的位置会产生改变,根据
有关证题时逻辑性、严谨性的需要,必须强调三点共 线.
知识梳理 2. 图形平移的坐标变化 (1)纵坐标不变,横坐标加k(k>0),点向__右___平 移k个单位长度;横坐标减k,点向_左____平移k个单位 长度. (2)横坐标不变,纵坐标加k(k>0),点向__上___平 移k个单位长度;纵坐标减k,点向___下__平移k个单位 长度. (3)一个图形依次沿x轴方向、y轴方向平移后所得图 形,可以看成是由本来的图形经过__一__次___平移得到的.
9. 如图Z3-15所示,△ABC平移后得到△DEF. (1)若∠A=80°,∠E=60°,求∠C的度数; (2)若AC=BC,BC与DF相交于点O,则OD与OB相 等吗?说明理由.
北师大版八年级数学下册 《图形的平移与旋转》全章复习与巩固(提高)巩固练习 含答案解析

《图形的平移与旋转》全章复习与巩固(提高)巩固练习【巩固练习】 一、选择题1.轴对称与平移、旋转的关系不正确的是( ).A .经过两次翻折(对称轴平行)后的图形可以看作是原图形经过一次平移得到的B .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过一次平移得到的C .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D .经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过一次平移得到的 2.在旋转过程中,确定一个三角形旋转的位置所需的条件是( ). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角. A .①②④ B .①②③ C .②③④ D .①③④3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( ).A B C D4.(2016·株洲)如图,在△ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 顺时针方向旋转后得到△A ’B ’C ’,若点B ’恰好落在线段AB 上,AC 、A ’B ’交于点O ,则∠COA ’的度数是( )A .50°B .60°C .70°D .80°5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处, 若90FPH =o∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ). A.20 B.22 C.24 D.30第4题 第5题6.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼 成如下图的一座“小别墅”,则图中阴影部分的面积是( ). A .2 B .4 C .8 D .107. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC=2,将Rt △ABC 绕A 点按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( ).A.6π B.3π C.16π+ D.18.如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE. 过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是( ). A .①③④ B .①②⑤ C .③④⑤ D .①③⑤二、填空题9. 如图,图B 是图A 旋转后得到的,旋转中心是 ,旋转了 .10.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.第9题第10题第12题11.(2016•大连)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .12. 如图,正方形ABCD经过顺时针旋转后到正方形AEFG的位置,则旋转中心是,旋转角度是度.13. 时钟的时针不停地旋转,从上午8:30到上午10:10,时针旋转的旋转角是 .14. 如图所示,可以看作是一个基本图形经过次旋转得到的;每次旋转了度.15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是 .16.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、…所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a 与数轴上的数5对应,则a=_________;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是_________(用含n的代数式表示).三、解答题17. 如图,在正方形ABCD中,F是AD的中点,E是BA延长线上一点,且AE=12 AB.①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF变到△ADE的位置?若是旋转,指出旋转中心和旋转角.②线段BF和DE之间有何数量关系?并证明.18.阅读:我们把边长为1的等边三角形PQR沿着边长为整数的正n(n>3)边形的边按照如图1的方式连续转动,当顶点P回到正n边形的内部时,我们把这种状态称为它的“点回归”;当△PQR回到原来的位置时,我们把这种状态称为它的“三角形回归”.例如:如图2,边长为1的等边三角形PQR的顶点P在边长为1的正方形ABCD内,顶点Q与点A重合,顶点R与点B重合,△PQR沿着正方形ABCD的边BC、CD、DA、AB…连续转动,当△PQR连续转动3次时,顶点P回到正方形ABCD内部,第一次出现P的“点回归”;当△PQR连续转动4次时△PQR回到原来的位置,出现第一次△PQR的“三角形回归”.操作:如图3,如果我们把边长为1的等边三角形PQR沿着边长为1的正五边形ABCDE的边连续转动,则连续转动的次数k= 时,第一次出现P的“点回归”;连续转动的次数k= 时,第一次出现△PQR的“三角形回归”. 猜想:我们把边长为1的等边三角形PQR 沿着边长为1的正n (n >3)边形的边连续转动, (1)连续转动的次数k= 时,第一次出现P 的“点回归”; (2)连续转动的次数k= 时,第一次出现△PQR 的“三角形回归”;(3)第一次同时出现P 的“点回归”与△PQR 的“三角形回归”时,写出连续转动的次数k 与正多边形的边数n 之间的关系.19.(2015春•凉山州期末)如图,长方形ABCD 在坐标平面内,点A 的坐标是A (2,1),且边AB 、CD 与x 轴平行,边AD 、BC 与x 轴平行,点B 、C 的坐标分别为B (a ,1),C (a ,c ),且a 、c 满足关系式c=++3.(1)求B 、C 、D 三点的坐标;(2)怎样平移,才能使A 点与原点重合?平移后点B 、C 、D 的对应分别为B 1C 1D 1,求四边形OB 1C 1D 1的面积;(3)平移后在x 轴上是否存在点P ,连接PD ,使S △COP =S 四边形OBCD ?若存在这样的点P ,求出点P 的坐标;若不存在,试说明理由.20. 如图,P 是等边三角形ABC 中的一点,PA =2,PB =32,PC =4,求BC 边得长是多少?【答案与解析】 一.选择题 1.【答案】B.【解析】A 、多次平移相当于一次平移,故正确;B 、必须是对称轴有偶数条且平行时,才可以看作是原图形经过一次平移得到的,故错误;C 、一个图形围绕一个定点旋转一定的角度,得到另一个图形,这种变换称为旋转变换,故正确;D 、对称轴有偶数条且平行时,可以看作是原图形经过一次平移得到的,故正确. 故选B . 2.【答案】A. 3.【答案】B.BP4.【答案】B.【解析】解:由题意知:∠A=90°-50°=40°,由旋转性质可知:∴BC=B C′,∴∠B=∠BB ’C=50°,∵∠BB ′C =∠A +∠ACB ’=40°+∠ACB ’, ∴∠ACB ’=10°,∴∠COA ’=∠AOB ’=∠OB ’C+∠ACB ’=∠B+∠ACB ’=60°. 故选B .5.【答案】C.【解析】Rt △PHF 中,有FH=10,则矩形ABCD 的边BC 长为PF+FH+HC=8+10+6=24,故选C . 6.【答案】B.【解析】阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一, 正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4. 故选B .7. 【答案】B.【解析】阴影部分的面积等于扇形DAB 的面积,首先利用勾股定理即可求得AB 的长,然后利用扇形的面积公式即可求得扇形的面积.8.【答案】D.【解析】①利用同角的余角相等,易得∠EAB=∠PAD ,再结合已知条件利用SAS 可证两三角形全等;③利用①中的全等,可得∠APD=∠AEB ,结合三角形的外角的性质,易得∠BEP=90°,即可证;②过B 作BF ⊥AE ,交AE 的延长线于F ,利用③中的∠BEP=90°,利用勾股定理可求BE ,结合△AEP 是等腰直角三角形,可证△BEF 是等腰直角三角形,再利用勾股定理可求EF 、BF ;⑤在Rt △ABF 中,利用勾股定理可求AB 2,即是正方形的面积;④S △APD +S △APB = S △AP E +S △EPB =12. 二.填空题 9.【答案】X ;180°.【解析】观察图形中Z 点对应点的位置是图A 绕旋转中心X 按逆时针旋转180°得到的.故答案为:X ;180°.10.【答案】30°.【解析】解法一、在Rt △ABC 中,∠A <∠B∵CM 是斜边AB 上的中线, ∴CM=AM , ∴∠A=∠ACM ,将△ACM 沿直线CM 折叠,点A 落在点D 处 设∠A=∠ACM=x 度, ∴∠A+∠ACM=∠CMB , ∴∠CMB=2x ,如果CD 恰好与AB 垂直 在Rt △CMG 中, ∠MCG+∠CMB=90°即3x=90°x=30°则得到∠MCD=∠BCD=∠ACM=30°根据CM=MD,得到∠D=∠MCD=30°=∠A∠A等于30°.解法二、∵CM平分∠ACD,∴∠ACM=∠MCD∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°11.【答案】2.12.【答案】A,45.【解析】∵正方形ABCD经过顺时针旋转后得到正方形AEFG,∴旋转中心为点A,旋转角为∠CAD,∵AC是正方形ABCD的对角线,∴∠CAD=45°,∴旋转角为45°.故答案为:A,45.13.【答案】50°.【解析】从上午8:30到上午10:10,共1个小时40分钟;时针旋转了536圆周,故旋转角的度数是50度.故答案为:50°.14.【答案】3;90.【解析】如图所示的图形可以看作按照逆时针(或顺时针)旋转3次,且每次旋转了90°而成的.故答案是:3;90.15.【答案】6.【解析】如图,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG=4,再根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.16.【答案】(1)a=2,(2)3n+1.【解析】根据正半轴上的整数与圆周上的数字建立的这种对应关系可以发现:圆周上了数字0、1、2与正半轴上的整数每3个一组012;345;678…分别对应.三.解答题17.【解析】解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;(2)线段BF和DE的数量关系是相等.理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAF=∠EAD,∵F是AD的中点,AE=12 AB,∴AE=AF,∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,∴BF与DE为对应线段,∴BF=DE.18.【解析】解:操作:3,5.猜想:(1)第一次点回归,连续转动的次数都是3次,故填3;(2)第一次出现△PQR的“三角形回归”,连续转动的次数就是多边形的边数,故填n;(3)当n不是3的倍数时,k=3n,当n是3的倍数时,k=n.19.【解析】解:(1)由题意得,a﹣6≥0且6﹣a≥0,所以,a≥6且a≤6,所以,a=6,c=3,所以,点B(6,1),C(6,3),∵长方形ABCD的边AB、CD与x轴平行,边AD、BC与x轴平行,∴点D(2,3);(2)∵平移后A点与原点重合,∴平移规律为向左2个单位,向下1个单位,∴B1(4,0),C1(4,2),D1(0,2);(3)平移后点C到x轴的距离为2,∵S△COP=S四边形OBCD,∴×OP×2=4×2,解得OP=8,若点P在点O的左边,则点P的坐标为(﹣8,0),若点P在点O的右边,则点P的坐标为(8,0).综上所述,存在点P(﹣8,0)或(8,0).20.【解析】解:如图,将△ABP绕点B逆时针旋转60°得△BCQ,连接PQ.再过B作CQ的延长线的垂线BD,垂足为D,∴BQ=PB=23,∠PQB =60°,∴△PBQ是等边三角形,∴PQ=PB=23,∠QPC=60°.在△PCQ中,∵CQ=PA=2,,PQ=23,PC=4,∴CQ2+ PQ2=PC2,∴∠PQC=90°,∴∠CQB=∠PQB+∠PQC=150°,∴∠BQD=30°.在Rt△BQD中,BD=12BQ=3,QD=3,则CD=5.在Rt△BCD中,BC=32527+=.。
北师大版八年级数学下册第三章图形的平移与旋转全章复习

全章复习一.选择题1.下列图案中是旋转对称图形,但不是中心对称图形的是()A.B.C.D.2.下列四个图案中,不能由1号图形平移得到2号图形的是()A.B.C.D.3.如图,是一个装饰物品连续旋转所成的三个图形,照此规律旋转,下一个呈现出来的图形是()A.B.C.D.4.如图,小聪坐在秋千上,秋千旋转了80°,小聪的位置也从P点运动到了P'点,则∠P'OP的度数为()A.40°B.50°C.70°D.80°5.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针旋转90°后,B点的坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)6.如图所示,将四边形ABOC绕点O按顺时针方向旋转得四边形DFOE,则下列角中,不是旋转角的是()A.∠BOFB.∠AODC.∠COED.∠AOF7.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()A.8°B.10°C.12°D.18°8.如图,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的面积为()A.4.5 B.8 C.9 D.109.如图,△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在C′处,则CC′的长为()A.4B.4 C.2D.210.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)二.填空题11.如图所示的4组图形中,左右两个图形成轴对称的是第组.12.已知线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C(3,6),则点B(﹣5,﹣1)的对应点D的坐标为.13.如图,已知△ABD沿BD平移到了△FCE的位置,若BE=12,CD=5,则平移的距离是___.14.如图所示,在正方形网格中,图①经过变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”).15.如图,在平面直角坐标系中,线段AB的两个端点是A(﹣5,1),B(﹣2,3),平移线段AB得到线段A1B1,若点B的对应点B1的坐标为(1,2),则点A的对应点A1的坐标为.16.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.17.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.18.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABC的面积等于四边形AFBD 的面积;③BE2+DC2=DE2;④BE+DC=DE,其中正确的是(只填序号)三.解答题19.如图在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△AB1C1,使点C1落在直线BC上(点C1与点C不重合),求证:AB1∥CB.20.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(﹣3,2),B(﹣1,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(﹣5,﹣2),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.21.如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)(2)将△DEF沿直线m向左平移到图(2)的位置时,DE交AC于点G,连接AE,BG.猜想△BCG 与△ACE能否通过旋转重合?请证明你的猜想.22.将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(1)求证:△BCE≌△B′CF;(2)当旋转角等于30°时,AB与A′B′垂直吗?请说明理由.。
北师大版八年级数学下册第三章 图形的平移与旋转 小结与复习

【解析】关键是找出旋转角∠BOD = 60°.
A
O 图a B
(2) 如图 b ,4×4 的正方形网格中,△MNP 绕某点旋
转一定的角度,得到△M1N1P1,其旋转中心是 ( B )
A. 点 A B. 点 B C. 点 C D. 点 D
【解析】作线段 NN1 与 PP1 的 垂直平分线,交点便是旋转中心.
O
x
A
(2) 将△ABC 先向左平移 2 个单位长度,再向上平移 1 个
单位长度,得到△A′B′C′,请画出相应图形则△A′B′C′ 的
三个顶点 坐标分别是 A′( 0 , 0 )、B′( 2 , 4 )、
C′( -1 , 3 ); (3) 求△ABC 的面积.
y
C′•
• B′ B
解:△ABC 的面积
A
的对应角和 ED 的对应边分别是 ( C )
D
A.∠F,AC B.∠BOD,BA
B
C
C.∠F,BA D.∠BOD,AC
E
F
知识点二 坐标系中的图形平移
例2 如图,直角坐标系中,△ABC y
的顶点都在网格点上,其中,C 点
B
坐标为(1,2).
C
(1) 写出点 A、B 的坐标: A ( 2 ,-1 ), B ( 4 , 3 );
A
B1
P1 CO 1
A1 C1 x
答:四边形 ACC1A1 的面积为 14.
知识点三 旋转的概念及性质的应用
例3 (1) 如图 a,将△AOB 绕点 O 按逆时针方向旋转
60° 后得到△COD,若∠AOB = 15°,则∠AOD 的度
数是 ( C )
CD
A. 15° B. 60° C. 45° D. 75°
北师大版八下数学《图形的平移与旋转》考点点拨

《图形的平移与旋转》考点点拨考点一:平移概念及其特征1、概念:在平面内,将一个图形 ,这样的图形运动称为平移.2、特征:(1)平移不改变图形的 ;(2)经过平移,对应点所连的线段 ;对应线段 ,对应角 . 例1(温州市)如图1,点A(1,2)向右平移2个单位得到对应点A ’,则点A ’的坐标是( )A.(1.4)B.(1.0) C .(-l ,2) D.(3,2)解析:由题意知,点A(1,2)向右平移2个单位,所以横坐标向右平移2个单位,而纵坐标不变.因此平移后的对应点A′的坐标为(3,2).故应选D.例2(武汉市)如图2,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图案中左眼的坐标是(3,4),则右图案中的右眼的坐标是 .解析:由题意知,左图案中左眼睛的坐标是(-4,2),右图案中左眼的坐标是(3,4),所以右边的图案是由左边的图案向右平移7个单位后,再向上平移2个单位得到的.所以左图案中右眼睛的坐标(-2,2),同样是向右平移7个单位后,再向上平移2个单位.因此右图案中的右眼的坐标是(7,4). 例3(海南省)△ABC 在平面直角坐标系中的位置如图3所示.将△ABC 向右平移6个单位,作出平移后的△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标.解析:根据平移原理作图如图所示.△A 1B 1C 1各顶点的坐标为:A 1(6,4),B 1(4,2),C 1(5,1).(图1)图3评注:平移的最显著特征就是平移不改变图形的形状和大小,只是位置发生了变化.利用其特征,进行简单的平移作图,注重考查学生知识的理解和应用.考点二、旋转的概念及特征1、概念:在平面内,将一个图形绕 一个角度,这样的图形运动称为旋转,这个定点称为 ,转动的角称为 .2、特征:(1)经过旋转,图形上的每一个点都绕旋转中心延相同方向转动了 ;(2)任意一对对应点与旋转中心的连线所成的角都是旋转角,且 ;(3)对应线段 ,对应点到旋转中心的 . 例4(四川眉山)数学课上,老师让同学们观察如图4所示的图形,问:它绕着圆心O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°。
北师大版八年级下册教案:第三章图形的平移与旋转复习

3.重视学生实践,提高动手能力。在实践活动环节,我安排了分组讨论和实验操作,让学生在实际操作中感受平移与旋转的应用。但从实践结果来看,部分学生的动手能力较弱,对实验操作不够熟练。今后,我应加大实践环节的教学力度,鼓励学生多动手、多思考,提高他们的实践能力。
(2)平移与旋转的作图方法
-平移作图:确定平移方向和距离,沿此方向将原图形上的点移动相应距离得到新图形。
-旋转作图:确定旋转中心、旋转方向和旋转角度,将原图形上的点绕旋转中心旋转相应角度得到新图形。
(3)平移与旋转在实际问题中的应用
-判断图形的平移或旋转
-设计简单图案,体会平移与旋转的应用
2.教学难点
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“图形的平移与旋转在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调平移与旋转的定义和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,如区分平移与旋转,掌握作图方法等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与图形平移与旋转相关的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《图形的平移与旋转》全章复习与巩固(基础)知识讲解【学习目标】1.了解平移、旋转、中心对称,探索它们的基本性质;2.能够按要求作出简单平面图形经过平移、旋转后的图形,能作出简单平面图形经过一次或两次图形变换后的图形;3.利用平移、旋转、中心对称、轴对称及其组合进行图案设计;4.认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【要点梳理】要点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.要点诠释:(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的形状和大小.2.平移的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.要点诠释:(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行(或在一条直线上)且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.3. 平移与坐标变换:(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的变化引起的点相应的平移变换.(2)图形的平移平移是图形的整体运动.在平面直角坐标系内,一个图形进行了平移变化,则它上面的所有点的坐标都发生了同样的变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.要点诠释:(1)上述结论反之亦成立,即如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(2)一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.要点二、旋转变换1.旋转概念:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.要点诠释:(1)旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定能通过旋转得到.(2)旋转的角度一般小于360°.(3)旋转的三个要素:旋转中心、旋转角度和旋转方向(即顺时针或逆时针方向)2.旋转变换的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.3.旋转作图步骤:①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.要点三、中心对称与图案设计1.中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心,这两个图形称为成中心对称的.要点诠释:中心对称的性质:成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.2. 中心对称图形:把一个图形绕着某点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做它的对称中心.要点诠释:中心对称作图步骤:①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.3.图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.4.平移、轴对称、旋转三种变换的关系:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的.【典型例题】类型一、平移变换1.(2015春•曲阜市期末)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P的坐标;若不存在,说明理由.【思路点拨】(1)根据图形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出点A′、B′的坐标;(3)设P(0,y),再根据三角形的面积公式求出y的值即可.【答案与解析】解:(1)如图所示:(2)由图可知,A'(0,4),B'(﹣1,1);(3)存在.设P(0,y),要使得△BCP与△ABC面积相等,只需要点P到BC的距离为3即可,则y=1或y=﹣5,故点P的坐标是(0,1)或(0,﹣5).【总结升华】本题考查的是平移变换,熟知图形平移不变性的性质是解答此题的关键.举一反三:【变式】如下图,等边△ABC经过平移后成为△BDE,则其平移的方向是;平移的距离是;△ABC经过旋转后成为△BDE,则其旋转中心是;旋转角度是度.【答案】水平向右,AB的长度(或BD的长度),B,120或240.2.三角形ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C(4,-3.5).(1)在直角坐标系中画出三角形ABC;(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;(3)如果将△ABC看成是由△A1B1C1经过一次平移得到的,请指出这一平移方向和距离.【答案与解析】解:(1)如图1,(2)如图2,A 1(-2,2),B 1(-3,0),C 1(0,-0.5);(3)如图3,连接AA 1,由图可知,22(2(2))(12)5AA '=--+--=.因此,如果将△ABC 看成是由△A 1B 1C 1经过一次平移得到的,那么这一平移的平移方向是由A 1到A 的方向,平移距离是5个单位长度.【总结升华】本题综合考查了平面直角坐标系,及平移变换.注意平移时,要找到三角形各顶点的对应点是关键及平移的相对性.举一反三:【变式】如果矩形ABCD 的对角线的交点与平面直角坐标系的原点重合,且点A 和点C 的坐标分别为(-3,2)和(3,-2),则矩形的面积为( ).A .32B .24C .6D .8F C D 【答案】 B.类型二、旋转变换3.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB=15°,则∠AOB ′的度数是( ).A. 25°B. 30°C. 35°D. 40°【思路点拨】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【答案与解析】解:∵将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,∴∠A ′OA=45°,∠AOB=∠A ′OB ′=15°,∴∠AOB ′=∠A ′OA ﹣∠A ′OB =45°﹣15°=30°,故选:B .【总结升华】此题主要考查了旋转的性质,根据旋转的性质得出∠A ′OA=45°,∠AOB=∠A ′OB ′=15°是解题关键.举一反三:【变式】如图,△OAB 可以看成是由△OCD 绕点O 按顺时针方向旋转而来的,则旋转中心是 ,旋转角是 ,点C 的对应点是 .O BCA D【答案】点O ,∠COA 或∠DOB ,点A .4.如图,四边形ABCD 是正方形,点E 是AB 边上的点,BE =1.将△BCE 绕点C 顺时针旋转90°得到△DCF.已知EF =25,求正方形ABCD 的边长.【答案与解析】 解:设正方形ABCD 的边长为x ,∵△BCE 绕点C 顺时针旋转90°得到△DCF ,且BE=1,∴DF=BE=1,∵四边形ABCD 是正方形,∴AD=AB=x ,∠A=90°,∴在Rt △AEF 中,AE 2+AF 2=EF 2,∵AE=AB-BE=x-1,AF=AD+DF=x+1,∴222(1)(1)(25)x x -++=, 解得:x =3,∴正方形ABCD 的边长为3.【总结升华】此题考查了正方形的性质、旋转的性质以及勾股定理.注意掌握旋转前后图形的对应关系,注意掌握方程思想与数形结合思想的应用.举一反三:【变式】如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L 、M•在AK 的同旁,连接BK 和DM ,试用旋转的思想说明线段BK 与DM 的数量关系.【答案】数量关系为BK=DM.∵ABCD 和AKLM 都是正方形,∴AB=AD,AK=AM.∵∠DAM+∠DAK=90°,∠BAK+∠DAK=90°.∴∠DAM=∠BAK △DAM 可以看作是△ABK 以A 为旋转中心,∠BAD 为旋转角(90°)逆时针旋转而成的,故BK=DM.类型三、中心对称与图形设计5.如图,方格纸中△ABC 的三个顶点均在格点上,将△ABC 向右平移5格得到△A 1B 1C 1,再将△A 1B 1C 1绕点A 1逆时针旋转180°,得到△A 1B 2C 2.(1)在方格纸中画出△A 1B 1C 1和△A 1B 2C 2;(2)设B 点坐标为(﹣3,﹣2),B 2点坐标为(4,2),△ABC 与△A 1B 2C 2是否成中心对称?若成中心对称,请画出对称中心,并写出对称中心的坐标;若不成中心对称,请说明理由.【思路点拨】根据平移和旋转的作图方法作图即可.根据中心对称的特点可知P点就是对称中心,从而求出A(﹣2,0),A1(3,0),P(,0).【答案与解析】解:(1)如下图.(2)△ABC与△A1B2C2成中心对称,如下图所示,连接CC2(或BB2)交AA1于点P.则P点就是对称中心.∵B(﹣3,﹣2),B2(4,2),∴A(﹣2,0),A1(3,0),∴P(,0).【总结升华】本题考查的是平移变换与旋转变换作图.6.如图,图案可以看做以一个怎样的图案为“基本图案”形成的?试用两种以上的方法分析它的形成过程.【答案与解析】解:解法一:图案可以看做是以其中的八分之一为“基本图案”,经过三次轴对称 (第1、2根对称轴彼此垂直,而且过整个图案的中心)所形成的.解法二:也可以看做是以图案的四分之一为“基本图案”(可以是小正方形状也可以是等腰直角三角形状),绕整个图案的中心分别旋转90°、180°、270°所形成的.解法三:也可以以四分之一图形为基本图形,经过两次轴对称(对称轴互相垂直,而且过整个图案的中心)所形成.【总结升华】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,对于不同的基本图形需要作的几何变换也不同.举一反三:【变式】(2016春•泸溪县期末)如图所示,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在图2、图3、图4中分别画出满足以下要求的图形(用阴影表示)(1)使所得图形成为轴对称图形,而不是中心对称图形;(2)使所得图形成为中心对称图形,而不是轴对称图形;(3)使所得图形既是轴对称图形也是中心对称图形.【答案】解:。