方位角的计算公式

合集下载

测量坐标方位角计算汇总

测量坐标方位角计算汇总

测量坐标方位角计算汇总在现代测量仪器和技术的支持下,测量坐标方位角变得更加准确和方便。

本文将介绍一些常用的测量坐标方位角的方法和技术,以及相关的计算方法和公式。

一、方位角的定义和表示方式方位角是指从参考方向(通常是北方向)开始,按照顺时针方向旋转到目标物体的方向所需要的角度。

在地理坐标系统中,通常使用度数来表示方位角。

例如,0度表示正北方向,90度表示正东方向,180度表示正南方向,270度表示正西方向。

方位角通常用数字表示,也可以用度分秒来表示。

度分秒是一种用时分秒来度量角度的表示方法。

例如,45度可以表示为45°,也可以表示为45°00’00’’。

二、测量坐标方位角的方法1.罗盘法:罗盘法是一种使用磁罗盘测量方位角的方法。

该方法利用地球的磁场方向作为参考,通过测量磁罗盘的指针指向来确定目标物体的方位角。

罗盘法的精度通常受到地球磁场的影响,需要进行磁偏角的校正。

2.GPS测量法:全球定位系统(GPS)是一种使用卫星信号测量位置和方向的技术。

通过接收多个卫星信号并计算其相对位置,可以确定接收器的位置和方位角。

GPS测量法具有高精度和实时性的优势,广泛应用于地理测量和导航领域。

3.光电测量法:光电测量法利用光线来测量目标物体的方位角。

该方法通过测量光线从光源到目标物体的传播方向和角度来确定方位角。

光电测量法通常需要专用的测量仪器和设备,如光电传感器和激光测距仪。

三、测量坐标方位角的计算方法和公式1.方位角的计算可以根据物体在地理坐标系统中的坐标值进行计算。

假设目标物体的坐标为(X1,Y1),参考点的坐标为(X0,Y0)。

方位角的计算公式如下:方位角 = atan2(Y1 - Y0, X1 - X0)其中,atan2函数是反正切函数,可以通过计算两点之间的纬度差和经度差得到方位角。

2.方位角的计算还可以根据目标物体在地图上的距离和方向进行计算。

假设目标物体与参考点的距离为D,目标物体相对于参考点的方向为A。

坐标方位角计算公式过程

坐标方位角计算公式过程

坐标方位角计算公式过程
一、坐标方位角的定义。

在平面直角坐标系中,从某点的坐标纵轴方向的北端起,顺时针量到目标方向线间的水平夹角,称为该点的坐标方位角,其取值范围是0° - 360°。

二、坐标方位角计算公式推导过程。

1. 已知两点坐标计算坐标方位角。

- 设A(x1,y1)、B(x2,y2)为平面直角坐标系中的两点。

- 首先计算Δx=x2 - x1,Δy=y2 - y1。

- 然后根据正切函数计算反正切值tanα=(Δ y)/(Δ x),这里得到的α是一个锐角(- 90^∘<α<90^∘)。

- 接下来需要根据Δ x和Δ y的正负来确定坐标方位角β:
- 当Δ x>0,Δ y≥slant0时,坐标方位角β=α。

- 当Δ x = 0,Δ y>0时,坐标方位角β = 90^∘。

- 当Δ x<0时,坐标方位角β=α + 180^∘。

- 当Δ x>0,Δ y<0时,坐标方位角β=α+360^∘(也可写成β = α - 360^∘,目的是将其转化到0° - 360°范围内)。

例如,已知A点坐标为(1,1),B点坐标为(3,3),则Δ x=3 - 1=2,Δ y=3 - 1 = 2,tanα=(2)/(2)=1,α = 45^∘,因为Δ x>0,Δ y≥slant0,所以坐标方位角β = 45^∘。

再如,已知A点坐标为(1,1),B点坐标为(-1,3),Δ x=-1 - 1=-2,Δ y=3 - 1=2,tanα=(2)/(-2)=- 1,α=-45^∘,由于Δ x<0,所以坐标方位角β=-45^∘+180^∘=135^∘。

日出日落的方位角度计算公式

日出日落的方位角度计算公式

计算日出日落的方位角度公式要计算任意一个地方在任意一天日出日落的方位角度,可以用下面的公式:方位角=90 - 0.5arccos[2(sinM/cosN)^2- 1]公式中,M表示的是某天太阳直射的纬度,N表示的是某地的纬度,^2表示平方。

例如,北京在北纬40度,则N=40,夏至这一天太阳在北纬23.5度(太阳直射北纬23.5度),即M=23.5,把N和M的值代入上式,可求得方位角=31度意思是,夏至这一天,在北京的人看来,太阳是从东偏北31度的方位升起的,是在西偏北31度的方位落下的。

说明:1本公式是在理想条件下推导出来的,即假设地球是个标准球体。

而实际上地球两极略扁,而且各地也有高山、洼地等,所以计算结果可能与实测结果有一点误差。

2 太阳围绕地球旋转的轨迹实际上是螺旋线(好象在地球外面套一根弹簧),所以实际上每天日出和日落的方位角稍微有点差别。

例如,在春分到夏至这段时间,日出方位角要略小于日落方位角。

昼夜长短的计算公式:Cost=-tgδ*tgφ太阳视位置太阳视位置指从地面上看到的太阳的位置,用太阳高度角和太阳方位角两个角度作为坐标表示。

太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角,其值在0°到90°之间变化,日出日落时为零,太阳在正天顶上为90°(本万年历中显示的高度角均已进行了蒙气差的订正,蒙气差值取自天文年历)。

太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。

方位角以正南方向为零,由南向东向北为负,由南向西向北为正,如太阳在正东方,方位角为-90°,在正东北方时,方位为-135°,在正西方时方位角为90°,在正北方时为±180°。

实际上太阳并不总是东升西落,只有在春秋分两天,太阳是从正东方升,正西方落。

在北半球,从春分到秋分的夏半年中,太阳从东偏北的方向升(方位角为-90°到-180°之间),在西偏北的方向落(方位角为90°到180°之间);而从秋分到下一年春分的冬半年中,太阳从东偏南的方向升(方位角为-90°到0°之间),在西偏南的方向落(方位角为0°到90°之间)。

方位角计算公式范文

方位角计算公式范文

方位角计算公式范文方位角是指从一个参考方向(通常是正北方向)起,按顺时针方向测量到其中一方向线的角度。

方位角通常用度数表示,范围从0度到360度。

下面介绍常见的方位角计算公式:1.方位角计算公式(两点坐标):假设已知起点坐标A(x1,y1)和终点坐标B(x2,y2),方位角θ的计算公式如下:θ = atan2(y2 - y1, x2 - x1)其中,atan2函数是一个双变量反正切函数,返回值为[-π, π]之间的角度值。

注意:上述公式计算得到的θ是以正北方向为参考的方位角。

如果要将方位角转换为以其他方向为参考的角度(如正东方向为0度),可以将θ减去相应的修正值。

2.方位角计算公式(两点经纬度):假设已知起点的经度(lon1)、纬度(lat1)和终点的经度(lon2)、纬度(lat2),方位角θ的计算公式如下:θ = atan2(sin(Δlon) * cos(lat2), cos(lat1) * sin(lat2) -sin(lat1) * cos(lat2) * cos(Δlon))其中,Δlon = lon2 - lon1是两点经度差。

注意:上述公式计算得到的θ是以正北方向为参考的方位角。

如果要将方位角转换为以其他方向为参考的角度(如正东方向为0度),可以将θ减去相应的修正值。

3.方位角计算公式(方向余弦矩阵):方向余弦矩阵(Direction Cosine Matrix)是一种将方位角和俯仰角等转化为三维空间坐标旋转的方式。

方向余弦矩阵的计算公式如下:D=[ cos(θ) * cos(φ), sin(θ) * cos(φ), -sin(φ) ][ -sin(θ), cos(θ), 0 ][ cos(θ) * sin(φ), sin(θ) * sin(φ), cos(φ) ]其中,θ是方位角,φ是俯仰角。

D是一个3行3列的矩阵,表示坐标变换矩阵。

上述是常见的方位角计算公式,根据不同的应用场景和问题,可能还会有其他的计算公式。

方位角计算公式.

方位角计算公式.

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。

2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。

所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。

为了说明直线所在的象限,在前应加注直线所在象限的名称。

四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。

象限角和坐标方位角之间的换算公式列于表1-4。

表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。

水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。

二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。

方位角

方位角
•方位角的推算
• 左角公式: • 右角公式:
α前 = α后 +180 + β左 α前 = α后 +180 - β右
° °
°
°
• 方位角的范围: 0 ≤α < 360 当
α > 360
°
° 360 时,应减去
测绘工程系
1
2019年1月20日星期日
•方位角的推算
已知:AB=76°20′,B=185°42′,1=211°08 ′ ,2=150 °45 ′
方位角推算公式: αij α AB ∑ β左 - n 180
αij = α AB
测绘工程系
3
° β + n × 180 ∑右
2019年1月20日星期日
§5-8 三角高程测量
●三角高程测量是一种间接测定两点之间高差的方法 要求观测两点之间的水平距离D(或斜距S)以及两点 之间的垂直角。 使用于山区或不便于进行水准测量的地区。
D2 f = f1 + f 2 = (1 - k ) 2R
测绘工程系
6
o
2019年1月20日星期日
三角高程测量中的“球气差”改正
D2 球差改正: f1 = + 2 R 2 D 气差改正: f = -k 2 2R
经研究,因大气折光引起 的视线曲率半径约为地球 曲率半径的7倍,取k=1/7
两差改正:
D f = f1 + f 2 = (1 - k ) 2R
解:
B1=AB+B-180° =AB°+B-180 ° AB =76°20′+185°42′ -180°
பைடு நூலகம்=82°02′
B
B1

方位角的计算公式

方位角的计算公式

计算公式一、 方位角的计算公式1. 字母所代表的意义:x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角2. 计算公式:()()212212y y x x S -+-=1)当y 2- y 1>0,x 2- x 1>0时:1212x x y y arctg--=α2)当y 2- y 1<0,x 2- x 1>0时:1212360x x y y arctg --+︒=α 3)当x 2- x 1<0时:1212180x x y y arctg--+︒=α 二、 平曲线转角点偏角计算公式1. 字母所代表的意义:α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角2. 计算公式:β=α2-α1(负值为左偏、正值为右偏)三、 平曲线直缓、缓直点的坐标计算公式1. 字母所代表的意义:U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD )T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=D :JD 偏角,左偏为-、右偏为+2. 计算公式:直缓(直圆)点的国家坐标:X ′=U+Tcos(A+180°)Y ′=V+Tsin(A+180°)缓直(圆直)点的国家坐标:X ″=U+Tcos(A+D)Y ″=V+Tsin(A+D)四、 平曲线上任意点的坐标计算公式1. 字母所代表的意义:P :所求点的桩号B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1C :JD 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=I=C -T :直缓桩号 J=I+L :缓圆桩号s L DRJ H -+=180π:圆缓桩号K=H+L :缓直桩号2. 计算公式: 1)当P<I 时中桩坐标:X m =U+(C -P)cos(A+180°) Y m =V+(C -P)sin(A+180°) 边桩坐标:X b =X m +Bcos(A+90°) Y b =Y m +Bsin(A+90°)2)当I<P<J 时()s230RL I P MA O π-︒+= ()()2390R I P I P G ---=中桩坐标:X m =U+Tcos(A+180°)+GcosO Y m =V+Tsin(A+180°)+GsinO()s290RL I P W π-︒=边桩坐标:X b =X m +Bcos(A+MW+90°) Y b =Y m +Bsin(A+MW+90°)3)当J<P<H 时()()R J P L M A R J P R L M A O s s πππ-+︒+=⎪⎭⎫⎝⎛-︒+︒+=909090 ()RJ P R G π-︒=90sin2中桩坐标:()O G R L M A R L L A T U X s ss m cos 30cos 90180cos 23+⎪⎭⎫⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()O G R L M A R L L A T V Y s ss m sin 30sin 90180sin 23+⎪⎭⎫ ⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()RJ P W π-︒=90边桩坐标:X b =X m +Bcos(O+MW+90°) Y b =Y m +Bsin(O+MW+90°)4)当H<P<K 时()sRL K P MMD A O π230180-︒-︒++= ()2390R P K P K G ---= 中桩坐标:X m =U+Tcos(A+MD)+GcosO Y m =V+Tsin(A+MD)+GsinO()s290RL K P W π-︒=边桩坐标:X b =X m +Bcos(A+MD -MW+90°) Y b =Y m +Bsin(A+MD -MW+90°)5)当P>K 时中桩坐标:X m =U+(T+P -K)cos(A+MD) Y m =V+(T+P-K)sin(A+MD) 边桩坐标:X b =X m +Bcos(A+MD+90°) Y b =Y m +Bsin(A+MD+90°)注:计算公式中距离、长度、桩号单位:“米”;角度测量单位:“度”;假设要以“弧度”为角度测量单位,请将公式中带°的数字换算为弧度。

工程测量中坐标方位角计算公式

工程测量中坐标方位角计算公式

工程测量中坐标方位角计算公式在工程测量中,坐标方位角是指一个点相对于参考方向的角度。

它是测量中常用的一个重要参数,用于确定物体或地点的位置和方向。

坐标方位角的计算公式主要基于三角函数的运算和几何原理,下面将详细介绍它的计算方法。

我们需要明确坐标方位角的定义。

在工程测量中,通常以正北方向为参考方向,以逆时针方向为正方向,来确定一个点的方位角。

方位角的范围是0°到360°,其中0°表示正北方向,90°表示正东方向,180°表示正南方向,270°表示正西方向,360°又回到正北方向。

对于任意一个点,我们可以通过计算该点相对于参考方向的角度来确定它的方位角。

具体的计算公式如下:方位角 = arctan((Y - Y0) / (X - X0))其中,X0和Y0表示参考点的坐标,X和Y表示待测点的坐标。

这个公式基于斜率的概念,通过计算两点之间的斜率来确定方位角。

需要注意的是,由于计算中使用了反正切函数arctan,所以计算结果的范围是-90°到90°,即仅限于第一象限和第四象限。

为了得到完整的方位角范围,我们需要进行一些额外的处理。

在计算公式中,我们可以根据X和X0的大小关系,以及Y和Y0的大小关系来确定方位角的象限。

具体的处理方法如下:如果X > X0且Y > Y0,那么方位角为计算结果;如果X < X0,那么方位角为180°加上计算结果;如果X > X0且Y < Y0,那么方位角为360°加上计算结果;如果X = X0且Y > Y0,那么方位角为90°;如果X = X0且Y < Y0,那么方位角为270°;如果X = X0且Y = Y0,那么方位角没有定义。

通过这些处理,我们可以得到完整的方位角范围。

在实际的工程测量中,坐标方位角的计算非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算公式
一、 方位角的计算公式
二、 平曲线转角点偏角计算公式
三、 平曲线直缓、缓直点的坐标计算公式 四、 平曲线上任意点的坐标计算公式 五、 竖曲线上点的高程计算公式 六、 超高计算公式 七、 地基承载力计算公式 八、 标准差计算公式
一、 方位角的计算公式
1. 字母所代表的意义:
x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角
2. 计算公式:
()()212212y y x x S -+-=
1)当y 2- y 1>0,x 2- x 1>0时:1
21
2x x y y arctg
--=α 2)当y 2- y 1<0,x 2- x 1>0时:1
21
2360x x y y arctg --+︒=α 3)当x 2- x 1<0时:1
21
2180x x y y arctg
--+︒=α 二、 平曲线转角点偏角计算公式
1. 字母所代表的意义:
α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角
2. 计算公式:
β=α2-α1(负值为左偏、正值为右偏)
三、 平曲线直缓、缓直点的坐标计算公式
1. 字母所代表的意义:
U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD )
T :曲线的切线长,23
22402224R L L D tg R L R T s
s s -+⎪⎪⎭
⎫ ⎝⎛+=
D :JD 偏角,左偏为-、右偏为+
2. 计算公式:
直缓(直圆)点的国家坐标:X ′=U+Tcos(A+180°)
Y ′=V+Tsin(A+180°)
缓直(圆直)点的国家坐标:X ″=U+Tcos(A+D)
Y ″=V+Tsin(A+D)
四、 平曲线上任意点的坐标计算公式
1. 字母所代表的意义:
P :所求点的桩号
B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1
C :J
D 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标
T :曲线的切线长,23
22402224R L L D tg R L R T s
s s -+⎪⎪⎭
⎫ ⎝⎛+=
I=C -T :直缓桩号 J=I+L :缓圆桩号
s L DR
J H -+
=180
π:圆缓桩号
K=H+L :缓直桩号
2. 计算公式: 1)当P<I 时
中桩坐标:X m =U+(C -P)cos(A+180°) Y m =V+(C -P)sin(A+180°) 边桩坐标:X b =X m +Bcos(A+90°) Y b =Y m +Bsin(A+90°)
2)当I<P<J 时
()s
2
30RL I P M
A O π-︒+= ()()2
3
90R I P I P G ---=
中桩坐标:X m =U+Tcos(A+180°)+GcosO Y m =V+Tsin(A+180°)+GsinO
()s
2
90RL I P W π-︒=
边桩坐标:X b =X m +Bcos(A+MW+90°) Y b =Y m +Bsin(A+MW+90°)
3)当J<P<H 时
()()R J P L M A R J P R L M A O s s πππ-+︒+
=⎪⎭

⎝⎛-︒+︒+=909090 ()R
J P R G π-︒=90sin
2
中桩坐标:
()O G R L M A R L L A T U X s s
s m cos 30cos 90180cos 2
3
+⎪⎭⎫ ⎝⎛︒+⎪⎪⎭
⎫ ⎝⎛-+︒++=π ()O G R L M A R L L A T V Y s s
s m sin 30sin 90180sin 2
3
+⎪⎭⎫ ⎝⎛︒+⎪⎪⎭
⎫ ⎝
⎛-+︒++=π ()R
J P W π-︒=
90
边桩坐标:X b =X m +Bcos(O+MW+90°) Y b =Y m +Bsin(O+MW+90°)
4)当H<P<K 时
()s
RL K P M
MD A O π2
30180-︒-︒++= ()2
3
90R P K P K G ---=
中桩坐标:X m =U+Tcos(A+MD)+GcosO Y m =V+Tsin(A+MD)+GsinO
()s
2
90RL K P W π-︒=
边桩坐标:X b =X m +Bcos(A+MD -MW+90°) Y b =Y m +Bsin(A+MD -MW+90°)
5)当P>K 时
中桩坐标:X m =U+(T+P -K)cos(A+MD) Y m =V+(T+P-K)sin(A+MD) 边桩坐标:X b =X m +Bcos(A+MD+90°) Y b =Y m +Bsin(A+MD+90°)
注:计算公式中距离、长度、桩号单位:“米”;角度测量单位:“度”;若要以
“弧度”为角度测量单位,请将公式中带°的数字换算为弧度。

五、 竖曲线上点的高程计算公式
1. 字母所代表的意义:
R :曲线半径
i 1:ZY ~JD 方向的坡度 i 2:JD ~YZ 方向的坡度 T :曲线的切线长 E :外失距
x :竖曲线上的点到直圆或圆直的距离 y :竖曲线上点的高程修正值
2. 计算公式:
212
i i R
T -=
R T E 22
=
R
x y 22
= 六、 超高计算公式
1. 字母所代表的意义:
i 0:路拱坡度
i b :超高坡度 L s :缓和曲线长
b 1:所求点~路中线距离
x 0:从直缓开始,到路左右坡度一致的距离,即图中C---C x :所求点~直缓或缓直的距离 h b :超高值
×i b
b 1HY(YH)
ZH(HZ)
相对于路中线超高值
行车道外侧边缘行车道内侧边缘
X0=2×i0/(i0+ib)×Ls
X≤x0
hb=b1×(i0+ib)×X/Ls-b1×i0
hb=-(b1+bx)×i0
X≥x0
hb=-(b1+bx)×X/LS×ib
2. 计算公式(公式1):(绕中线旋转)
()
b s
i i L
i x +=000
2 1)当x ≤x 0时
行车道外侧边缘:()0101i b L x
i i b h s
b b -+=
行车道内侧边缘:()01i b b h x b +-= 2)当x ≥x0时
行车道外侧边缘:()0101i b L x
i i b h s b b -+= 行车道内侧边缘:()b s
x b i L x
b b h +-=
1 3. 计算公式(公式2):
行车道外侧边缘:()100b L x i i i h s
b b ⎪⎪


⎝⎛
++
-= 行车道内侧边缘:()100b L x i i i h s
b b ⎪⎪


⎝⎛--
-= 七、 地基承载力计算公式
1. 字母所代表的意义:
N :锤击数 M :地基承载力
2. 计算公式(公式1):(绕中线旋转)
()100
2785.0-⨯=
N M
注:贯入深度为30cm ,单位为MPa
八、标准差计算公式
1. 字母所代表的意义:
X:样本平均值
S:样本标准差
2. 计算公式:
基于整个样本总体的标准差:
()
2
2
1
2
1
2
n
X
X
n
n
X
X
S
n
i
i n
i
i∑

∑⎪




-
=
-
==
=
基于样本估算标准差:
()
()1
1
2
1
2
1
2
-





-
=
-
-
=
∑∑

=
=
n
n
X
X
n
n
X
X
S
n
i
i n
i
i。

相关文档
最新文档