导数求导公式

导数求导公式
导数求导公式

几种常见函数的导数:

① ② ③; ④; ⑤⑥; ⑦; ⑧.

(

‘=(v 0)。

1、单调区间:一般地,设函数在某个区间可导, 如果,则为增函数; 如果,则为减函数;

如果在某区间内恒有

,则为常数; 2.极点与极值:

曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;

3.最值:

一般地,在区间[a ,b]上连续的函数f 在[a ,b]上必有最大值与最小值。 ①求函数?在(a ,b)内的极值;

②求函数?在区间端点的值?(a)、?(b);

③将函数? 的各极值与?(a)、?(b)比较,其中最大的是最大值,其中最小的是最小值。 0;C '=()1

;n n x nx -'=(sin )cos x x '=(cos )sin x x '=-();x x e e '=()ln x x a a a '=()1ln x x '=()1l g log a a o x e x '=.)'''v u v u ±=±.)('''uv v u uv +=.)(''Cu Cu =??? ??v u 2''v uv v u -≠)(x f y =

'f

)(x 0>)(x f 'f 0)(

高等数学公式导数基本公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 222122an 11cos 12sin u du dx x t u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x x x x a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(cot sec )(tan 22= '='?-='?='-='='2 2 22 11 )cot (11 )(arctan 11 )(arccos 11 )(arcsin x x arc x x x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x xdx x C x dx x x C x xdx x dx C x xdx x dx x x )ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x a x a dx C x x xdx C x x xdx C x xdx C x xdx t +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln an 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

基本求导公式

这是基本求导公式,只能根据导数的定义来求。导数的定义就是给X一个增Δx,求出ΔY,然后求ΔY/Δx的极限(当Δx→0时)。函数是Y=X^n ΔY=(X+Δx)^n-X^n 把(X+Δx)^n展开(按n为正整数),展开式写起来很麻烦,我给你叙述一下,你应能理解。展开式中,第一项是X^n,最末项是(Δx)^n,中间的项中,X是降幂,Δx是升幂,系数是前后对称,如n=2,系数是1,2,1;n=3,系数是1,3,3,1;等等。注意,n是几,第二项的系数就是几。只需考虑展开式中的前两项。第一项是X^n,它将会与ΔY=(X+Δx)^n-X^n中的-X^n项抵消。第二项是[n X^(n-1)]*Δx,其后的项中,Δx的方次都比1大。现在来考虑比值ΔY/Δx,前边说过,第一项已消失,第二项除以Δx后为[nX^(n-1)],其后各项除以Δx后都还剩有Δx因子。因此,当Δx→0取极限时,就只剩下[nX^(n-1)],其后的项都成为0了。这就是你要证的求导公式。(顺便说一下,上述是以n为正整数来证明的,n为任意实数时也是成立的。) (X+Δx)^n的展开式在纸上写起来也并不太麻烦,只是在这里写起来,为避免误会,需加的括号太多,就显得麻烦了。第一项系数是1,第二项系数是n, 第三项系数是[n(n-1)]/(1*2) 10~12是利用函数的商的求导法则。如(secx)'=secx*tanx。 (secx)'=(1/cosx)'=-(cosx)'/(cosx)^2=sinx/(cosx)^2=secx*tanx 13~16是利用反函数的求导法则:y=f(x)的反函数是x=g(y),则dx/dy=1/(dy/dx)。 如(arcsinx)'=1/√(1-x^2)。

导数及求导

导数定义: [1](一)导数第一定义:设函数y = f(x) 在点x0 的某个邻域内有定义,当自变量x 在x0 处有增量△x ( x0 + △x 也在该邻域内) 时,相应地函数取得增量△y = f(x0 + △x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数y = f(x) 在点x0 处可导,并称这个极限值为函数y = f(x) 在点x0 处的导数记为f'(x0) ,即 导数第一定义 (二)导数第二定义:设函数y = f(x) 在点x0 的某个邻域内有定义,当自变量x 在x0 处有变化△x ( x - x0 也在该邻域内) 时,相应地函数变化△y = f(x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数y = f(x) 在点x0 处可导,并称这个极限值为函数y = f(x) 在点x0 处的导数记为f'(x0) ,即 导数第二定义 (三)导函数与导数:如果函数y = f(x) 在开区间I 内每一点都可导,就称函数f(x)在区间I 内可导。这时函数y = f(x) 对于区间I 内的每一个确定的x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x) 的导函数,记作y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

导数的几何意义是,导数在几何上表现为切线的斜率。对于一元函数,某一点的导数就是平面图形上某一点的切线斜率;对于二元函数而言,某一点的导数就是空间图形上某一点的切线斜率,故必须对极限的定义及几何意义非常了解,不然无法了解倒数的意义。 对于单侧可导,设函数f(x)在点x0及x0的某个领域内有定义 则当h从h=0的右边逼近于h=0即原点时,若lim[f(x0+h)-f(x0)]/h存在,这个极限就是f(x)在x=x0的右导数。左导数类似。区别在于逼近的方向不同。几何意义即函数f(x)左右的切线斜率,如果函数f(x)在点x0的左导数与右导数存在且相同,则称函数f(x)在点x0处可导。 同时,若函数f(x)在点x0可导,则函数f(x)在点x0一定连续,但f(x)在点x0连续却不一定可导。

常见导数公式

常见导数公式: ① C'=0(C为常数函数); ② (x^n)'= nx^(n-1) (n∈Q*); ③ (sinx)' = cosx; (cosx)' = - sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx ④ (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx ⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) 另外就是复合函数的求导: ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2 后面这些高中用不到,但是多掌握点遇到时就可以直接写出来,不用再换算成常见函数来求解, (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) 1、x→0,sin(x)/x →1 2、x→0,(1 + x)^(1/x)→e x→∞ ,(1 + 1/x)^(1/x)→ 1 (其中e≈2.7182818... 是一个无理数)

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

求导法则与求导公式

§2.2 求导法则与导数的基本公式 教学目标与要求 1. 掌握并能运用函数的和、差、积、商的求导法则 2. 理解反函数的导数并能应用; 3. 理解复合函数的导数并会求复合函数的导数; 4. 熟记求导法则以及基本初等函数的导数公式。 教学重点与难度 1. 会用函数的和、差、积、商的求导法则求导; 2. 会求反函数的导数; 3. 会求复合函数的导数 前面,我们根据导数的定义,求出了一些简单函数的导数。但是,如果对每一个函数都用定义去求它的导数,有时候将是一件非常复杂或困难的事情。因此,本节介绍求导数的几个基本法则和基本初等函数的导数公式。鉴于初等函数的定义,有了这些法则和公式,就能比较方便地求出常见的函数——初等函数的导数。 一、函数的和、差、积、商求导法则 1.函数的和、差求导法则 定理1 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =±在点x 处也可导,且 [()()]()()y u x v x u x v x ''''=±=± 同理可证:' ' ' [()()]()()u x v x u x v x -=- 即证。 注意:这个法则可以推广到有限个函数的代数和,即 12''' ' 12[()()()]()()()n n u x u x u x u x u x u x ±± ±=±±±, 即有限个函数代数和的导数等于导数的代数和。

例1 求函数4 cos ln 2 y x x x π =+++ 的导数 解 4 c o s l n 2y x x x π'??'=+++ ?? ? ()()()4 cos ln 2x x x π'??'''=+++ ??? 3 1 4s i n x x x =-+ 2.函数积的求导公式 定理2 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =在点x 也可导,且 ''''[()()]()()()()y u x v x u x v x u x v x ==+。 注意:1)特别地,当u c =(c 为常数)时, '''[()]()y cv x cv x ==, 即常数因子可以从导数的符号中提出来。而且将其与和、差的求导法则结合,可得: ''''[()()]()()y au x bv x au x bv x =±=±。 2)函数积的求导法则,也可以推广到有限个函数乘积的情形,即 ''' '12 1212 12 ()n n n n u u u u u u u u u u u u =+++。 例2 求下列函数的导数。 1)32 3254sin y x x x x =+-+; 解 ()()()()3 2 3254sin y x x x x '''''=+-+

常用的求导和定积分公式(完美)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211 )(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21 (arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =, )(x v v =都可导,则

(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'='??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的 反函数)(x f y =在对应区间x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数 )]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 二、基本积分表 (1)kdx kx C =+? (k 是常数)

导数公式证明大全(更新版)

(麻烦那些盗取他人成果的人素质点,最近总有人把我的作品抄袭过去,改改标题就作为他的东西。愤怒啊!!!!!!) 导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1)

证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx

=lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx

常用的基本求导公式

1.基本求导公式 ⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',21 )1(x x -=',x x 21)(='。 ⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷ x x 1)(ln =';一般地,)1,0( ln 1 )(log ≠>='a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3 ,2,),1( 114 3 32 21αααα ; (2) C x dx x +=?||ln 1 ; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3)??=dx x f k dx x kf )()((k 为常数) 5、定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴ ??? +=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则

求导公式

1. y=c(c 为常数) y'=0 2. y=x^n y'=nx^(n-1) 3. y=a^x y'=a^xlna y=e^x y'=e^x 4. y=logax y'=logae/x y=lnx y'=1/x 5. y=sinx y'=cosx 6. y=cosx y'=-sinx 7. y=tanx y'=1/cos^2x 8. y=cotx y'=-1/sin^2x 9. y =arcsinx y'=1/√1-x^2 10. y=arccosx y'=-1/√1-x^2 11. y=arctanx y'=1/1+x^2 12. y=arccotx y'=-1/1+x^2 1、a 是一个常数,对数的真数,比如ln5 5就是真数 2、log 对数 lognm 这里的n 是指底数,m 是指真数, 当底数为10时,简写成lgm 当底数为e (e = 2.718281828459)是一个常数 数学中成为超越数 经常要用到)时,简写成lnm 3、sin ,cos ,tan ,sec ,cot ,csc 分别为三角函数 分别表示正弦、余弦、正切、正割、余切、余割。 正弦余弦是一对,正切余切是一对,正割余割是一对 这六个是最基本的三角函数 4、arc 是指的反三角函数 比如反正弦Sin30°=0.5 则arcsin0.5=30°(角度制)=π/6(弧度制) 反正切 反余弦 反余切等等都是同一道理 四、基本求导法则与导数公式 1. 基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1) 0 )(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -='

基本初等函数的导数公式

基本初等函数的导数公式 学习目标: 掌握初等函数的求导公式; 学习重难点: 用定义推导常见函数的导数公式. 一、复习 1、导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的流程图。 (1)求函数的改变量()(x f x x f y -?+=? (2)求平均变化率 x y = ?? (3)取极限,得导数/y =()f x '=x y x ??→?0 lim 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。 (1)、y=x (2)、y=x 2 (3)、y=x 3 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 二、学习过程 1、基本初等函数的求导公式: ⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '= ⑷ 2()2x x '= ⑸ 32()3x x '= ⑹ 2 1 1()x x '=- ⑺ '= 由⑶~⑹你能发现什么规律? ⑻ 1()x x ααα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01) x xlna a a '= = >≠,且 ⑾ x x e )(e =' ⑿ x 1)(lnx =' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。

例1、求下列函数导数。 (1)5-=x y ( 2)x y 4= (3)x x x y = (4)x y 3log = (5)y=sin(2 π +x) (6) y=sin 3 π (7)y=cos(2π-x) 例2.若直线y x b =-+为函数1y x = 图象的切线,求b 的值和切点坐标. 变式1.求曲线y=x 2 在点(1,1)处的切线方程. 总结切线问题:找切点 求导数 得斜率 变式2:求曲线y=x 2过点(0,-1)的切线方程 变式3:已知直线1y x =-,点P 为y=x 2 上任意一点,求P 在什么位置时到直线距离最短. 三:课堂练习. 1.求下列函数的导数 (1)3y x = (2)y = (3)2 1y x = (4)3x y = (5)2log y x = (6)cos y x = 四、小结 (1)基本初等函数公式的求导公式 (2)公式的应用 随堂检测: 1. 已知3()f x x =,则'(1)f = 。 2.设y = ,则它的导函数为 。 3.过曲线3y x -=上的点1 (2,)8 的切线方程为 。 4.求下列函数的导函数 (1)2y x -= (2)y = (3)41y x = (4)2x y = (5)4log y x = (6)ln y x = (7)sin()2y x π=- (8)3cos()2 y x π =+ 5.求曲线x y e =在0x =处的切线方程。

基本函数求导公式

基本函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

隐函数存在定理 1 设函数),(y x F 在点),(0 0y x P 的 某一邻域内具有连续的偏导数,且0),(0 =y x F ,, ),(00≠y x F y ,则方程),(y x F =0在点),(0 y x 的某一邻域内 恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件) (00 x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求 导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 ))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F 由于y F 连续,且0),(0 ≠y x F y ,所以存在(x 0,y 0)的一个

1常见函数的导数公式

1.常见函数的导数公式: (1)0'=C (C 为常数); (2)1)'(-=n n nx x (Q n ∈); (3)x x cos )'(sin =; (4)x x sin )'(cos -=; (5)a a a x x ln )'(=; (6)x x e e =)'(; (7)e x x a a log 1)'(log = ; (8)x x 1)'(ln = . 2.导数的运算法则: 法则1 )()()]()(['''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=. 法则3 ' 2 ''(0)u u v uv v v v -?? =≠ ??? . 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 例题:一:1:求函数323y x x =-+的导数. 2: y = x x sin 2.函数y =x 2cos x 的导数为 。 函数y =tanx 的导数为 。 2:求下列复合函数的导数: ⑴3 2 )2(x y -=; ⑵2 sin x y =; ⑶)4 cos(x y -=π ; ⑷)13sin(ln -=x y .3 2 c bx ax y ++=

4.曲线y =x 3的切线中斜率等于1的直线 ( ) A .不存在 B .存在,有且仅有一条 C .存在,有且恰有两条 D .存在,但条数不确定 5.曲线3()2f x x x =+-在0P 处的切线平行于直线41y x =-,则0P 点的坐标为( ) A 、( 1 , 0 ) B 、( 2 , 8 ) C 、( 1 , 0 )和(-1, -4) D 、( 2 , 8 )和 (-1, -4) 6.f (x )=ax 3 +3x 2 +2,若f ′(-1)=4,则a 的值等于 ( ) A. 3 19 B. 3 16 C. 3 13 D. 3 10 7.曲线22x y =在点(1,2)处的瞬时变化率为( ) A 2 B 4 C 5 D 6 8.已知曲线122+=x y 在点M 处的瞬时变化率为-4,则点M 的坐标是( ) A (1,3) B (-4,33) C (-1,3) D 不确定 9.物体按照s (t )=3t 2+t +4的规律作直线运动,则在4s 附近的平均变化率 . 10.曲线y =x 3-3x 2 +1在点(1,-1)处的切线方程为__________________. 11.已知l 是曲线y = 3 1x 3 +x 的切线中,倾斜角最小的切线,则l 的方程是 . 12.已知过曲线y =3 1x 3上点P 的切线l 的方程为12x -3y =16,那么P 点坐标只能为 ( ) A.?? ? ??38, 2 B.?? ? ??- 34,1 C.?? ? ??- -328,1 D.?? ? ??320, 3 13.已知c bx ax x f ++=24)(的图象经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f y =的解析式. 14.求过点(2,0)且与曲线y = x 1相切的直线的方程.

导数公式证明大全

导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1) 证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx

f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx =lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x f'(x) =lim (a^(x+Δx)-a^x)/Δx =lim a^x*(a^Δx-1)/Δx (设a^Δx-1=m,则Δx=loga^(m+1)) =lim a^x*m/loga^(m+1) =lim a^x*m/[ln(m+1)/lna] =lim a^x*lna*m/ln(m+1) =lim a^x*lna/[(1/m)*ln(m+1)]

16导数公式及四则运算

导数公式及四则运算 【使用说明及学法指导】 1.自学课本P14-P21,仔细阅读课本,课前完成预习学案,牢记基础知识,掌握基本题型,在做题过程中,如遇不会问题再回去阅读课本; AA 完成所有题目,BB 完成除(**)外所有题目,CC 完成不带(*)题目。 2.认真限时完成,书写规范;课上小组合作探究,答疑解惑。 3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑; 3.预习指导:理解幂函数导数的推导过程,熟记常用初等函数的导函数,并能应用导数的四则运算法则求导。 【学习目标】 1.理解并记忆基本初等函数的导函数,掌握导数的运算法则; 2.自主学习、合作交流,归纳出求导公式应用的规律与方法; 3.激情投入,高效学习,形成缜密的数学思维品质。 一、课前预习 问题1.结合函数3)(x x f =的求导过程总结求导导函数的步骤.. 设 3)(x x f y ==, Θ △y= )()(x f x x f -?+=3)(x x ?+-3x =322 )()(33x x x x x ?+??+?? ∴ x y ??=2 2)(33x x x x ?+??+ ∴x y x ??→?0lim =2 3x 即2'3)(x x f =. 问题2:什么样的函数是幂函数? 由2 ' 33)(x x =,x x 2)(' 2=,Λ 2 '1)(---=x x 归纳幂函数的导数表达式是怎 样的? 问题3.结合课本p17“基本初等函数导数公式表”书写出这组导数公式并分析特点,这组公式可分为几类?如何记忆?秀秀你的高招. 问题4. 两个函数和、差、积、商的导数是否等于这两个函数导数的和、差、积、商?写出函数求导的四则运算法则并分析这组公式的特点,看看谁记忆地既准又快! 问题5.当 ()1≡x f 时,你能否运用商的求导法则确定函数 ()x g x f )(即() x g 1 的导数? 二、学始于疑---我思考、我收获 1.判断正误:(1))()(])()([x g x f x g x f ''='. (2)c 是常数,则)()]([''x f c x f c ?=? . 2.(1) 若x e x f =)(,则)('x f = . (2) 若 x x f ln )(=,则)('x f = . 3.求下列函数的导数: (1)=++-+='222 3 y e x x x y x (2)x y x lg 2-= ='y 我的疑问:(请将预习中未能解决的问题和疑惑写下来,以便课堂解决)

导数计算公式

导数公式 一、基本初等函数的导数公式 已知函数:(1)y =f (x )=c ;(2)y =f (x )=x ;(3)y =f (x )=x 2;(4)y =f (x )=1 x ;(5)y =f (x )=x . 问题:上述函数的导数是什么? 提示:(1)∵ Δy Δx =f (x +Δx )-f (x )Δx =c -c Δx =0,∴y ′=lim Δx →0 Δy Δx =0. 2)(x )′=1,(3)(x 2 )′=2x ,(4)? ???? 1x ′=-1x 2,(5)(x )′=12x . 函数(2)(3)(5)均可表示为y =x α(α∈Q *)的形式,其导数有何规律? 提示:∵(2)(x )′=1·x 1-1,(3)(x 2)′=2·x 2-1,(5)(x )′=(x 1 2 )′ =12 x 112 -=1 2x ,∴(x α)′=αx α-1. 基本初等函数的导数公式

二、导数运算法则 已知f(x)=x,g(x)=1 x. 问题1:f(x),g(x)的导数分别是什么? 问题2:试求Q(x)=x+1 x,H(x)=x- 1 x的导数. 提示:∵Δy=(x+Δx)+ 1 x+Δx-? ? ? ? ? x+ 1 x=Δx+ -Δx x(x+Δx), ∴Δy Δx=1- 1 x(x+Δx),∴Q′(x)= lim Δx→0 Δy Δx= lim Δx→0? ? ? ? ? ? 1- 1 x(x+Δx)=1- 1 x2.同理H′(x)=1+1 x2. 问题3:Q(x),H(x)的导数与f(x),g(x)的导数有何关系? 提示:Q(x)的导数等于f(x),g(x)导数的和,H(x)的导数等于f(x),g(x)导数的差. 导数运算法则 1.[f(x)±g(x)]′=f′(x)±g′(x) 2.[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x)

基本导数公式

基本导数公式-CAL-FENGHAI.-(YICAI)-Company One1

基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x '= ⑿()1log ln x a x a '= ⒀()arcsin x '= ⒁()arccos x '= 微分公式与微分运算法则 ⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-? ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x = ⑿()1log ln x a d dx x a = ⒀()arcsin d x = ⒁()arccos d x = ⒂()21arctan 1d x dx x = + ⒃()21arccot 1d x dx x =-+ 微分运算法则 ⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udv d v v -??= ??? 基本积分公式 ⑴kdx kx c =+? ⑵11x x dx c μμ μ+=++? ⑶ln dx x c x =+? ⑷ln x x a a dx c a =+? ⑸x x e dx e c =+? ⑹cos sin xdx x c =+? ⑺sin cos xdx x c =-+? ⑻ 221sec tan cos dx xdx x c x ==+?? ⑼221csc cot sin xdx x c x ==-+?? ⑽21arctan 1dx x c x =++?

常用的基本求导公式

常用的基本求导公式 Revised by Petrel at 2021

1.基本求导公式 ⑴0)(='C (C 为常数)⑵1 )(-='n n nx x ;一般地,1 )(-='αααx x 。 特别地:1)(='x ,x x 2)(2 =',2 1 )1(x x - =',x x 21)(='。 ⑶x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷x x 1)(ln = ';一般地,)1,0( ln 1 )(log ≠>='a a a x x a 。 2.求导法则⑴四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2 ≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 4、 常用的不定积分公式 (1)?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3,2,),1( 114 3 32 21αααα ; (2)C x dx x +=?||ln 1;C e dx e x x +=?;)1,0( ln ≠>+=?a a C a a dx a x x ; (3)? ?=dx x f k dx x kf )()((k 为常数) 5、定积分 ⑴ ??? +=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则 6、线性代数 特殊矩阵的概念

一般常用求导公式

四、基本求导法则与导数公式 1. 基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1) 0)(=' C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 2 11)(arcsin x x -= ' (14) 2 11)(arccos x x -- =' (15) 2 1(arctan )1x x '= + (16) 2 1(arc cot )1x x '=- + 函数的和、差、积、商的求导法则 设 )(x u u =,)(x v v =都可导,则 (1) v u v u ' ±'='±)( (2) u C Cu ' =')((C 是常数) (3) v u v u uv ' +'=')( (4) 2 v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间 y I 内可导、单调且 0)(≠'y ?,则它的反函数 )(x f y =在对应区间 x I 内也可导,且

相关文档
最新文档