理论分布与抽样分布

合集下载

理论分布和抽样分布的概念

理论分布和抽样分布的概念

抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。

样本分布:样本中所有个体关于某个变量大的取值所形成的分布。

抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。

即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。

样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。

那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。

由样本平均数x 所构成的总体称为样本平均数的抽样总体。

它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。

统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μ σ2x = σ2 /n由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2)分布。

但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。

于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。

样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx ex f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。

相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。

2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。

理论分布和抽样分布

理论分布和抽样分布

所构成,其中事件A包含有m个基本事件,
则事件A的概率为m/n,即
P(A)=m/n
这样定义的概率称为古典概率。
13
2.1 概率的统计学意义
例如,在有两个孩子的家庭中,孩子性别
的组成有四种类型。即:男男、男女、女
男、女女。它们是四个基本事件,而且是
互不相容且等可能的,那么两个男孩的事
件A1为四个基本事件(n)中的一个(m) , A1的概率
27
第二章 理论分布和抽样分布
将Y的一切可能y1值 y2 , ,…,以及取得这些 值的概率p( y1) 、p( y2 ) …,排列起来, 就构成了 离散型随机变量的概率分布(probabiit distribution)。
表2-2 离散型随机变量的概率分布表。
Y
y1
y2

P(yi) p( y1 ) p( y2 )
本章在介绍概率论中最基本的两个概念——事件、概 率的基础上,重点介绍生物科学研究中常用的几种随 机变量的概率分布:间断性变数总体的理论分布:二 项分布、泊松分布;连续性变数总体的理论分布,即 正态分布; 从这两类理论分布中抽出的样本统计数的
分布,即抽样分布和t分布。
2
2.1 概率的统计学意义
一、事 件 1. 必然现象与随机现象 在自然界与生产实践和科学试验中,人们会观察到各种
这里的0.05或0.01称为小概率标准,生物 试验研究中通常使用这两个小概率标准。
21
2.3 理论分布
事件的概率表示了一次试验某一个结果发 生的可能性大小。若要全面了解试验,则 必须知道试验的全部可能结果及各种可能 结果发生的概率,即必须知道随机试验的 概率分布(probability distribution)。为 了深入研究随机试验 ,我们先引入随机变 量(random variable)的概念。

3-理论分布与抽样分布

3-理论分布与抽样分布

68-95-99.7规则
➢ 正态分布有其特定的数据分布规则: ▪ 平均值为, 标准差为σ的正态分布 ▪ 68%的观察资料落在的1σ之内 ▪ 95%的观察资料落在的2σ之内 ▪ 99.7%的观察资料落在的3σ之内
19
20
三、68-95-99.7规则
68.26% 的资料 95.45% 的资料 99.73% 的资料 -3 -2 -1 0 1 2 3 -3s -2s -s +s +2s +3s
体称为样本平均数的抽样总体。其平均数和标准差分
别记为 和 。x
s x
是样s x本平均数抽样总体的标准差,简称标准误 (standard error),它表示平均数抽样误差的大小。统 计学上已证明x总体的两个参数与x 总体的两个参数有 如下关系:
u=(x-μ)/σ
x~N(0,1)
上一张 下一张 主 页 退12出
3.3.3 正态分布的概率计算 1. 标准正态分布的概率计算
设u服从标准正态分布,则u在[u1,u2 )内取 值的概率为:
=Φ(u2)-Φ(u1)
(3-16)
Φ(u1)与Φ(u2)可由附表1查得。
上一张 下一张 主 页 退13出
例如,u=1.75时,由附表1可以查出 Φ(1.75)=0.95994
图3-6 μ相同而σ不同的3个正态分布比较大 8
(6)分布密度曲线与横轴所围成的区间面积为1, 即:
(7) 正态分布的次数多数集中在平均数μ的附 近,离均数越远,其相应次数越少,在3σ以外的 极少,这就是食品工业控制中的3σ 原理的基础。
上一张 下一张 主 页 退 9出
3.3.2 标准正态分布
上一张 下一张 主 页 退16出
(1) P(u<-1.64)=0.05050 (2) P (u≥2.58)=Φ(-2.58)=0.024940 (3) P (|u|≥2.56)

统计学考研复习指导常考分布与抽样理论梳理

统计学考研复习指导常考分布与抽样理论梳理

统计学考研复习指导常考分布与抽样理论梳理统计学是考研复习中的一门重要科目,而分布与抽样理论是统计学中的基础知识之一。

掌握分布与抽样理论对于考研复习非常重要,因此本文将对常考的分布与抽样理论进行梳理。

以下是各个分布与抽样理论的详细内容。

1. 正态分布正态分布是统计学中最常用的概率分布之一,也被称为高斯分布。

它具有许多特性,例如其形状对称、均值、方差决定了整个分布的特征等。

正态分布在统计学中的应用广泛,例如用于描述实际数据的分布情况、进行假设检验等。

2. t分布t分布是用于小样本情况下的概率分布。

在实际应用中,由于通常无法获得大样本数据,因此需要使用t分布进行统计推断。

t分布与正态分布有一定的关联,其形状与自由度有关。

在考研复习中,需要了解t分布的特性、应用以及与正态分布的关系。

3. 卡方分布卡方分布是用于分析分类数据的概率分布,常用于检验两个变量之间的独立性。

卡方分布的形状与自由度有关,自由度越大,分布越接近正态分布。

在考研复习中,需要掌握卡方分布的性质、应用以及与正态分布的关系。

4. F分布F分布是用于分析方差比较的概率分布,常用于方差分析等统计方法。

F分布的形状与两个自由度参数有关,具有右偏分布且不对称的特点。

在考研复习中,需要了解F分布的特性、应用以及与正态分布、卡方分布的关系。

5. 抽样与抽样分布抽样是指从总体中选取样本的过程,而抽样分布是指统计量在不同样本中的分布情况。

了解抽样与抽样分布非常重要,因为统计推断是建立在样本上的,而不是在总体上。

在考研复习中,需要掌握不同抽样方法的特点、抽样分布的基本概念以及与统计推断的应用。

总结:通过对常考的分布与抽样理论进行梳理,我们可以更好地理解统计学考研复习中的重要内容。

掌握分布与抽样理论,对于进行统计分析、假设检验以及进行统计推断非常重要。

在考研复习过程中,建议系统学习各个分布的特性、应用以及与其他分布的关系,同时理解抽样与抽样分布的基本概念和应用方法。

3 理论分布与抽样分布

3 理论分布与抽样分布

【例3.7】 已知u~N(0,1),试求: (1) P(u<-1.64)=?
(2) P (u≥2.58)=?
(3) P (|u|≥2.56)=? (4) P(0.34≤u<1.53) =?
(1) P(u<-1.64)=0.05050
(2) P (u≥2.58)=Φ(-2.58)=0.024940
加减不同倍数σ区间的概率)是经常用到的。
P(μ-σ≤x<μ+σ)= 0.6826
P(μ-2σ≤x<μ+2σ) = 0.9545 P (μ-3σ≤x<μ+3σ) = 0.9973
P (μ-1.96σ≤x<μ+1.96σ) = 0.95
P (μ-2.58σ≤x<μ+2.58σ)= 0.99
在数理统计分析中,不仅注意随机变量x落在平均数加减不 同倍数标准差区间(μ-kσ , μ+kσ)之内的概率,更关心的是x落在 此区间之外的概率。
二项分布---二项分布的定义及其特点
二项分布的应用条件: (1)各观察单位 只具有相互对立 的一种结果,如合格或不 合格, 生存或死亡等等,非此即彼; (2)已知发生某一结果 (如死亡) 的概率为p,其对立结果 的概率则为1-P=q,实际中要求p 是从大量观察中获得的比较 稳定的数值; (3)n次观察结果互相独立,即每个观察单位的观察结果不
P (-2.58≤u<2.58)=0.99
标准正态分布的三个常用概率如图示
u变量在上述区间以外取值的概率分别为: P(|u|≥1)=2Φ(-1)=1- P(-1≤u<1) =1-0.6826=0.3174 P(|u|≥2)=2Φ(-2) =1- P(-2≤u<2) =1-0.9545=0.0455 P(|u|≥3)=1-0.9973=0.0027 P(|u|≥1.96)=1-0.95=0.05 P(|u|≥2.58)=1-0.99=0.01

生物统计理论分布和抽样分布

生物统计理论分布和抽样分布

第四章理论分布和抽样分布一、基本概念1.必然事件:在同一组条件的实现下必然要发生的一类事件。

如人总是要死的,水在标准大气压下加热到100℃必然化为蒸汽。

P(A)=1。

2.不可能事件:在同一组条件的实现下必然不发生的一类事件。

如水在标准大气压下温度低于0℃不可能呈气态。

P(A)=0。

3.随机事件(偶然事件):在同一组条件的实现下可能发生,也可能不发生的一类事件。

如种子可能发芽,也可能不发芽;硬币抛上落下可能正面朝上,也可能反面朝上。

P(A)∈[0,1]。

4.频率a:假定在相似条件下重复进行同一类试验调查,事件A发生的次数a与总试验次数n的比称之。

如抛硬币,10次有7次朝上,a=7/10。

5.概率P:当试验总次数n逐渐增大时,事件A的频率愈来愈稳定地接近定值P,则事件A地概率为P。

6.小概率的实际不可能性原理:凡概率很小的事件(农业上一般指P<0.05的事件),在二、计算事件概率的法则1.和事件:C=A+B A:身高在1.65以下;B:身高在1.65~1.75之间;C:身高在1.75以下。

2.积事件:C=A×B A:身高在1.65以下;B:男同学;C:身高在1.65以下的男同学。

3. 互斥事件:A·B=V (V表示空集) A:小麦种子发芽;B:小麦种子不发芽。

4.对立事件:如果A+B是必然事件,即A+B=U(U为全集);而A·B=V,即A与B 是互斥事件,则称B为A的对立事件,B=A(补集),如上例发芽与不发芽。

5.完全事件:如A·B=V且A+B=U,则称A与B为完全事件系,如小麦发芽与不发芽就构成完全事件系。

6.对立事件的概率:A()1(A)=-P P7.互斥事件的概率加法:()(A)()P=+=+如身高小于1.60m的概率为(A)P A B P P B0.15;身高小于1.70m且大于等于1.60m的概率为()P B=0.62;则身高小于1.70m的概率()(A)()+=+=0.77P A B P P B8.独立事件的概率乘法:()(A)()P A B P P B=。

第二章 理论分布与抽样分布(二)

第二章 理论分布与抽样分布(二)

照正态分布计算的相应理论分布分位数的差(称为分位数的残差)作为纵坐标,把样本表现为直角坐
标系的散点,所描绘的图形。如果资料服从正态分布,残差散点基本在Y=0上下均匀分布。(分位数
的残差图)。
Detrended Normal P-P Plot of 血清总胆固醇
.08
Detrended Normal Q-Q Plot of 血清总胆固醇
34
4. 探索分析
➢结果分析
35
4. 探索分析
➢结果分析
M估计值
36
4. 探索分析
➢结果分析
分别利用Kolmogorov-Smimov检验和Shapiro-Wilk检验两种方法来确 定变量是否服从正态分布。其中,Statistic表示检验统计量的值,df 代表自由度,Sig.表示显著性水平。一般来说,Sig.>0.05则代表接受 零假设,即接受变量服从正态分布的假设。本例中,两个变量的两 种方法的Sig.值均大于0.05,因此两个变量均服从正态分布。
7
2 频数分析
频数分析过程的操作界面
(4)Statistics按钮 单击该按钮会弹出新的对话框,该对话框主要用于确定将要在输出结果 中出现的统计量,选中统计量前的复选框表示输出该统计量。 (5)Charts按钮 用于确定将输出的图形类型和图形取值。 (6)Format按钮 定义输出频数表的格式
8
2 频数分析
4
1.基本描述性统计量的定义及计算
描述离散趋势的统计量 ✓ 样本方差(Variance) ✓ 样本标准差(Std. deviation) ✓ 极差(Range) ✓ 均值标准误差(Standard Error of Mean) 描述总体分布形态的统计量 ✓ 偏度(Skewness) ✓ 峰度(Kurtosis)

理论分布与抽样分布

理论分布与抽样分布

统计学证明,服从二项分布B(n,p)旳随
机变量之平均数μ、原则差σ与参数n、p有
如下关系:(即次数平均数、原则差)
当试验成果以事件A发生次数k表达时
μ=np
σ2= npq
(3-7)
σ= npq
当试验成果以事件A发生旳频率k/n或
百分数表达时(即样本平均数、原则差)
p p ( pq) / n
xpx qnx
n
x0
c c c
0 6
0.850
0.156
1 6
0.851
0.155
2 6
0.852
0.154
c c
3 6
0.853
0.153
4 6
0.854
0.152
0.22350
二项分布旳应用条件有3点:
(1) 一对互斥事件 (2) (p+q=1),P是稳定值。 (3) n次成果相互独立
1.1.4二项分布旳平均数与原则差
由图2-6做100听罐头净重资料旳频率分 布直方图 ,能够设想 ,假如样本取得越来 越大(n→+∞),组分得越来越细(i→0),某一 范围内旳频率将趋近于一种稳定值 ── 概率。 这时 , 频率分布直方图各个直方上端中点 旳联线 ── 频率分布折线将逐渐趋向于正态 分布曲线。
上一张 下一张 主 页 退 出
(1)随机单位时间和单位空间旳稀有事件; (2)在n→∞,p→0, 且 n p =λ(较小常数)情 况下 ,二项分布 趋于泊松分布; (3)每次试验成果相互独立。 对于在单位时 间、单位面积或单位容积内,所观察旳事物 因为某些原因分布不随机时,不是泊松分布。 (Such as contagion, Bacteria Group in milk)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若记体重概率分布密度函
数为f(x),则x取值于区间
[a,b)的概率为图中阴影
部分的面积,即
b
P(a≤x<b)=
f (x)dx a
上式为连续型随机变量 x
在 区间[a,b)上取值概率
的表达式。可见,连续型
随机变量的概率由概率分
布密度函数确定。
理论分布与抽样分布
1.3连续型随机变量的概率分布
连续型随机变量概率分布的性质:
理论分布与抽样分布
1.3连续型随机变量的概率分布
126头基础母羊的体重的次数分布表
组别
组中值 次数(f)
图中纵坐标取频率与组距
36.0
37.5
1
的比值 。可以设想 ,如
39.0
40.5
1
果样本取得越来越大
42.0
43.5
6
(n→+∞),组分得越来越
45.0
46.5
18
细(i→0),某一范围内的
理论分布与抽样分布
2.1贝努力试验及其概率公式
在n重贝努利试验中,事件 A 可能发生0,1, 2,…,n次,现在我们来求事件 A 恰好发生k (0≤k≤n) 次的概率 Байду номын сангаасn(k) 。
先取n=4,k=2来讨论。在4次试验中,事件A发 生2次的方式有以下 C 42种:
A1A2 A3A4
A1 A2 A3 A4
1、分布密度函数总是大于或等于0,即 f(x)≥0;
2、当随机变量x取某一特定值时,其概率等于0;即
c
P(xc) f(x)dx0
(c为任意实数)
c
3、 在一次试验中 随机变量 x 之取值必在[-∞, +∞]
范围内,为一必然事件。所以
P ( x ) f(x)dx 1
上式表示分布密度曲线理论下分布、与抽横样分轴布 上的全部面积为1。
第三章 理论分布与抽样分布
1、概率分布 4、正态分布
2、二项分布 5、抽样分布
3、泊松分布
理论分布与抽样分布
1 概率分布
事件的概率表示了一次试验某一个结果发生的可能性
大小。若要全面了解试验,则必须知道试验的全部可
能结果及各种可能结果发生的概率,即必须知道随机
试验的概率分布(probability distribution)。为了深入研
结果是“0头治愈”、“1头治愈”、“2头治愈”、“…”、
“100头治愈”。若用 x 表示治愈头数,则x 的取值为0、
1、2、…、100。
理论分布与抽样分布
1.1 随机变量
【例3.4】 孵化一枚种蛋可能结果只有两种,即“孵 出小鸡”与“未孵出小鸡”。 若用变量 x 表示试验的两 种结果,则可令x=0表示“未孵出小鸡”,x=1表示“孵 出小鸡”。
A1A2 A3 A4
A1A2A3A4
A A A A A A A A 1 理2论分布3与抽4样分布
12 34
2.1贝努力试验及其概率公式
其中Ak(k=1,2,3,4)表示事件A在第k次试验发生;
如果表示试验结果的变量 x ,其可能取值为某范围内
的任何数值 ,且 x 在其取值范围内的任一区间中取 值时,其概率是确定的,则称 x 为 连续型随机变量 (continuous random variable)。
理论分布与抽样分布
1.2离散型随机变量的概率分布
要了解离散型随机变量 x 的统计规律,就必须知道它 的一切可能值xi及取每种可能值的概率pi。
究随机试验 ,我 们 先引入随机变量(random variable)
的概念。
理论分布与抽样分布
1.1 随机变量
作一次试验,其结果有多种可能。每一种可能结果都 可用一个数来表示,把这些数作为变量 x 的取值范围, 则试验结果可用变量 x 来表示。
【例3.3】 对100头病畜用某种药物进行治疗,其可能
48.0
49.5
51.0
52.5
26 27
频率将趋近于一个稳定值
54.0
55.5
26
─概率。这时,频率分布
57.0
58.5
12
直方图各个直方上端中点
60.0
61.5
7
的联线 ─频率分布折线将
63.0
64.5
合计
2
逐渐趋向于一条曲线。
126
理论分布与抽样分布
1.3连续型随机变量的概率分布
x1 x2 … xn …. p1 p2 … pn …
显然,离散型随机变量的概率分布具有以下 两个基本性质:
1. pi≥0 2. Σpi=1
理论分布与抽样分布
1.3连续型随机变量的概率分布
连续型随机变量 (如体长、体重、蛋重)的概 率分布不能用分布列来表示,因为其可能取 的值是不可数的。我们改用随机变量 x 在某 个区间内取值的概率 P(a≤x<b) 来表示。下面 通过频率分布密度曲线予以说明。
2 二项分布
2.1 贝努利试验及其概率公式
将某随机试验重复进行n次,若各次试验结果
互不影响 , 即每次试验结果出现的概率都不
依赖于其它各次试验的结果,则称这n次试验
是独立的。
理论分布与抽样分布
2.1贝努力试验及其概率公式
对于n次独立的试验,如果每次试验结果出现 且只出现对立事件A与 A 之一,在每次试验中 出现A的概率是常数 p (0<p<1) , 因而出现对 立事件 A 的概率是1-p=q,则称这一串重复的 独立试验为n重贝努利试验,简称贝努利试验 (Bernoulli trials )。
【例3.5】 测定某品种猪初生重,表示测定结果变量 x 所取的值为一个特定范围(a,b),如0.5―1.5kg,x值 可以是这个范围内的任何实数。
理论分布与抽样分布
1.1 随机变量
如果表示试验结果的变量 x,其可能取值至多为可列 个,且以各种确定的概率取这些不同的值,则 称 x 为离散型随机变量 ( discrete random variable);
换句话说,当n→+∞、i→0时,频率分布折 线的极限是一条稳定的函数曲线。 对于样本 是取自连续型随机变量的情况 ,这条函数曲 线将是光滑的。这条曲线排除了抽样和测量 的误差,完全反映了基础母羊体重的变动规 律。这条曲线叫概率分布密度曲线,相应的 函数叫 概率分布密度函数 。
理论分布与抽样分布
1.3连续型随机变量的概率分布
如果我们将离散型随机变量 x 的一切可能取值xi ( i=1, 2 , … ),及其对应的概率pi,记作 P(x=xi)=pi i=1,2,…
则称上式为离散型随机变量 x 的概率分布或分布。常 用分布列 (distribution series)来表示离散型随机变量:
理论分布与抽样分布
1.2离散型随机变量的概率分布
相关文档
最新文档