大学物理静电场试题库
大学物理静电场练习题带标准答案

大学物理静电场练习题带答案————————————————————————————————作者:————————————————————————————————日期:大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。
试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。
A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。
求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。
A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr)(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
3大学物理习题-静电场

3大学物理习题-静电场静电场一、选择题1.一带电体可作为点电荷处理的条件是(A)电荷必须呈球形分布;(B)带电体的线度很小;(C)带电体的线度与其它有关长度相比可忽略不计;(D)电量很小。
2.真空中有两个点电荷M、N,相互间作用力为F,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力F(A)大小不变,方向改变;(B)大小改变,方向不变;(C)大小和方向都不变;(D)大小和方向都改变。
3.下列几种说法中哪一个是正确的(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;F(C)场强方向可由E定义给出,其中q为试验电荷的电量,q可正、可负,F为试验q电荷所受的电场力;(D)以上说法都不正确。
4.一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A)F0,M0;(B)F0,M0;(C)F0,M0;(D)F0,M0。
5.一电场强度为E的均匀电场,E的方向与某轴正向平行,如图所示,则通过图中一半径为R的半球面的电场强度通量为(A)R2E;(B)O第题图1R2E;(C)2R2E;(D)0。
2E某6.如图所示,一个带电量为q的点电荷位于立方体的度通量等于:(A)A角上,则通过侧面abcd的电场强12060A·qb图2404807.下列说法正确的是c(A)闭合曲面上各点的电场强度都为零,曲面内一定没有电荷;(B)闭合曲面上各点的电场强度都为零,曲面内电荷代数和必定为零;(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零;(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。
8.电场中高斯面上各点的电场强度是由:(A)分布在高斯面上的电荷决定的;(B)分布在高斯面外的电荷决定的;(C)空间所有的电荷决定的;(D)高斯面内电荷代数和决定的。
9.根据高斯定理的数学表达式EdSSq/0可知下述各种说法中,正确的是:(A)闭合面内的电荷代数和为零时,闭合面上各点场强一定为零;(B)闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零;(C)闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零;(D)闭合面上各点场强均为零时,闭合面内一定处处无电荷;10.已知一高斯面所包围的体积内电量代数和qi0,则可肯定:(A)高斯面上各点场强均为零;(B)穿过高斯面上每一面元的电通量均为零;(C)穿过整个高斯面的电通量为零;(D)以上说法都不对。
大学物理静电场练习题带答案

大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O指向球形空腔球心O'的矢量用a表示。
试证明球形空腔中任一点电场强度为 .A、3ρεa B、ρεaC、2ρεa D、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R.试求环中心O点处的场强A、2πRλε- B、πRλε-C、00ln22π4λλεε+ D、00ln2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。
A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。
求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。
A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
6、在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面: (A )高斯定理成立,且可用它求出闭合面上各点的场强;(B )高斯定理成立,但不能用它求出闭合面上各点的场强; (C )由于电介质不对称分布,高斯定理不成立; (D )即使电介质对称分布,高斯定理也不成立。
《大学物理》静电场习题

1
a r
2
例2 有一瓦楞状直长均匀带电薄板,面电荷 密度为σ,瓦楞的圆半径为 a 试求:轴线中部一 点P 处的电场强度。
a
P. L
解:
y
q dq o
x dqσ L
a
q dE
dl
dq L s dS s Ldl
s dl
E dE
=ρd 1S
0
E2
ε E2
=
ρd 1
20
1.0×10-4×0.3×10-2 = 2×8.85×10-12
=1.69×104 V/m
E3 S
d
d
ρ
(3)
E3
ρd S
ε E3S + E3S = 0
ε E3
=
ρd
20
1.0×10-4×0.5×10-2 = 2×8.85×10-12
=2.83×104 V/m
dx d
7-19 一层厚度为d =0.5cm的无限大平板,均 匀带电,电荷体密度为ρ =1.0×10-4 C/m3 。求: (1)这薄层中央的电场强度; (2)薄层内与其表面相距0.1cm处的电场强
度; (3)薄层外的电场强度。
ρd
解:(1) E1=0
E2
S d1ρ d
ε (2)
E2S
+ E2S
cosq
π
0
=πσε0
=-2.4V/m
例1 设气体放电形成的等离子体在圆柱内的 电荷分布可用下式表示
r
1
0
r a
2
2
式中r是到圆柱轴线的距离, ρ0是轴线处的电 荷体密度,a 是常量。试计算其场强分布。
大学物理:静电场练习题

由对称性可知 U p 0
l
l
l
0
12
的均匀电场!
练: 真空中一半径为R的均匀带电球面,总电量为 Q(Q > 0)。今在球面上挖去非常小块的面积
ΔS (连同电荷), 且假设
不影响原来的电荷分布, 则挖去ΔS后球心处电场
R
O
S
强度的大小E= QS /(16 2 0 R 4 )
其方向为 由圆心O点指向S
解:由场强叠加原理,挖去S 后的电场可以看作
和Φ2 ,通过整个球面的电场强度通量为 ΦS ,则
(C) (A) Φ1 Φ2 , ΦS q / 0
S2
q S1 q
O a 2a X
(B)Φ1 Φ2 , ΦS 2q / 0
(C) Φ1 Φ2 , ΦS q / 0
(D) Φ1 Φ2 , ΦS q / 0
解:由高斯定理 ΦS q / 0
(D) 0
解:过P点作如图同轴圆柱形高斯面S,由高斯定理
SE dS 2rlE 0
R1
所以E=0。
l
2
1 R2O r P
4. 有两个点电荷电量都是 +q, 相距为2a。今以左边的
点电荷所在处为球心,以a为半径作一球形高斯面,
在球面上取两块相等的小面积 S1 和 S2 , 其位置如图 所示。设通过 S1 和 S 2 的电场强度通量分别为 Φ1
2. 上半部带正电,下半部带负电,线密度为
3. 非均匀带电,线密度为 0sin
y
dq
d o
x
R
dE
思路:叠加法
dq dE E
解:1)
dq Rd
dE
dq
4 0 R 2
;沿径向
大学物理静电场练习题及答案

练习题7-1 两个点电荷所带电荷之和为Q ,它们各带电荷为多少时,相互间的作用力最大?解: 这是一个条件极值问题。
设其中一个点电荷带电q ,则另一个点电荷带电q Q -, 两点电荷之间的库仑力为()241r qq Q F -=πε由极值条件0d d =q F,得Q q 21=又因为202221d d r q F πε-=<0这表明两电荷平分电荷Q 时,它们之间的相互作用力最大。
7-2 两个相同的小球,质量都是m ,带等值同号的电荷q ,各用长为l 的细线挂在同一点,如图7-43所示。
设平衡时两线间夹角2θ很小。
(1)试证平衡时有下列的近似等式成立:31022⎪⎪⎭⎫⎝⎛=mg l q x πε式中x 为两球平衡时的距离。
(2)如果l = 1.20 m ,m =10 g ,x =5.0 cm ,则每个小球上的电荷量q 是多少?(3)如果每个球以-19s C 1001⋅⨯-.的变化率失去电 图7-43 练习题7-2图 荷,求两球彼此趋近的瞬时相对速率d x /d t 是多少? 解:(1)带电小球受力分析如图解所示。
小球平衡时,有FT =θsinmg T =θcos由此二式可得mgF =θtan因为θ很小,可有()l x 2tan ≈θ,再考虑到2024x q F πε=可解得31022⎪⎪⎭⎫ ⎝⎛=mg l q x πε(2)由上式解出C 10382282130-⨯±=⎪⎪⎭⎫⎝⎛±=.l mgx q πε (3) 由于tq q x t q q mg l t x d d 32d d 322d d 31310=⎪⎪⎭⎫ ⎝⎛==-πευ 带入数据解得-13s m 10401⋅⨯=-.υ合力的大小为2222201222412cos 2⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+⋅⋅===d x x d x e F F F x πεθ()23222043241dx xe +=πε令0d d =x F ,即有()()0482341825222232202=⎥⎥⎦⎤⎢⎢⎣⎡+⋅-+d x x d x e πε 由此解得α粒子受力最大的位置为22d x ±=7-4 由相距较近的等量异号电荷组成的体系称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为许多电偶极子的集合。
大学物理静电学试题库及答案

一、选择题:(每题3分)1、 在坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零?(A) x 轴上x >1.(B) x 轴上0<x <1.(C) x 轴上x <0. (D) y 轴上y >0.(E) y 轴上y <0.[ ]2、一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零.(C) 处处不为零. (D) 无法判定 .[]3、在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206a Qεπ.(C) 203a Q επ. (D) 20a Qεπ. [ ]4、电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图放置,则其x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]σ(D)5、设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ](B)x6、设有一“无限大”均匀带负电荷的平面.取x 轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]7、关于电场强度定义式0/q F E=,下列说法中哪个是正确的?(A) 场强E 的大小与试探电荷q 0的大小成反比.(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变.(C) 试探电荷受力F 的方向就是场强E的方向.(D) 若场中某点不放试探电荷q 0,则F =0,从而E=0. [ ]8、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大.(B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]9、下面列出的真空中静电场的场强公式,其中哪个是正确的? (A) 点电荷q 的电场:204rq E επ=.(r 为点电荷到场点的距离)(B) “无限长”均匀带电直线(电荷线密度λ)的电场:r r E302ελπ=(r为带电直线到场点的垂直于直线的矢量)(C) “无限大”均匀带电平面(电荷面密度σ)的电场:02εσ=E(D) 半径为R 的均匀带电球面(电荷面密度σ)外的电场:r rR E302εσ= (r为球心到场点的矢量)10、下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同.(C) 场强可由q F E /=定出,其中q 为试验电荷,q 可正、可负,F试验电荷所受的电场力.P 0(D) 以上说法都不正确. [ ]11、一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2. (C) 2πR2E . (D) 0. []12、已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定:(A) 高斯面上各点场强均为零. (B) 穿过高斯面上每一面元的电场强度通量均为零.(C) 穿过整个高斯面的电场强度通量为零. (D) 以上说法都不对. [ ]13、一点电荷,放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化:(A) 将另一点电荷放在高斯面外. (B) 将另一点电荷放进高斯面内. (C) 将球心处的点电荷移开,但仍在高斯面内.(D) 将高斯面半径缩小. [ ]14、点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]15、半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:[ ]qE O r (D) E ∝1/r 216、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为: [ ]17、半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]18、半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R 处的电场强度大小为:(A)εσ. (B) 02εσ.(C) 04εσ. (D) 08εσ. [ ]19、高斯定理⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场.(B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ] 20、根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. [ ]21、关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷. (B) 如果高斯面内无电荷,则高斯面上E处处为零. (C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零. [ ]22、如图所示,两个同心均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在外球面外面、距离球心为r 处的P 点的场强大小E 为:(A)20214rQ Q επ+. (B)()()2202210144R r Q R r Q -π+-πεε. (C) ()2120214R R Q Q -π+ε. (D) 2024r Q επ. [ ]23、 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A)r0212ελλπ+.(B) ()()20210122R r R r -π+-πελελ.(C) ()20212R r -π+ελλ. (D) 20210122R R ελελπ+π. [ ]24、A 和B 为两个均匀带电球体,A 带电荷+q ,B 带电荷-q ,作一与A 同心的球面S 为高斯面,如图所示.则(A) 通过S 面的电场强度通量为零,S 面上各点的场强为零.(B) 通过S 面的电场强度通量为q / ε0,S 面上场强的大小为20π4rqE ε=.(C) 通过S 面的电场强度通量为(- q ) / ε0,S 面上场强的大小为20π4rqE ε=. (D) 通过S 面的电场强度通量为q / ε0,但S 面上各点的场强不能直接由高斯定理求出. [ ]25、在空间有一非均匀电场,其电场线分布如图所示.在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元∆S 的电场强度通量为∆Φe ,则通过该球面其余部分的电场强度通量为(A) - ∆Φe . (B)e SR Φ∆∆π24. (C) e SSR Φ∆∆∆-π24. (D) 0.[ ]26、半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为: [ ]27、静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ ]28、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷. (B) 顶点a 、b 处是正电荷,c 、d 处是负电荷. (C) 顶点a 、c 处是正电荷,b 、d 处是负电荷. (D) 顶点a 、b 、c 、d 处都是负电荷. [ ] 29、如图所示,边长为 0.3 m 的正三角形abc ,在顶点a 处有一电荷为10-8 C 的正点电荷,顶点b 处有一电荷为-10-8 C 的负点电荷,则顶点c 处的电场强度的大小E 和电势U 为: (41επ=9×10-9 N m /C 2)(A) E =0,U =0. (B) E =1000 V/m ,U =0.(C) E =1000 V/m ,U =600 V .(D) E =2000 V/m ,U =600 V . [ ]30、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,R Q U 04επ=.(C) 204r Q E επ=,r Q U 04επ= . (D) 204r Q E επ=,RQU 04επ=. [ ]31、关于静电场中某点电势值的正负,下列说法中正确的是:E O r (A) E ∝1/rb a(A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.(D) 电势值的正负取决于产生电场的电荷的正负. [ ]32、在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为:(A)aQ 034επ .(B) a Q032επ.(C) a Q 06επ. (D) aQ012επ . [ ]33、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带正电球面.(B) 半径为R 的均匀带正电球体. (C) 正点电荷.(D) 负点电荷. [ ]34、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带负电球面. (B) 半径为R 的均匀带负电球体. (C) 正点电荷. (D) 负点电荷. [ ]35、一半径为R 的均匀带电球面,带有电荷Q .若规定该球面上的电势值为零,则无限远处的电势将等于 (A)R Q0π4ε. (B) 0.(C) RQ0π4ε-. (D) ∞. [ ]36、 真空中有一点电荷Q ,在与它相距为r 的a 点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示.则电场力对q 作功为(A)24220r r Qq π⋅πε. (B) r r Qq 2420επ. (C) r rQqππ204ε. (D) 0. [ ]37、点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大.(C) 从A到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. []38、如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q从无穷远处移到三角形的中心O 处,外力所作的功为:(A) a qQ023επ . (B) aqQ 03επ.(C)a qQ 0233επ. (D) aqQ032επ. [ ]39、在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于 (A) P 1和P 2两点的位置. (B) P 1和P 2两点处的电场强度的大小和方向. (C) 试验电荷所带电荷的正负.(D) 试验电荷的电荷大小. [ ]40、如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ]41、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N . (C) 电势能W M <W N . (D) 电场力的功A >0.[ ]42、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M >E N . (B) 电势U M >U N . (C) 电势能W M <W N . (D) 电场力的功A >0.[ ]43、在电荷为-Q 的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点.a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图所示.则移动过程中电场力做的功为 Aq2q- r(A)⎪⎪⎭⎫ ⎝⎛-π-210114r r Qε. (B) ⎪⎪⎭⎫⎝⎛-π210114r r qQ ε. (C) ⎪⎪⎭⎫⎝⎛-π-210114r r qQ ε. (D) ()1204r r qQ -π-ε [ ]44、带有电荷-q 的一个质点垂直射入开有小孔的两带电平行板之间,如图所示.两平行板之间的电势差为U ,距离为d ,则此带电质点通过电场后它的动能增量等于(A) dqU-. (B) +qU .(C) -qU . (D) qU 21. [ ]45、在匀强电场中,将一负电荷从A 移到B ,如图所示.则: (A) 电场力作正功,负电荷的电势能减少. (B) 电场力作正功,负电荷的电势能增加. (C) 电场力作负功,负电荷的电势能减少.(D) 电场力作负功,负电荷的电势能增加. [ ]46、 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:(A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ ]47、电子的质量为m e ,电荷为-e ,绕静止的氢原子核(即质子)作半径为r 的匀速率圆周运动,则电子的速率为 (A) k r m ee . (B) rm ke e . (C) r m k ee 2. (D) rm ke e 2. (式中k =1 / (4πε0) )[ ]48、质量均为m ,相距为r 1的两个电子,由静止开始在电力作用下(忽略重力作用)运动至相距为r 2,此时每一个电子的速率为 (A)⎪⎪⎭⎫⎝⎛-21112r r m ke . (B) ⎪⎪⎭⎫⎝⎛-21112r r m ke . (C) ⎪⎪⎭⎫ ⎝⎛-21112r r m k e . (D) ⎪⎪⎭⎫⎝⎛-2111r r m k e (式中k =1 / (4πε0) ) [ ]49、相距为r 1的两个电子,在重力可忽略的情况下由静止开始运动到相距为r 2,从相距r 1到-q dO U-BE相距r 2期间,两电子系统的下列哪一个量是不变的? (A) 动能总和; (B) 电势能总和;(C) 动量总和; (D) 电相互作用力. [ ]50、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A) F =0,M = 0. (B) F = 0,M≠0.(C) F ≠0,M =0. (D) F ≠0,M≠0. [ ]51、真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ ]52、设有一带电油滴,处在带电的水平放置的大平行金属板之间保持稳定,如图所示.若油滴获得了附加的负电荷,为了继续使油滴保持稳定,应采取下面哪个措施?(A) 使两金属板相互靠近些.(B) 改变两极板上电荷的正负极性.(C) 使油滴离正极板远一些.(D) 减小两板间的电势差. [ ]53、正方形的两对角上,各置电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为(A) Q =-22q . (B) Q =-2q .(C) Q =-4q . (D) Q =-2q . [ ]54、电荷之比为1∶3∶5的三个带同号电荷的小球A 、B 、C ,保持在一条直线上,相互间距离比小球直径大得多.若固定A 、C 不动,改变B的位置使B 所受电场力为零时,AB 与BC 的比值为(A) 5. (B) 1/5.(C)5. (D) 1/5. [ ]55、面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) Sq 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ]56、充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系是:(A) F ∝U . (B) F ∝1/U .(C) F ∝1/U 2. (D) F ∝U 2. [ ]-+57、 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则(A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小. (C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ]58、关于高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零. (B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]59、关于静电场中的电位移线,下列说法中,哪一个是正确的? (A) 起自正电荷,止于负电荷,不形成闭合线,不中断. (B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交. (D) 电位移线只出现在有电介质的空间. [ ]60、两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ]二、填空题(每题4分)61、静电场中某点的电场强度,其大小和方向与__________________________________________________________________相同.62、电荷为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,则该点的电场强度大小为_____________________,方向____________.63、静电场场强的叠加原理的内容是:_________________________________________________________________________________________________________________________________________________________________.q 0P64、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰∙S Ed 的值仅取决于 ,而与 无关.65、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的 电场强度通量为__________________.66、电荷分别为q 1和q 2的两个点电荷单独在空间各点产生的静电场强分别为1E 和2E,空间各点总场强为E =1E +2E.现在作一封闭曲面S ,如图所示,则以下两式分别给出通过S 的电场强度通量 ⎰⋅S E d 1=______________________________,⎰⋅S Ed =________________________________.67、一面积为S 的平面,放在场强为E 的均匀电场中,已知 E与平面间的夹角为 θ(<π/2),则通过该平面的电场强度通量的数值Φe =______________________.68、如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量⎰⋅SS E d =_____________,式中E为_________________处的场强.69、一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r表示从球心引出的矢径):()r E=______________________(r <R ),()r E=______________________(r >R ).70、一半径为R 的“无限长”均匀带电圆柱面,其电荷面密度为σ.该圆柱面内、外场强分布为(r表示在垂直于圆柱面的平面上,从轴线处引出的矢径):()r E=______________________(r <R ),()r E=______________________(r >R ).71、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别是:Φ1=________,Φ2=___________,Φ3=__________72、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰∙S Ed 的值仅取决于 ,而与 无关.73、一闭合面包围着一个电偶极子,则通过此闭合面的电场强度通量Φe =_________________.74、图中曲线表示一种球对称性静电场的电势分布,r表示离对称中心的距离.这是____________________________________________的电场.75、一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零点,则该球面上的电势U =____________________.76、电荷分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势U =___________ .77、描述静电场性质的两个基本物理量是______________;它们的定义式是________________和__________________________________________.78、静电场中某点的电势,其数值等于______________________________ 或_______________________________________.79、一点电荷q =10-9 C ,A 、B 、C 三点分别距离该点电荷10 cm 、20 cm 、30 cm .若选B 点的电势为零,则A 点的电势为______________,C 点的电势为________________.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)80、电荷为-Q 的点电荷,置于圆心O 处,b 、c 、d 为同一圆周上的不同点,如图所示.现将试验电荷+q 0从图中a 点分别沿ab 、ac 、ad 路径移到相应的b 、c 、d 各点,设移动过程中电场力所作的功分别用A 1、1 23q 13qbA 2、A 3表示,则三者的大小的关系是______________________.(填>,<,=)81、如图所示,在一个点电荷的电场中分别作三个电势不同的等势面A ,B ,C .已知U A >U B >U C ,且U A -U B =U B -U C ,则相邻两等势面之间的距离的关系是:R B -R A ______ R C -R B . (填<,=,>)82、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e =________________________.83、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b点,外力所作的功A =______________.84、真空中电荷分别为q 1和q 2的两个点电荷,当它们相距为r 时,该电荷系统的相互作用电势能W =________________.(设当两个点电荷相距无穷远时电势能为零)85、在静电场中,一质子(带电荷e =1.6×10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0×10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =____________________.设A 点电势为零,则B 点电势U =____________________.86、静电力作功的特点是________________________________________________________________________________,因而静电力属于_________________力.87、静电场的环路定理的数学表示式为:______________________.该式的物理意义是:__________________________________________________________________________________________________________.该定理表明,静电场是____________________________________场.88、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距rA处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e =________________________.89、 图示为某静电场的等势面图,在图中画出该电场的电场线.90、图中所示以O 为心的各圆弧为静电场的等势(位)线图,已知U 1<U 2<U 3,在图上画出a 、b 两点的电场强度的方向,并 比较它们的大小.E a ________ E b (填<、=、>).91、一质量为m ,电荷为q 的粒子,从电势为U A 的A 点,在电场力作用下运动到电势为U B 的B 点.若粒子到达B 点时的速率为v B ,则它在A 点时的速率v A=___________________________.92、一质量为m 、电荷为q 的小球,在电场力作用下,从电势为U 的a 点,移动到电势为零的b 点.若已知小球在b 点的速率为v b ,则小球在a 点的速率v a= ______________________.93、一质子和一α粒子进入到同一电场中,两者的加速度之比,a p ∶a α=________________.94、带有N 个电子的一个油滴,其质量为m ,电子的电荷大小为e .在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为__________________,大小为_____________.OU U95、在静电场中有一立方形均匀导体,边长为a .已知立方导体中心O 处的电势为U 0,则立方体顶点A 的电势为____________. 96、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.97、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势 ______________.(填增大、不变、减小)98、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' =________________ .99、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.100、A 、B 两个导体球,相距甚远,因此均可看成是孤立的.其中A 球原来带电,B 球不带电,现用一根细长导线将两球连接,则球上分配的电荷与球半径成______比.101、如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为: 内表面___________ ; 外表面___________ .102、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增大、不变、减小)103、一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =______________.104、一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =______________.105、一平行板电容器,上极板带正电,下极板带负电,其间充满相对介电常量为εr = 2的各向同性均匀电介质,如图所示.在图上大致画出电介质内任一点P 处自由电荷产生的场强 0E, 束缚电荷产生的场强E '和总场强E.106、两个点电荷在真空中相距d 1 = 7 cm 时的相互作用力与在煤油中相距d 2 = 5cm时的相互作用力相等,则煤油的相对介电常量εr =___________________.107、如图所示,平行板电容器中充有各向同性均匀电介质.图中画出两组带有箭头的线分别表示电场线、电位移线.则其中(1)为__________________线,(2)为__________________线.108、一个半径为R 的薄金属球壳,带有电荷q ,壳内充满相对介电常量为εr 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U = ________________________________.109、一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.110、一个半径为R 的薄金属球壳,带有电荷q ,壳内真空,壳外是无限大的相对介电常量为εr 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U =____________________________.111、一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场能量是原来的___________ 倍.112、一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常(1)(2)量为εr的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的_________倍;电场能量是原来的_________倍.113、在相对介电常量为εr的各向同性的电介质中,电位移矢量与场强之间的关系是___________________ .114、分子的正负电荷中心重合的电介质叫做_______________ 电介质.在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.115、一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.116、一平行板电容器充电后切断电源,若使二极板间距离增加,则二极板间场强_________________,电容____________________.(填增大或减小或不变) 117、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.118、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.119、两个空气电容器1和2,并联后接在电压恒定的直流Array电源上,如图所示.今有一块各向同性均匀电介质板缓慢地插入电容器1中,则电容器组的总电荷将__________,电容器组储存的电能将__________.(填增大,减小或不变)120、真空中均匀带电的球面和球体,如果两者的半径和总电荷都相等,则带电球面的电场能量W1与带电球体的电场能量W2相比,W1________ W2 (填<、=、>).三、计算题:(每题10分)121、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.122、用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O 点的电场强度.123、如图所示,一长为10 cm 的均匀带正电细杆,其电荷为1.5×10-8 C ,试求在杆的延长线上距杆的端点5 cm 处的P 点的电场强度.(41επ=9×109 N ·m 2/C 2 )124、真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:Ex =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量125、真空中有一半径为R 的圆平面.在通过圆心O 与平面垂直的轴线上一点P 处,有一电荷为q 的点电荷.O 、P 间距离为h ,如图所示.试求通过该圆平面的电场强度通量.126、若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2 / N ·m 2 )127、如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?128、一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?Lq PqdEq。
大学物理-静电场(一)(带答案)

一、库仑定律和电场力1.关于摩擦一物体后,物体呈现正电性的一种解释是:在摩擦过程中,[ ]A.物体获得了中子。
B.物体获得了质子。
C.物体失去了电子。
D.物体失去了中子。
【答案】:C2.两条平行的无限长直均匀带电线,相距为d,线电荷密度分别为±λ,若已知一无限长均匀带电直线的场强分布为λ2πε0r方向垂直于带电直线,则其中一带电直线上的单位长度电荷受到另一带电直线的静电作用力大小为[ ]A.λ24πε0d2B.λ24πε0dC.λ22πε0d2D.λ22πε0d【答案】:D3.关于电荷与电场,有下列几种说法,其中正确的是[]A.点电荷的附近空间一定存在电场;B.电荷间的相互作用与电场无关;C.若电荷在电场中某点受到的电场力很大,则表明该点的电场强度一定很大;D.在某一点电荷附近的任一点,若没放试验电荷,则该点的电场强度为零。
【答案】:A4. 两个静止不动的点电荷的带电总量为2q,为使它们间的排斥力最大,各自所带的电荷量分别为[]A.q2,3q 2B.q3,5q 3C.q,qD.−q2,5q 2【答案】:C5.关于电场力和电场强度,有下列几种说法,其中正确的是[]A.静电场的库仑力的叠加原理和电场强度的叠加原理彼此独立、没有联系;B.两静止点电荷之间的相互作用力遵守牛顿第三定律;C.在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同;D.以上说法都不正确。
【答案】:B6.—点电荷对放在相距d处的另一个点电荷的作用力为F,若两点电荷之间的距离减小一半,此时它们之间的静电力为[ ]A.4FB.2FC.0.5FD.0.25F【答案】:A7.如图所示为一竖直放置的无穷大平板,其上均匀分布着面电荷密度为σ的正电荷,周围激发的电场强度大小为σ2ε0,方向沿水平方向向外且垂直于平板。
在其附近有一水平放置的、长度为l的均匀带电直线,直线与平板垂直,其线电荷密度为λ,则该带电直线所受到的电场力大小为[ ]A.σλ2πε0ln lB.σλ2ε0ln lC.σλl2πε0D.σλl2ε0【答案】:D8.质量为m、电荷为-e的电子以圆轨道绕静止的氢原子核旋转,其轨道半径为r,旋转频率为γ,动能为E,则下列几种关系中正确的是[]A.E=e8πε0rB.γ2=32ε02E3me4C.E=e 24πε0rD.γ2=32ε0E3me2【答案】:B9.电偶极子在非均匀电场中的运动状态[ ]A.只可能有转动运动;B.不可能有转动运动;C.只可能有平动运动;D.既可能有转动运动,也可能有平动运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真空中的静电场 一、选择题1、下列关于高斯定理的说法正确的是(A ) A 如果高斯面上E 处处为零,则面内未必无电荷。
B 如果高斯面上E 处处不为零,则面内必有静电荷。
C 如果高斯面内无电荷,则高斯面上E 处处为零。
D 如果高斯面内有净电荷,则高斯面上E 处处不为零。
2、以下说法哪一种是正确的(B )A 电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B 电场中某点电场强度的方向可由0q FE =确定,其中0q 为试验电荷的电荷量,0q 可正可负,F 为试验电荷所受的电场力C 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D 以上说法都不正确 3、如图所示,有两个电 2、 下列说法正确的是(D )A 电场强度为零处,电势一定为零。
电势为零处,电场强度一定为零。
B 电势较高处电场强度一定较大,电场强度较小处电势一定较低。
C 带正电的物体电势一定为正,带负电的物体电势一定为负。
D 静电场中任一导体上电势一定处处相等。
3、点电荷q 位于金属球壳中心,球壳内外半径分别为21,R R ,所带静电荷为零B A ,为球壳内外两点,试判断下列说法的正误(C )A 移去球壳,B 点电场强度变大 B 移去球壳,A 点电场强度变大C 移去球壳,A 点电势升高D 移去球壳,B 点电势升高 4、下列说法正确的是(D )A 场强相等的区域,电势也处处相等B 场强为零处,电势也一定为零C 电势为零处,场强也一定为零D 场强大处,电势不一定高5、如图所示,一个点电荷q 位于立方体一顶点A 上,则通过abcdA06q ε B 012q ε C 024q ε D 036qε6、如图所示,在电场强度E 的均匀电场中,有一半径为R 的半球面,场强E 的方向与半球面的对称抽平行,穿过此半球面的电通量为(C ) A E R 22π BE R 22π C E R 2π DE R 221π a7、如图所示两块无限大的铅直平行平面A 和B ,均匀带电,其电荷密度均为)(20-∙〉m C σσ,在如图所示的c b a 、、三处的电场强度分别为(D ) A 0,,00,εσ B 0,2,00,εσ C 000,,2εσεσεσ D 00,0,εσεσ 8、如图所示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的.(B )A 半径为R 的均匀带电球面.B 半径为R 的均匀带电球体.C 半径为R 的、电荷体密度为Ar =ρ(A 为常数)的非均匀带电球体D 半径为R 的、电荷体密度为r A /=ρ(A 为常数)的非均匀带电球体 9、设无穷远处电势为零,则半径为R 的均匀带电球体产生的电场的电势分布规律为(图中的0U 和b 皆为常量):(C)10、如图所示,在半径为R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度E 的大小与距轴线的距离r 关系曲线为(A )11、下列说法正确的是( D )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。
(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。
12、 在一个带负电的带电棒附近有一个电偶极子,其电偶极距P 的方向如图所示。
当电偶极子被释放后,该电偶极子将( B )A 沿逆时针方向旋转直到电偶极距P 水平指向棒尖端而停止。
B 沿逆时针方向旋转至电偶极距P 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动EC 沿逆时针方向旋转至电偶极距P 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动D 沿顺时针方向旋转至电偶极距P 水平指向方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 13、 电荷面密度均为σ+间各点电场强度E为( B )-的大小为30x qlπε2、 如图所示,一点电荷C q 910-=。
A B C 三点分别与点电荷q 相距为10cm 、20cm 、30cm 。
若选B 点电势为零,则A 点电势为 45v C 点的电势为-15v1、 如图所示一无限大均匀带电平面,电荷密度为σ,Ox 轴与该平面垂直,且b a 、两点与平面相距为a r 和b r ,试求b a 、两点的电势差b a V V -=)2(2-00ba r r εσεσ--。
根据所求结果,选取0r =b 处为电势零点,则无限大均匀达式r02-V εσ=最简洁。
4、如图所示一无限长均匀带电直线,电荷密度为λ,Ox 直线相距为a r 和b r ,试求b a 、两点的电势差b a V V -=)ln 2-(ln 2-0b a r r πελπελ-。
根据所求结果,选取m b 1r =处为电势零点,则无限长均匀带电直线的电势分布表达式r ln 2-V 0πελ=。
5、有一半径为R 的细圆环, 环上有一微小缺口,缺口宽度为)(R d d <,环上均匀带正电, 总电量为q ,如图所示, 则圆心O 处的电场强度大小E =3028R qd επ,场强方向为圆心O 点指向缺口的方向。
6、如图所示两个点电荷分别带电q 和q 2,相距l ,将第三个点电荷放在离点电荷q 的距离为1)l 处它所受合力为零7、一点电荷q 位于正立方体中心,通过立方体没一个表面的电通量是6εq 8、真空中有一均匀带电球面,球半径为R ,所带电量为Q (>0),今在球面上挖去一很小面积ds (连同其上电荷),设其余部分电荷仍均匀分布,则挖去以后,球心处电场强度40216RQds E επ=,方向球心O 到ds 的矢径方向9、空间某区域的电势分布为22By Ax +=ϕ,其中A B 为常数,则电场强度分布为x E =x A 2-,y E =y B 2-10、点电荷1q 2q 3q 4q 在真空中的分布如图所示,图中S 为闭合面,则通过该闭合面的电通量⎰⋅sds E =42εq q +,式中的E 是点电荷q q q q 在闭合面上任一点产生的电场强度的矢量和。
11、电荷量分别为1q 2q 3q 的三个点电荷,分布如图所示,其中任一点电荷所受合力均为零。
已知电荷1q =3q =q ,则2q =4-q;若固定将从O 点经任意路径移到无穷远处,则外力需做功A =aq 028πε12、真空中有有一点电荷,其电荷量为Q三 计算题1、用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正x电荷均匀分布在棒上,求圆心处电场强度的大小和方向。
解:∵棒长为2 3.12l r d m π=-=,∴电荷线密度:911.010qC m lλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。
解法1:利用微元积分:21cos 4O x Rd dE R λθθπε=⋅,∴2000cos 2sin 2444O d E d R R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m -=⋅; 解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯,则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V m R πε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
2、如图所示,半径为R 的均匀带电球面,带有电荷q ,沿某一半径方向上有一均匀带电细线,电荷线密度为λ,长度为l ,细线左端离球心距离为0r 。
设球和线上的电荷分布不受相互作用影响,试求细线所受球面电荷的电场力和细线在该电场中的电势能(设无穷远处的电势为零)。
解:(1)以O 点为坐标原点,有一均匀带电细线的方向为x 轴, 均匀带电球面在球面外的场强分布为:204q E r πε=(r R >)。
取细线上的微元:dq dl dr λλ==,有:d F E d q =, ∴0020000ˆ44()r lr qql r F dr x r r l λλπεπε+==+⎰(ˆr 为r 方向上的单位矢量) (2)∵均匀带电球面在球面外的电势分布为:04q U rπε=(r R >,∞为电势零点)。
对细线上的微元d q d r λ=,所具有的电势能为:04q dW d r rλπε=⋅,∴00000ln44r lr r lqd r q W r r λλπεπε++==⎰。
3、半径10.05,R m =,带电量8310C q -=⨯的金属球,被一同心导体球壳包围,球壳内半径20.07R m =,外半径30.09R m =,带电量8210C Q -=-⨯。
强与电势。
(1)0.10r m =(2)0.06r m =(3)0.03r m =。
解:由高斯定理,可求出场强分布: ∴电势的分布为:Q当1r R ≤时,2131220044R R R q Q q U d r d r rr πεπε∞+=+⎰⎰0120311()44q Q qR R R πεπε+=-+, 当12R r R <≤时,232220044R r R qQ q U d r d r rr πεπε∞+=+⎰⎰020311()44q Q qr R R πεπε+=-+, 当23R r R <≤时,33204R Q q U d r r πε∞+=⎰034Q q R πε+=, 当3r R >时,420044r Q q Q qU d r r rπεπε∞++==⎰, ∴(1)0.10r m =,适用于3r R >情况,有:3420910N 4Q q E r πε+==⨯,40900V 4Q q U rπε+==; (2)0.06r m =,适用于12R r R <<情况,有: 42207.510N 4q E r πε==⨯,32020311() 1.6410V 44qQ q U r R R πεπε+=-+=⨯; (3)0.03r m =,适用于1r R <情况,有:10E =,310120311() 2.5410V 44q Q q U R R R πεπε+=-+=⨯。
4、长cm l 20=的直导线AB 上均匀分布着线密度为m C 8103-⨯=λ的电荷,如图示,求(1)在导线的延长线上与导线一端B 相距cm d 8=处P 点的电场强度。
(2)在导线的垂直平分线上与导线中点相距cm d 8=处Q 点的电场强度。
解(1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。