二氧化钛 光催化啊啊

二氧化钛 光催化啊啊
二氧化钛 光催化啊啊

《催化研究实验方法》论文

学院化学工程学院

班级 17级硕士

专业化学工程与技术

姓名 xxxxxxx

学号 2201706101

Tio2光催化剂的改性及其在污水处理方面应用的研究进展

xxxx

(xxxxxxxx,吉林,长春)

摘要:二氧化钛光催化技术具有低耗能、操作简单、无毒性、降解无选择性能

够彻底降解有机污染物的特点,且因二氧化钛无二次污染并可回收循环利用而备受青睐。介绍了二氧化钛的结构、性能、光催化机理及几种提高二氧化钛光催化性能的改性方法。阐述了二氧化钛在污水处理方面的应用。对二氧化钛在环境领域中的应用前景进行了展望。

关键词:光催化二氧化钛改性污水处理除菌

前言

在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准[1]。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界范围内每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染[2]。包括我国在内世界范围内广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用范围,迫切需要发展一种高效、绿色、简单的净化水技术[3]。

1. TiO2光催化

1.1 TiO2应用前景

1992年第一次二氧化钛光触媒国际研讨会在加拿大举行,日本的研究机构发表许多关于光触媒的新观念,并提出应用于氮氧化物净化的研究成果。因此二氧化钛相关的专利数目亦最多,其它触媒关连技术则涵盖触媒调配的制程、触媒构造、触媒担体、触媒固定法、触媒性能测试等。以此为契机,光触媒应用于抗菌、防污、空气净化等领域的相关研究急剧增加,从1971年至2000年6月总

光触媒的广泛应用,共有10,717件光触媒的相关专利提出申请。二氧化钛TiO

2

将为人们带来清洁的环境、健康的身体。纳米二氧化钛光触媒是一种在光的照射

下,自身不起变化,却可以促进化学反应的物质,就象植物的光合作用中的叶绿素。TiO

2

光触媒在太阳光或室内荧光灯的照射下能产生抗菌、除臭、油污分解、防霉防藻、空气净化的作用。

TiO

2

具有反应条件温和,无毒,无二次污染等优点,且能够降解难降解的有机污染物,在处理水污染等其他环境污染方面比传统的工艺有明显的优势。TiO2

也可以循环利用,极大降低了成本[4]。所以 TiO

2

成为处理环境污染问题中的新兴

材料,对环境保护有重要的意义。TiO

2

作为光催化剂它具有以下几个优点[5]:

1. 把太阳能转化为化学能加以利用。

2. 降解速度快,光激发空穴产生的·OH是强氧化自由基,可以在较短的时间内成功的分解包括难降解有机物在内的大多数有机物。

3. 降解无选择性,几乎能降解任何有机污染物。

4. 降解范围广,几乎对所有的污水都可以采用。

5. 具有高稳定性、耐光腐蚀、无毒等特点,并且在处理过程中不产生二次污染;

有机污染物能被氧化降解为CO

2和H

2

O,并且其对人体无毒。

6. 反应条件温和,投资少,能耗低,用紫外光照射或暴露在太阳光下即可发生光催化化学反应。

7. 反应设备简单,易于操作控制。光催化反应具有稳定性,一般情况下,负载TiO

2

光催化剂能多次使用,不影响反应效果,催化作用持久长效。

1.2 TiO2光催化机理

许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。

TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板钛矿的光催化性能和稳定性最差,基本没有相关的研究和应用。而锐钛矿型和金红石型均属四方晶系,两种晶型都是由相互连接的TiO6八面体组成的,每个Ti原子都位于八面体的中心,且被6个O原子围绕。两者的差别主要是八面体的畸变程度和相互连接方式不同。金红石和锐钛矿晶胞结构的差异也导致了这两种晶型物化性质的不同。从热力学角度看,金红石是相对最稳定的晶型,熔点为1870℃;而锐钛矿是二氧化钛的低温相,一般在500℃~600℃时转变为金红石[6]。二氧化钛晶型转变的实质是晶胞结构组成单元八面体的结构重排。金红石晶型结构中原子排列更加致密,密度、硬度、介电常数更高,对光的散射也更大。因此,金红石是常用的白色涂料和防紫外线材料,对紫外线有非常强的屏蔽作用,在工业涂料和化妆品方面有着广泛的应用。锐钦矿的带隙宽度为稍大于金红石的,光生电子和空穴不易在表面复合,因而具有更高的光催化活性能够直接利用太阳光中的紫外光进行光催化降解,而且不会引起二次污染。因此,锐钛矿是常用的处理环境污染方面问题的光催化材料。

TiO2的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而跃迁至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+)[7]。

如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置[8]。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,生成超氧自由基·O2-;而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成羟基自由基·OH;·OH和·O2-的氧化能力极强,几乎能够使各种有机物的化学键断裂,因而能氧化绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO2和H2O等物质。反应过程如下:

TiO2 + hv → h+ +e-

h+ + OH-→ ·OH

h+ + H2O →·OH + H+

e- + O2→·O2-

H2O + ·O2-→ HO2· + OH-

2HO2·+e-+H2O→H2O2+OH-

H2O2 + e- → ·OH+OH-

H2O2 + ·O2-→ ·OH+H+

·OH + dye →···→ CO2 + H2O

·O2-+ dye →···→ CO2 + H2O

当然也会发生,光生电子与空穴的复合:

h+ + e-→ 热能

由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。羟基自由基是含有一个未成对电子自由基,这使得它几乎能跟水中的几乎所有机污染物和大部分的无机污染物反应。它与污染物的反应速度非常快,反应速度仅仅受限于羟基自由基在水中的扩散速度。羟基自由基与污染物的反应机理主要包括在不饱和的双键、三键上的加成反应,氢取代和电子的转移。很多研究表明,羟基自由基在光催化降解的过程中起主导作用。虽然超氧自由基、单基态氧和双氧水的氧化电位低于羟基自由基,但是他们在降解的过程中也起到不可或缺的作用。TiO2光催化主要通过生成的含氧自由基与水中的污染物反应,达到降解的目的,并且最终产生对环境无害的水、二氧化碳、氮气等。TiO2光催化可以同时产生带正电荷的空穴以及带有负电荷的电子,这使得催化体系既有氧化能力又有还原能力。所以剧毒的三价砷(砒霜的有效成分就是三价砷)可以被氧化成低毒的五价

砷,对人有害的六价铬被还原成无毒的三价铬。

2 TiO2的改性

2.1 分子筛负载

TiO

2

负载在分子筛上,由于分子筛特殊的结构,使其分布在分子筛表面和

进入到分子筛孔径中去。Ugurlu [9]等认为海泡石具有纤维孔洞形状的含水硅酸镁,其在工业上的应用优势在于其多孔性结构和大的比表面积。TiO2 负载在海

泡石上增加其利用率,因此在同等用量上的TiO

2

其光催化活性更强。同时研究

者也将 TiO

2

负载在沸石上。这是由于沸石的特殊结构可以起到抑制电子—空穴复合的作用, 使得沸石吸附的有机物可以很容易地获得活性基团, 从而提高沸

石负载 TiO

2

光催化剂的活性。另一方面是当半导体表面和分子筛接触时, 载流

子能重新分布, 光电子就从费米能级较高的 n 型半导体(即 TiO

2

)转移到费米能级较低的分子筛上,重合形成统一的费米能级,从而形成肖特基势垒(Schot-

tkybarrier)。即在 TiO

2

半导体表面的分子筛中形成了电子捕获阱,促进了光生

电子与空穴的分离,延长了空穴的寿命,从而提高了分子筛负载TiO

2

催化剂的光催化活性[10]。韩阳[11]以在碱性水热条件下所制备的 MCM-41分子筛作载体、用絮凝法制备TiO2 /MCM-41 分子筛,用同样方法制备了TiO2/ZSM-5/MCM-41 分子筛,

TiO2料子在两种分子筛上分散较均匀,两种样品均含有锐钛矿TiO

2

结构和部分

金红石TiO

2

结构;其孔容积和比表面积均较原载体有所减小;用其光催化降解罗丹明B溶液,结果表明,负载率为 40%,在500℃下焙烧 4h,两种分子筛的光催化效果较好。催化剂加入 0.04g时对罗丹明 B 溶液的光催化效果最佳,脱

色率均达 99%以上。李慧芳[11]采用溶胶凝胶法制备了纯纳米 TiO

2

及不同比例

Zn、Cu、La 离子单掺杂,La-Zn 共掺杂的纳米 TiO

2

光催化剂。用溶胶浸渍法制

备了 MCM-41分子筛负载纯纳米 TiO2及 La-Zn 共掺杂纳米 TiO

2

的复合光催化剂, 并用其在紫外光下对甲基橙溶液和甲醛气体进行降解。用干燥器法测定了3A、5A、13X、MCM-41 分子筛对甲醛的静态吸附量。结果表明:MCM-41 介孔分子筛对甲醛的吸附性能最好,说明比表面积和孔径大有利于吸附甲醛气体。将

MCM-41分子筛与纯纳米 TiO

2及 0.05%Zn+0.1%La/TiO

2

的溶胶分别进行不同比例

的浸渍负载,发现用分子筛负载能够抑制纳米TiO

2

的粒径生长,且粒径大小随负

载量的增加而增大, 复合材料的孔容和孔道直径都随负载量的增加而减小。2.2 离子掺杂

适当的离子掺杂可以拓宽TiO

2

对可见光的吸收范围,并增加吸收强度,是目

前可见光化研究中最为广泛的一种方法。掺杂光催化剂TiO

2

的离子一般包括过渡金属离子、稀土金属离子、贵金属离子和其他无机离子。由于掺杂引起能级位

错变化,能很好地提高掺杂TiO

2

催化剂在可见光下的催化活性。目前研究者已经

研究了将Fe(Ⅲ)掺杂到TiO

2

纳米晶中。纳米颗粒经500℃退火处理后,样品结

构是锐钛矿结构,无杂相且粒径较小,从而使TiO

2

的光催化活性提高[12]。吴奇[13]

等用电化学阳极氧化法结合浸渍和退火后处理制备了Fe和N共掺杂的TiO

2

纳米

管阵列光催化剂,表征结果表明,Fe、N共掺杂对TiO

2

纳米管阵列的形貌和结构

影响不大,Fe和N均掺入了TiO

2

晶格中。紫外-可见(UV-Vis)漫反射光谱显示

Fe和N共掺杂TiO

2纳米管阵列的吸收带边较纯TiO

2

纳米管阵列和单一掺杂TiO

2

纳米管阵列可见光吸收增强。考察了降解罗丹明B(RhB)的光催化活性,Fe和

N共掺杂TiO

2纳米管阵列对RhB的降解速率较纯TiO

2

纳米管阵列和单一掺杂TiO

2

纳米管阵列明显提高,证明了Fe、N共掺杂具有协同效应。Shamshi[12]等认为,稀土元素的f轨道能与被降解底物发生配位反应,从而提高TiO

2

的光催化活性。水淼等认为,稀土离子和Ti(Ⅳ)离子半径相差较大,若取代晶格Ti(Ⅳ)则

引起TiO

2晶格畸变、膨胀,有助于光生空穴-电子的分离,因而纳米TiO

2

掺杂适

量La可提高其光催化活性。

2.3 表面光敏化

光敏化是通过添加适当的光活性敏化剂,使其吸附于TiO

2表面,扩大TiO

2

发波长的范围,使之能充分利用可见光,是提高TiO

2

对可见光的利用的最有效的

途径之一[13]。Lin[14]等认为PANI修饰后的TiO

2

在紫外光和可见光

(420nm<λ<800nm)下,比单纯的TiO

2和掺杂N后的TiO

2

的光催化活性和稳定

更高。尤其在更长的波长(550nm<λ<800nm)下对甲基橙和对氯苯酚的催化强度

更强。Wang[15]等认为铟离子掺杂到TiO

2

晶格中,形成了一种独特的化学物质

O-In-Clx,存在于铟离子掺杂后的TiO

2

的表面。其禁带宽度为0.3eV,大大低于

单纯TiO

2的禁带宽度。由于对可见光的利用与

TiO2

的禁带宽度有关,因此其光催

化活性比单纯的TiO

2

的光催化活性高。徐志兵[15]等,采用溶胶-凝胶法和水热法

制备了Ag/TiO

2催化剂,将其在叶绿素提取液中浸泡24h,制成光敏化Ag/TiO

2

催化

剂。以Cr6+溶液为研究对象,分别在紫外光和可见光下考察了纳米TiO

2

、纳米

Ag/TiO

2、光敏化TiO

2

和光敏化Ag/TiO

2

催化剂的光催化性能。结果表明,在四种

催化剂相中,光敏化Ag/TiO

2

催化剂的性能最好,特别是在可见光下,光敏化

Ag/TiO

2

催化剂光催化还原Cr6+,150min后脱除率达到100.0%。杜雪岩[16]等采用

曙红与叶绿素铜三钠对TiO

2纳米颗粒进行了光敏化,研究了TiO

2

纳米颗粒在节能

灯光源下的光催化活性。结果表明:光敏化可以保持TiO

2

的锐钛矿结构,对其形

貌无明显影响。光敏化后的TiO

2

纳米颗粒在可见光区吸光程度有较大提高,两种

光敏剂的协同作用可使光谱的响应波长向可见光方向移动,拓展了TiO

2

光谱响应

范围。光催化降解实验表明:光敏化TiO

2

纳米颗粒具有优良的光催化性能,且在30℃,光敏化8h,曙红质量浓度30mg/L及叶绿素铜三钠质量浓度20mg/L时,光敏

化的TiO

2

光催化效果最好,用节能灯作光源对甲基橙的降解率为61.33%。

3. TiO 2在污水处理方面的应用

3.1 无机废水的处理

工业废水中的无机污染物主要有重金属离子,如Hg、Cr、Pb等的离子。大

量的研究表明,许多无机物在TiO

2

表面具有光催化活性。周林波等[17]在Cr6+浓

度为80mg/L、体积为100mL的废水中,投加0.7g SiO

2-TiO

2

系玻璃作为光催化

剂,光照反应体系3h,Cr6+的去除率达99.9%。Serpone等[18]研究了以TiO

2

为光

催化剂在模拟太阳光光照下处理HgCl

2

和甲基氯化汞的过程,取得了较好的实验效果。

除重金属离子外,工业废水中的无机污染物还包括部分对环境危害较重的无

机阴离子,如CN-、NO

2

-、Au(CN)-4等离子,一般方法难以去除,采用光催化氧化

技术则能够达到这一目的。Frank等[19]研究了以TiO

2

为光催化剂将CN-氧化为

OCN-,并最终反应生成CO

2、N

2

、和NO3-的过程。Hidaka等研究了氰化钾溶液及

含氰工业废水在TiO

2悬浮液中通过中间产物OCN-生成CO

2

和N

2

的的光催化氧化

过程,讨论了光催化氧化法处理大规模含氰废水的可能性。

3.2有机废水的处理

高浓度有机废水主要是印染、制药、炼油等工业生产过程中产生的废水,作为一种深度氧化技术,光催化法尤其适合于降解难以用其它方法降解的有毒有机物质。美国环保局公布了9大类114种有机物被证实可以通过半导体光催化氧化方法处理。

3.2.1光催化处理印染废水

印染废水具有浓度高、色度高、pH高、难降解等特点,且大多含有苯环、胺基、偶氮基团等致癌物质,对环境危害很大。光催化氧化在彻底降解印染废水方面具有无二次污染、氧化能力强等突出优点。浙江大学研究小组研究了TiO

2

浮体系对不同染料的光催化降解,结果表明,TiO

2

对偶氮类染料、蒽醌类染料、三芳甲烷和菁系等可溶性染料脱色效果可以达到95%以上,COD去除率也在

80%~100%之间。Epling G.A.等研究了在可见光下纳米TiO

2

光催化剂对15种不同类型的染料的降解,得到这些染料的脱色顺序:靛蓝染料>菲染料>三苯甲烷染料>偶氮染料>喹啉染料>噻嗪染料>蒽醌染料。肖俊霞等也研究了10种不同结构

的染料在TiO

2/UV体系中的光催化氧化降解过程,揭示了不同结构染料在TiO

2

/UV

体系中的降解规律。

3.2.2光催化处理制药废水

制药废水成分复杂、污染物浓度高、含有难降解物质和有抑菌作用的抗生素,

并且毒性较强、危害较大,属于难处理的工业废水。利用光催化氧化降解制药废水不会生成其它有毒物质,无二次污染,具有其它方法无可比拟的优点。龚丽芬等[7]以罗丹明B、罗丹明6G、次甲基蓝、溴甲酚绿为光敏剂修饰掺杂铈的纳米二氧化钛,利用日光灯照射下催化降解六六六、滴滴涕(DDD)、滴滴涕伊(DDE)等有机氯农药,结果表明:罗丹明B或溴甲酚绿修饰后的掺铈纳米二氧化钛具有较高的光催化降解率。郭佳等以TiO

2

为光催化剂,对头孢曲松钠进行光催化降解。结果显示,当反应物初始浓度500mg/L-1,反应5h后,在催化剂用量为2.5

g/L-1时对头孢曲松钠的降解达93.4%。廖禹东等以掺Fe的纳米TiO

2

为光催化剂,进行了含阿奇霉素废水的光催化氧化降解性能研究。结果表明,在pH=6.4、t=30

min、催化剂用量为10g/L时,掺0.05%Fe的纳米TiO

2

降解效果最佳。

3.2.3光催化处理含油废水

在石油开采和生产中,不可避免地要产生大量含油污水,含油污水中不溶于水且漂浮在水面上的油类及其他有机污染物等很难用化学方法处理。李书珍

等采用光催化技术和WL型TiO

2

光催化剂处理炼油厂含油污水。实验结果表明:

采用WL型TiO

2

光催化剂、反应温度30℃、反应时间40min、pH为4~8,催化剂用量为1.0~1.5g?L-1的条件下,脱油率为98.6%,COD脱除率为99.3%,处理后的废水中油含量和COD值均达到国家《污水综合排放标准》。王琛等以钠基

膨润土为原料,制备了掺杂铁离子TiO

2 柱撑膨润土,考察了掺铁TiO

2

柱撑膨润

土对含油污水的吸附催化降解能力。结果表明,掺铁1.5%时制备的复合材料具有较高的吸附和光催化性能,吸附后的去油率为92.5%,光催化4h后去油率

达98.5%。最近,在中国海洋石油总公司的支持下,中海油海洋石油研究中心

光催化降解净化处理研究,取得和清华大学合作开展了含原油污水的纳米TiO

2

显著进展。

3.3光催化杀菌除藻

光催化剂具有很强的光催化杀菌作用。细菌是由大量研究表明,纳米TiO

2

有机复合物构成的,通过对TiO

光催化杀灭革兰氏阴、阳性细菌的致死曲线进

2

行对比、常规培养验证和透射电镜观察可知:光催化杀菌可以攻击细菌和外层细胞,穿透细胞膜,破坏细菌的细胞膜结构,同时也可以分解由细菌释放出来的致热和有毒组分。刘锦平等采用新工艺制备出具有光催化性的纳米二氧化钛,以工业循环冷却水中的异养菌为实验对象进行杀菌实验,结果表明:自制纳米二氧化钛具有良好的杀菌性,杀菌率可达99.2%,而且可以回收,循环使用,产品有广阔的应用前景。日本东京大学工学部的藤岛昭教授等人经实验证明,锐钛矿型纳对绿脓杆菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌、芽杆菌和曲霉等

米TiO

2

具有很强的杀死能力,它是目前最常用的光催化抗菌剂。

4.展望

光催化氧化技术具有高效、节能、清洁无毒等突出优点,是一项具有广泛应用前景的新型水污染处理技术。然而作为近30年发展起来的新的研究领域,光催化降解现在还基本上停留在实验室水平,实际应用很少。因此无论是在光催化机理的研究方面,还是在工业实际应用中都需要进一步的深入研究。以下为亟待解决的几个问题:(1)在处理污水过程中的回收问题;(2)制备出高热稳定性的;(3)光催化技术与其他技术耦合,利用技术的协同作用来获取最佳的处理

TiO

2

效果。随着科学技术的发展,相信TiO

光催化技术会有更加广阔的应用前景。

2

参考文献

[1]杨连利,张卫红,郭乃妮.光催化材料在有机污染物处理中的研究进展[J].

咸阳师范学院学报,2016,31(4):59-63.

[2]党娟华.二氧化钛光催化氧化研究进展[J].油气田环境保护,2006,16(1):

41-43.

[3]张伟. TiO 2 光敏化研究进展[J].广东化工,2009,11:94-97.

[4]张彭义, 余刚, 蒋展鹏.环境科学进展(Zhang P Y, Yu G , Jiang Zh P.Advan Environ Sci), 1997, 5(3):1

[5]梁春华.铒掺杂二氧化钛光催化降解甲胺磷农药的研究[J].吉林农业大学学

报 2012,34(5):536-539.

催化剂制备及可见光光催化性能研究[D].河北科技大学,

[6]宋曰超.改性TiO

2

2015.

[7]赵天行.光催化剂二氧化钛的掺杂改性研究[D].中国科学技术大学,2014.

[8]姜洪雷,张旋.固定化二氧化钛光催化氧化研究进展[J].山东轻工业学院学

报,2003,17(4):63-66.

[9]UGURLU M, KARAOGLU M H. TiO 2 supported on sepiolite:Preparation, structural and thermal characterization[J]. Chemical Engineering Journal, 2011,166: 859~867.

[10]PERIYAT P, MCCORMACK D E, Hinder S J, et al. Onepot synthesis of anionic(nitrogen)and cationic (sulfur)codoped high-temperature stable, visible light active, anatase photocatalysts[J].Journal of Physical Chemistry C , 2009, 113(8): 3246-3253.

[11]周建敏,牛显春,熊德琴,等.纳米 TiO 2 光催化法处理炼油废水的

研究[J].工业用水与废水,2006,37(6):39-41.

[12]罗健生.光催化氧化处理有机污染废水研究[D].西南石油学院,2003.

光催化降解含酚炼油废水[J].石

[13]牛显春,周建敏,伍尚晃.纳米 Fe3+ /TiO

2

油化工,2009,38(11):1239-1244.

光催化剂的制备及其处理印染废水的试验研究[D].

[14]宋波. 改性纳米TiO

2

哈尔滨工程大学,2013.

[15]LU S Y, WU D, WANG Q L, et al.Photocatalytic decomposition on

nano-TiO

:Destruction of chloroaromatic compounds[J].Chemosphere,

2

2011,82:1215-1224.

[16]MIGUEL PELAEZ, NICHOLAS T, NOLAN, SURESH C. Pillai, et al. A review

on the visible light active titanium dioxide photocatalysts for environmental applications [J]. Applied Catalysis B: Environmental, 2012,125:331-349.

[17] 孙宏伟. 纳米薄膜光催化剂的制备及光催化降解农药产物或其中间体的电

化学检测研究[D].东北师范大学,2013.

[18]宋波. 改性纳米 TiO 2 光催化剂的制备及其处理印染废水的试验研究[D].

哈尔滨工程大学,2013.

二氧化钛光催化分解甲醛原理

二氧化钛光催化分解甲 醛原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全, 2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为 eV,当纳米TiO2接受波长为 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用 自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH)和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

第二节 二氧化钛光催化影响因素

第二节TiO2光催化影响因素 目前主要针对TiO 2 进行增加表面缺陷结构、减小颗粒大小增大比表面、贵金 属表面沉积、过渡金属离子掺杂、半导体复合、表面光敏化、以及改变TiO 2 形貌和晶型等方法来提高其量子效率以及扩展其光谱响应范围。研制具有高量子产率,能被太阳光谱中的可见光激发的高效半导体光催化剂,探索适合的光催化剂负载技术,是当前解决光催化技术中难题的重点和热点。 表面缺陷结构 通过俘获载流子可以明显压制光生电子与空穴的再结合。在制备胶体和多晶光催化是和制备化学催化剂一样,一般很难制得理想的半导体晶格。在制备过程中,无论是半导体表面还是体内都会出现一些不规则结构,这种不规结构和表面电子态密切相关,可是后者在能量上不同于半导体主体能带上的。这样的电子态就会起到俘获载流子的阱的作用,从而有助于压制电子和空穴的再结合[7]。 颗粒大小与比表面积 研究表明,溶液中催化剂粒子颗粒越小,单位质量的粒子数就越多,体系的比表面积大,越有利于光催化反应在表面进行,因而反应速率和效率也越高。催化剂粒径的尺寸和比表面积的一一对应直接影响着二氧化钛光催化活性的高低。粒径越小,单位质量的粒子数目越多,比表面积也就越大。比表面积的大小是决定反应物的吸附量和活性点多少的重要因素。比表面积越大,吸附反应物的能力就越强,单位面积上的活性点也就越多,发生反应的几率也随之增大,从而提高其光催化活性。当粒子大小与第一激子的德布罗意半径大小相当,即在1-10 nm 时,量子尺寸效应就会变得明显,成为量子化粒子,导带和价带变成分立的能级,能隙变宽,生成光生电子和空穴能量更高,具有更高的氧化、还原能力,而粒径减小,可以减小电子和空穴的复合几率,提到光产率。再者,粒径尺寸的量子化使得光生电子和空穴获得更大的迁移速率,并伴随着比表面积的加大,也有利于提高光催化反应效率。 贵金属沉积的影响 电中性的并相互分开的贵金属的Fermi能级小于TiO 2 的费米(Fermi)能级, 即贵金属内部与TiO 2相应的能级上,电子密度小于TiO 2 导带的电子密度,因此 当两种材料连接在一起时,载流子重新分布,电子就会不断地从TiO 2 向贵金属

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

Tio2的光催化性能研究

TiO2的光催化性能研究 摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。 关键字:二氧化钛光催化光催化剂 二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。 1 TiO2的基本性质 1.1结晶特征及物理常数 物性:金红石型锐钛型 结晶系:四方晶系四方晶系 相对密度:3.9~4.2 3.8~4.1 折射率: 2.76 2.55 莫氏硬度:6-7 5.5-6 电容率:114 31 熔点:1858 高温时转变为金红石型 晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949 线膨胀系数:25℃/℃ a轴:7.19X10-6 2.88?10-6 c轴:9.94X10-6 6.44?10-6 热导率: 1.809?10-3 吸油度:16~48 18~30 着色强度:1650~1900 1200~1300 颗粒大小:0.2~0.3 0.3 功函数:5.58eV

2TiO2的光催化作用 2.1光催化作用原理 二氧化钛是一种N型半导体材料,锐钛矿相TiO2的禁带宽度Eg =3.2eV,由半导体的光吸收阈值λg与禁带宽度E g的关系式: λg (nm)=1240/Eg(eV) 可知:当波长为387nm的入射光照射到TiO2上时,价带中的电子就会发生跃迁,形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。除了上述变化途径外,光激发产生的电子、空穴也可能在半导体内部或表面复合,如果没有适当的电子、空穴俘获剂,储备的能量在几个毫秒内就会通过复合而消耗掉,而如果选用适当的俘获剂或表面空位来俘获电子或空穴,复合就会受到抑制,随后的氧化还原反应就会发生。在水溶液中,光生电子的俘获剂主要是吸附在半导体表面上的氧,氧俘获电子形成O2-;OH-、水分子及有机物本身均可充当光生空穴俘获剂,空穴则将吸附在TiO2表面的OH-和H2O氧化成具有高度活性的?OH自由基,活泼的?OH 自由基可以将许多难以降解的有机物氧化为CO2和H2O。其反应机理如下: TiO2 + hv → h+ + e- h+ + e- →热量 H2O → H+ + OH- h+ + OH- → HO? h+ + H2O + O2- → HO?+ H+ + O2- h+ + H2O → HO?+ H+ e- + O2→ O2- O2- + H+ → HO2? 2HO2?→ O2 + H2O2 H2O2 + O2- → HO?+ OH- + O2 H2O2 + hv → 2HO? 从上述光催化作用原理分析可知道,光催化过程实际上同时包含氧化反应和还原反应两个过程,分别反映出光生空穴和光生电子的反应性能,同时二者又相互影响,相互制约。

纳米二氧化钛的制备及其光催化活性的测试

第 页(共 页) 课 程 ___________ 实验日期:年 月曰 专业班号 _____ 别 ______________ 交报告日期: 年 月 日 姓 名_ _学号 报告退发: (订正、重做) 同组者 _____________ 次仁塔吉 __________ 教师审批签字: 实验名称 _________________ 纳米二氧化钛粉的制备及其光催化活性的测试 、实验目的 1. 了解制备纳米材料的常用方法,测定晶体结构的方法。 2. 了解XRD 方法,了解X-射线衍射仪的使用,高温电炉的使用 3. 了解光催化剂的(一种)评价方法 、实验原理 1.纳米TiO 2的制备 ① 纳米材料的定义:纳米材料指的是组成相或者晶相在任意一维度上尺寸小于 100nm 的材 料。 纳米材料由于其组成粒子尺寸小, 有效表面积大,从而呈现出小尺寸效应, 表面与界面效应 等。 ② 纳米TiO 2的制备方法:溶胶凝胶法,水热法,火焰淬火掺杂法,阳极氧化法,电泳沉积 再阳极氧化法,高温雾化法,溅射法,光沉积法,共沉淀法。 本实验采取最基本的,利用金属醇盐水解的方法制备纳米 TiO 2,主要利用金属有机醇盐能 溶于有机溶剂,且可以水解产生氢氧化物或氧化物沉淀。 该方法的优点:①粉体的纯度高,②可制备化学计量的复合金属氧化物粉末。 西安交通大学化学实验报告

③制备原理:利用钛酸四丁酯的水解,反应方程如下 Ti OC4H9 4 4出0 =Ti OH 4 4C4H9OH Ti OH 4 Ti OC4H9 4=TiO2 4C4H9OH Ti OH 4 Ti OH 4=TiO2 4H2O 2. TiO 2的结构及表征 我们通过实验得到的TiO 2是无定形的,二氧化钛通常有如下图上所示的三种晶状结构: 无定形的TiO2在经过一定温度的热处理后,会向锐钛矿型转变,温度更高会变成金红石型。 我们可以通过X-射线衍射仪测定其晶体结构。 纳米TiO 2的景行对其催化活性影响较大,由于锐钛矿型TiO 2晶格中含有较多的缺陷和缺位,能产生较多的氧空位来捕获电子,所以具有较高的活性;而具有最稳定晶型结构的金红石型TiO2,晶化态较好,所以几乎没有光催化活性。 多晶相样品根据XRD测试获得XRD图谱。根据图谱的衍射角度对应的峰,我们可以测定 各晶相的含量。【用晶相含量百分比表示】(其中20-25为金红石型的特征衍射峰,25-27 为锐钛矿型的特征衍射峰) C A A A 100% A A A R 同时,根据XRD图谱可以估计样品的直径

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学 徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH )和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

氧化钛的光催化过程机理

石墨烯/二氧化钛复合光催化剂的制备方法 本发明涉及一种石墨烯/二氧化钛复合光催化剂的制备方法,步骤如下:将氧化石墨溶于有机溶剂,超声处理得到氧化石墨烯分散液;在氧化石墨烯分散液中加入钛盐前驱体,搅拌均匀;将混合好的分散液转移至水热反应釜,120~200℃下反应4~20小时;将反应所得到产物分别用无水乙醇与去离子水清洗,真空40~80℃下干燥8~24小时得到石墨烯/二氧化钛复合光催化剂。本发明的优点在于原料普通易得,成本低廉,制备过程简单安全,所得产物中,TiO2颗粒能均匀分散于石墨烯表面,两者间有较强的作用力,既避免了自身粒子的团聚,也有效防止了石墨烯片层的重堆积。结构上的优势使其具有优良的光催化活性,在环境保护与太阳能电池领域中都有潜在的应用价值。 所谓光催化反应 光化学及光催化氧化法是目前研究较多的一项高级氧化技术。所谓光催化反应,就是在光的作用下进行的化学反应。光化学反应需要分子吸收特定波长的电磁辐射,受激产生分子激发态,然后会发生化学反应生成新的物质,或者变成引发热反应的中间化学产物。光化学反应的活化能来源于光子的能量,在太阳能的利用中光电转化以及光化学转化一直是十分活跃的研究领域。 光催化氧化技术利用光激发氧化将O2、H2O2等氧化剂与光辐射相结合。所用光主要为紫外光,包括uv-H2O2、uv-O2等工艺,可以用于处理污水中CHCl3、CCl4、多氯联苯等难降解物质。另外,在有紫外光的Feton体系中,紫外光与铁离子之间存在着协同效应,使H2O2分解产生羟基自由基的速率大大加快,促进有机物的氧化去除。 编辑本段分类 光降解通常是指有机物在光的作用下,逐步氧化成低分子中间产物最终生成CO2、H2O及其他的离子如NO3-、PO43-、Cl-等。有机物的光降解可分为直接光降解、间接光降解。前者是指有机物分子吸收光能后进一步发生的化学反应。后者是周围环境存在的某些物质吸收光能成激发态,再诱导一系列有机污染的反应。间接光降解对环境中难生物降解的有机污染物更为重要。 利用光化学反应降解污染物的途径,包括无催化剂和有催化剂参与的光化学氧化过程。前者多采用氧和过氧化氢作为氧化剂,在紫外光的照射下使污染物氧化分解;后者又称光催化氧化,一般可分为均相和非均相催化两种类型。均相光催化降解中较常见的是以Fe2+或Fe3+及H2O2为介质,通过photo-Fenton反应产生·HO使污染物得到降解,非均相光催化降解中较常见的是在污染体系中投加一定量的光敏半导体材料,同时结合一定量的光辐射,使光敏半导体在光的照射下激发产生电子-空穴对,吸附在半导体上的溶解氧、水分子等与电子-空穴作用,产生·HO等氧化性极强的自由基,再通过与污染物之间的羟基加和、取代、电子转移等式污染物全部或接近全部矿化。

二氧化钛光催化原理

TiO2光催化氧化机理 TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+),如图1-1所示。 如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染 物,将其矿化为无机小分子、CO 2和H 2 O等无害物质。 反应过程如下: 反应过程如下: TiO2+ hv → h+ +e- (3) h+ +e-→热能(4) h+ + OH- →·OH (5) h+ + H2O →·OH + H+(6) e- +O2→ O2- (7)O2 + H+ → HO2·(8) 2 H2O·→ O2 + H2O2(9) H2O2+ O2 →·OH + H+ + O2(10) ·OH + dye →···→ CO2 + H2O (11) H+ + dye→···→ CO2 + H2O (12) 由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。 Ti02光催化氧化的影响因素 1、试剂的制备方法 常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。同时在制备过程中有无复合,有无掺杂等对光降解也有影响。Ti02的制备方法在许多文献上都有详细的报道,这里就不再赘述。

纳米二氧化钛结构与光催化性能关系

纳米二氧化钛结构与光催化性能关系 XXX XXX 摘要纳米级二氧化钛由于具有无毒、化学稳定性好、比表面积大、成本低等优异性能深受科研工作者的关注。其所具有的光催化性能使其在降解大气及水体中污染物领域具有广阔前景。本文从纳米二氧化钛结构出发,阐述纳米二氧化钛光催化机理,并简要说明不同元素掺杂纳米二氧化钛后对其光催化性能的影响。 关键词纳米二氧化钛; 光催化; 结构; 掺杂 自1972年FuJiShima和HonclaIIJ发现TiO2单晶电极在紫外光照射下可分解水及Bard将光电化学理论扩展到半导体微粒光催化后,TiO2作为一种半导体光催化剂吸引诸多学者的研究。由于TiO2具有良好的化学稳定性、抗磨损性、较大的比表面积、无毒、成本低以及可以直接利用自然光等优点,利用TiO2光催化氧化法处理水中有机污染物等方面有广阔的应用前景。然而TiO2半导体光催化剂在实际应用中存在一些缺陷如:带隙较宽(E =3.2eV),只有在λ小于387.5 nm的紫外光激发下价带电子才能跃迁到导带上形成光生电子和空穴分离,而紫外光在自然光中仅占3%~5%,因此对自然光的利用率不高。另外半导体载流子的复合率很高,导致光量子效率很低,提高TiO2纳米粒子的光催化效率是利用TiO2光催化剂的关键。为了改善TiO2的光催化性能,研究工作者关于TiO2的制备方法、掺杂、催化剂载体、热处理等方面做了许多研究,其中掺杂因其容易实现、效果明显、应用范围广泛,而成为研究热点。[1] 1、纳米二氧化钛结构及其光催化机理 1.1 二氧化钛晶型 纳米二氧化钛具有锐钛矿,板钛矿及金红石型结构,其中以锐钛矿型光催化性能最好。其晶胞结构如下(其中红色为O,白色为Ti): 锐钛矿型: 板钛矿型:

氧化钛光催化分解甲醛原理

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全,2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为eV,当纳米TiO2接受波长为nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:(1)吸收相波长为nm以下的光能,使表面发生光激发而产生光致电子和正的空穴。 (2)在受光照射而产生的电子-空穴中,电子消耗于空气中氧的还原,空穴则将吸附物质氧化,分解这些吸附物质的作用。如下图1: 导带 O2

二氧化钛光催化剂

Ti O2纳米颗粒的制备及表征 在关于有关Ti O2纳米颗粒的研究中,制备方法的研究是很多的,同时,采用溶胶-凝胶法合成纳米Ti O2的文献报道比较多,通常采用溶胶-凝胶法合成的前驱物为无定形结构的,经过进一步的热处理后或者水热晶化才能得到晶型产物[49]。烧结过程能促使晶型转变,但是往往引起颗粒之间的团聚和颗粒的生长[50]。一般情况下,在大于300℃温度烧结处理得 到锐钛矿型Ti O2、大于600℃的温度烧结处理得到金红石型Ti O2。Ti O2的很多种性质取决于颗粒尺寸和晶化度。优化制备条件,得到分散性良好,催化性能好的光催化剂是很有研究意义的。 实验原理 溶胶-凝胶法是从材料制备的湿化学法中发展起来的一种新方法,是以金属醇盐或无机 盐为原料,其反应过程是将金属醇盐或无机盐在有机介质中进行水解、缩聚反应,使溶液形成溶胶,继而形成凝胶。凝胶经陈化、干燥、煅烧、研磨得到粉体产品。其中由于较多研究者以醇盐为原料,故也将其称为醇盐水解法。在溶胶-凝胶法中,溶胶通常是指固体分散在 液体中形成胶体溶液,凝胶是在溶胶聚沉过程中的特定条件下,形成的一种介于固态和液态间的冻状物质,是由胶粒组成的三维空间网状结构,网络了全部或部分介质,是一种相当稠厚的物质。 本文中,钛酸四丁酯(Ti(OC4H9)4)在水中水解,并发生缩聚反应,生成含有氢氧化钛(Ti(OH)4)粒子的溶胶溶液,反应继续进行变成凝胶,反应方程式如下: 水解Ti(OC4H9)4+4 H2O →Ti (OH)4+ 4HO C4H9 (2-1) 缩聚2Ti (OH)4→[Ti (OH)3]2O+H2O (2-2) 总反应式表示为: Ti(OC4H9)4+ 2H2O→Ti O2 + 4 C4H10O (2-3) 上式表示反应物全部参加反应的情况,实际上,水解和缩聚的方式随反应条 件的变化而变化。反应过程为: (1) 水解反应:可能包含对金属离子的配位,水分子的氢可能与OR 基的氧通过氢键引起 水解。 (2) 缩聚反应:在溶液中,原钛酸和负一价的原钛酸反应,生成钛酸二聚体,此二聚体进 一步作用生成三聚体、四聚体等多钛酸。在形成多钛酸时Ti-O-Ti 键也可以在链的中部形成,这样可得到支链多钛酸,多钛酸进一步聚合形成胶态Ti O2,这就是通常所说的 Ti O2溶胶的胶凝过程[53]。 本论文选用价格较低、使用较为普遍的钛酸四丁酯(Ti(OC4H9)4)作为钛源,选用乙醇为 溶剂,乙醇在钛酸四丁酯的水解反应过程中并不直接参与水解和缩聚反应,但它作为溶剂对体系起着稀释作用,它在Ti(OC4H9)4分子与水分子周围均形成由乙醇分子组成的包覆层, 阻碍反应物分子的碰撞,并在溶胶粒子周围形成“溶剂笼”,从而阻碍了溶胶粒子的生长以及溶胶团簇间的键合,使得干燥后的干凝胶能保持疏松多孔的状态,经焙烧后所得粒子比表面积较大。此外,在制备溶胶的过程中还要加入适量的冰乙酸,冰乙酸在反应过程中可能有两种作用:一是抑制水解,二是使胶体粒子带有正电荷,阻止胶粒凝聚,从而避免干凝胶粒尺寸过大。根据上述机理分析和本实验室前人研究的基础上,确定制备Ti O2溶胶的各物料组分摩尔比为Ti(OC4H9)4:HAc:H2O:Et OH:(NH4)2CO3 =1:2:15:18:X,其中X值变化的范围是0~4,加入碳酸铵的目的是使反应过程中产生气体和微小的固体载体,但又不会对生成的Ti O2造成掺杂等影响,使颗粒分散更均匀,细小。

二氧化钛作为光催化剂的研究

二氧化钛光催化剂的研究进展1972 年,等首次发现在光电池中受辐射的TiO2,表面能持续发生水的氧化还原反应,这一发现揭开了光催化材料研究和应用的序幕。1976 年等报道了TiO2水浊液在近紫外光的照射下可使多氯联苯脱氯。等也于1977 年用TiO2粉末光催化降解了含CN-的溶液。由此,开始了TiO2光催化技术在环保领域的应用研究,继而引起了污水治理方面的技术革命。近十几年来,随着社会的发展和人们对环境保护的觉醒,纳米级半导体光催化材料的研究引起了国内外物理、化 学、材料和环境等领域科学家的广泛关注,成为最活跃的研究领域之一。 TiO2 是一种重要的无机材料,其具有较高的折光系数和稳定的物理化学性能。以TiO2 做光催化剂的非均相光催化氧化有机物技术越来越受到人们的关注,被广泛地用来光解水、杀菌和制备太阳能敏化电池等。特别是在环境保护方面,TiO2 作为 光催化剂更是展现了广阔的应用前景。但TiO2 的禁带宽度是,需要能量大于的紫外光(波长小于380nm)才能使其激发产生光生电子-空穴对,因此对可见光的响应低,导致太阳能利用率低(只利用约3~5%的紫外光部分)。同时光生电 子和光生空穴的快速复合大大降低了TiO2 光催化的量子效率,直接影响到TiO2 光催化剂的催化活性。因此,提高光催化剂的量子效率和光催化活性成为光催化研究的核心内容。通过科学工作者对二氧化钛的物质结构、制备方法、催化性能、催化机理等方面的深入系统的研究,这种快速高效、性能稳定、无毒无害的新型光催化材料在废水处理、有害气体净化、

卫生保健、建筑物材料、纺织品、涂料、军事、太阳能贮存与转换以及光化学合成等领域得到了广泛应用。 1 TiO2光催化作用机理 “光催化”从字面意思看,似乎是指反应中光作为催化剂参加反应,然而事实并非如此。光子本身是一种反应物质,在反应过程中被消耗掉了,真正扮演催化剂角色的却是TiO2。因此,“光催化”反应的内涵是指在有光参与的条件下,发生在光催化剂及其表面吸附物(如H2O分子和被分解物等)之间的一种光化学反应和氧化还原过程。其具体的作用机理如下。 从结构上看,TiO2之所以在光照条件下能够进行氧化还原反应,是由于其电子结构为一个满的价带和一个空的导带。当光子能量(hν)达到或超过其带隙能时,电子就可从价带激发到导带,同时在价带产生相应的空穴,即生成电子(e-)、空穴(h+)对。通常情况下,激活态的导带电子和价带空穴会重新复合为中性体(N),产生能量,以光能(hν′)或热能的形式散失掉。 TiO2+hν→e-+h+ (1) e-+h+→N+energy(hν′

TiO2光催化剂

掺氮TiO2光催化剂的制备、结构表征与光催化性能研究 姓名: 罗志勇学号: 20042401143 同组成员:潘曼、徐志锴实验时间:4月18日 1、引言 由于在太阳能转换和环境净化方面具有巨大的应用价值,光催化反应近年来受到广泛的关注。TiO 2 由于具有强氧化能力、化学性能稳定和价格低廉等优点,所以被认为是最具有实用化前景的光催化剂。但是,作为一种n型半导体,其较大的带隙能(金红石型3.03eV,锐钛矿型3.2eV)使得只有387nm以下的紫外光才能有效激发其价带电子跃迁到导带,所以对太阳 能的利用率仅仅为3%-5%,这制约了该项技术在实际工程中的应用。为了扩展Ti0 2 的响应波 长以利用太阳光,早期人们探索了以金属元素、金属氧化物掺杂或复合改性TiO 2 光催化剂,并取得了有意义的进展;但是金属元素掺杂常常会具有热不稳定性、容易成为载流子复合中心等缺点。2001年Asahi等首次通过理论计算证明以非金属元素掺杂改性的可行性。掺杂使得 TiO 2具有可见光催化活性,需满足下列要求:(1)掺杂应该在Ti0 2 带隙中形成能够吸收可见光 的能级;(2)导带最小能级,包括杂质能级,应高于TiO 2导带最小能级或高于H 2 /H 2 O电位以保 证其光还原活性;(3)形成的带隙能级应该与TiO 2 能级有足够的重叠,以保证光激发载流子在其寿命内传递到达催化剂表面的活性位置。 合成掺氮纳米二氧化钛的方法主要有溅射发、高温焙烧法、钛醇盐水解法、机械化学法、加热含Ti、N的有机前驱体法和溶胶凝胶法等。溅射法需要在真空下电离惰性气体形成等离子体,离子在靶偏压作用下轰击靶材,利用改变惰性气体成分和靶的材料就可以得到含氮量不同的掺氮二氧化钛薄膜。而高温焙烧法则是利用二氧化钛或其前驱物在含N气氛中焙烧,通过调节焙烧温度和气相中N的含量来制备不同比例的掺氮二氧化钛。机械化学法是利用各种强度较大的机械作用力使得物质的物理化学性质发生改变,从而使其与周围物质发生反应,借此得到掺氮二氧化钛。以上三种方法实施条件比较苛刻,在一般实验室中难以实现,所以本实验中没有考虑这三种方法,但是作为掺氮二氧化钛的研究,此三种方法可以为研究提供不同含N量的二氧化钛,也是合成掺氮二氧化钛的重要手段。钛醇盐水解法是利用钛醇盐在含氮水溶液中水解,从而制备出掺氮二氧化钛,这种方法可以在较低温度下达到掺杂目的,但是钛醇盐难以得到,所以该方法也不适合本实验中进行。综合的看各种合成方法,溶胶凝胶法是较为简单、有效地合成掺氮二氧化钛的方法,具体过程是在二氧化钛形成过程中引入N,N参与了钛盐水解过程或者溶胶凝胶过程,具体的机理至今仍未了解清楚。根据实际情况,本实验使用溶胶凝胶法合成掺氮二氧化钛。 掺氮二氧化钛的重要用途之一就是作为光催化剂,催化各种有机污染物的分解,经过掺

二氧化钛的光催化性能

二氧化钛的光催化性能 摘要:以廉价易得的四氯化钛为原料,利用溶胶一凝胶法制备二氧化钛,工艺 过程简单、易控制、污染少,是一种制备二氧化钛的理想方法。同时研究了催化剂用量和时间对TiO2 光催化降解甲基橙的降解率的影响,实验结果表明当催化剂用量为4 g/L,光催化时间为60 min时,降解率可达到90%以上。 关键词: 二氧化钛,制备,甲基橙,光催化 TiO2 具有化学性质稳定、催化活性高、催化简单有机物彻底、不引起二次污染等优点,在污水处理、空气净化等领域被广泛研究。它利用半导体氧化物材料在光照时表面能受激活化的特性,利用光能可有效地氧化分解有机物、还原重金属离子、杀灭细菌和消除异味,无二次污染,不仅经济,而且自身无毒、无害及无腐蚀性,还可反复使用,并可望用太阳光为反应光源等特点而被广泛地应用到光催化降解有机污染物,是一种具有广阔应用前景的绿色环境治理技术。 目前,制备二氧化钛的方法很多,分类方法也有所不同。根据物理性质,分为气相法、固相法和液相法。气相法制备出的TiO2纯度高、分散性好、团聚少、比表面活性大,但是气相法的反应要求在高温条件下瞬间完成,对反应器的选择、设备的材质,加热方法等均有很高的要求,欲达到工业化生产还要解决一系列工程问题和设备材质问题。与气相法相比,液相法具有原料廉价、无毒、常温下可以反应、工艺过程简单、易控制、污染少、产品质量稳定等优点。因此,以廉价、易得的四氯化钛为原料,利用溶胶一凝胶法制备二氧化钛是一种具有工业发展潜力的理想方法。其他实验方法 1实验部分 1.1实验试剂 99.9%的四氯化钛(分析纯)(天津市科密欧化学试剂有限公司),28%的氨水,97%的乙醇(洛阳市化学试剂厂),0.1mol/L的浓硫酸,0.1mol/L的氢氧化钠,0.1mol/L的硝酸银溶液,去离子水,二次蒸馏水 1.2 实验仪器 抽滤器烘箱 1.3 实验原理 将四氯化钛加入乙醇的水溶液中,让TiCl4水解后再加入含羟基或可释放出羟基的化合物(本实验用氨水),使其缩合,逐渐凝胶化后经干燥和煅烧可得二氧化钛粉末,反应如下: 水解反应: TiCl4 + 4C2H5OH = Ti(OC2H5)4 + 4HCl Ti(OC2H5)4 + 4H2O = Ti(OH)4↓+ 4C2H5OH 煅烧反应:

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性的评价 实验报告 班级: 组别: 指导老师: 小组成员:

实验目的: 1.培养小组自主设计及完成实验的能力和合作能力。 2. 了解纳米二氧化钛的粒性和物性。 3.掌握溶胶-凝胶法合成TiO2 的方法。 4.研究二氧化钛光催化降解甲基橙和亚甲基蓝水溶液的过程和性质。 5.通过实验,进一步加深对基础理论的理解和掌握,做到有目的合成,提高实 验思维与实验技能。 一、溶胶凝胶法制备二氧化钛 1、实验原理:纳米粉体是指颗粒粒径介于1~100 nm之间的粒子。由于颗粒 尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材 料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出 奇异的性能。 纳米TiO2具有许多独特的性质。比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热 导性能好,分散性好等。基于上述特点,纳米TiO2具有广阔的应用前景。 利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 μm)高得多;利用其透明性和散射紫外线的能力,可作食品包装材料、 木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光 敏性,可开发一种TiO2感光材料。如何开发、应用纳米TiO2,已成为各 国材料学领域的重要研究课题。目前合成纳米二氧化钛粉体的方法主要 有液相法和气相法。由于传统的方法不能或难以制备纳米级二氧化钛, 而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大 的单组分或多组分分子级纳米催化剂[1~3],因此,本实验采用溶胶-凝 胶法来制备纳米二氧化钛光催化剂。 制备溶胶所用的原料为钛酸四丁脂(Ti(O-C4H9)4)、水、无水乙醇(C2H5OH)以及冰醋酸。反应物为Ti(O-C4H9)4和水,分相介质为C2H5OH,冰醋酸可调节体系的酸度防止钛离子水解过速。使Ti(O-C4H9)4在 C2H5OH中水解生成Ti(OH)4,脱水后即可获得TiO2。在后续的热处理过 程中,只要控制适当的温度条件和反应时间,就可以获得金红石型和锐

二氧化钛光催化剂研究进展

二氧化钛光催化剂研究进展 工业催化张春明 摘要:催化是工业生产中追求高效率、高纯度、低耗能的有效手段。纳米TIO2以光催化凭着可以利用可见光进行催化反应而受到催化领域的亲昧,就纳米TIO2光催化剂目前的研究状况展开论述,并列举了TIO2光催化剂应用领域和目前的制备方法。讨论了光催化剂的发展前景,揭示了目前光催化技术对当代化工事业的影响,并对未来的发展发表了预期的倡想。 关键词:二氧化钛光催化剂纳米材料研究进展 前言 通俗意义上讲触媒就是催化剂的意思,光触媒顾名思义就是光催化剂。催化剂是加速化学反应的化学物质,其本身并不参与反应。光催化剂就是在光子的激发下能够起到催化作用的化学物质的统称。 光催化技术是在20世纪70年代诞生的基础纳米技术,在中国大陆我们会用光触媒这个通俗词来称呼光催化剂。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 目前光催化反应已经在废水处理这一领域逐渐成效。光催化氧化具有很强的氧化能力,在环境污染治理等方面显示出了巨大的应用潜力,是近年来国内外的一个热点研究领域。由于TiO2半导体光催化具有生物降解所无可比拟的速度快、无选择性、降解完全等优点,又在价廉、无毒、可以长期使用等方面明显优于传统的化学氧化方法,在环境污染治理方面具有广阔的应用前景。另外最新研究成果显示将TIO2 光催化分子负于磁性,可有效的进行分离回收和再生循环使用。因此,可磁分离的技术的研究成果更为TIO2 光催剂的应用进展画上了光辉的一笔。 作为高新技术纳米材料。纳米TiO2的制备方法主要分为气相法和液相法,前者包括氢氧火焰水解法、气相氧化法、钛酸盐气相水解法和气相分解法等,后者则包括溶胶一凝胶法、微乳法、水解法、水热合成法和一步合成法等。尽管气相法制备的TiO2粉体粒度小、纯度高、分散性好,但工艺复杂、成本高且对设备和原料的要求较高。相比而言,液相法制备TiO2的工艺简单、成本低廉、设备投资小,已成为国内研究纳米TiO2常用的方法。现主要列举有关制备TiO2 光催化剂的研究进展。 1.光催化剂 光催化是在光的辐照下使催化剂周围的氧和水转化成极具活性的氧自由基,氧化能力极强,几乎可分解所有对人体或环境有害的有机物质。可用作光催化剂化合物,大多是具有半导体性质的,如Ti02、ZnO、WO3以及CdS、ZnS等。TiO2是最常用的光催化剂,因为他的光化学稳定性好,无毒且与人体相容性好[1]。 1.1.光催化反应的发现 1972年Fujishima等[7]报道了在可持续发生水的氧化还原反应,并产生氢气,这个特性引起了环保领域科研工作者的极大兴趣,从此开创了半导体光催化技术的新纪元。TiOz因光催化活性高、氧化能力强、无毒、化学稳定性好、价廉等优点而最受重视。在提高半导体催化活性方面,金属或金属氧化物与半导体复合组成的光催化剂发展得非常迅速,制备和开发纳米二氧化钛成为国内外科技界研究的热点。 1.2.Ti02光催化剂作用原理 当Ti02吸收光子能量后,其价带上的一个电子跃迁到导带;原价带保留一个空缺,称为空穴,带正电荷。跃迁电子和电空穴都及不稳定,可供给周围介质,使其还原或氧化。因为Ti02的带隙宽约为

二氧化钛的制备与光催化性能研究

合肥学院学生专题训练实验报告 合肥学院化学与材料工程系 二氧化钛光催化剂的制备及光催化性能的研究实验 实验目的: 让化学本科生尽早了解和掌握光催化原理,熟悉光催化剂的制备和光催化反应,在大量研究工作的基础上,设计涉及纳米光催化剂的制备、催化剂的简单表征和催化活性评价的综合性实验。让学生能够对光催化具有较好的了解。 实验原理: 当光子能量高于半导体带隙能(如TiO2,其带隙能为3.2eV)的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带。从而使导带产生高活性的电子(e),而价带上则生成带正电的空穴(h+),形成氧化还原体系,挤在表面产生具有高活性的羟基自由基。具有很强的氧化性,可以氧化很多难降解的有机化合物(R)。 粉体的制备可采用许多方法,如溶胶-凝胶法,水热合成法等。 本次试验采用溶胶-凝胶法。 仪器与试剂: 表1 实验药品 药品名称化学式纯度生产厂家 浓硝酸HNO3AR 上海化学试剂有限公司

无水乙醇CH2CH2OH AR 上海中试化工总公司 钛酸丁酯(TBT)[CH3(CH2)3O]4Ti AR 天津市光复精细化工研究所冰醋酸CH3COOH AR 上海振企化学试剂有限公司亚甲基蓝 表2 实验仪器 仪器设备名称型号生产厂家主要用途磁力加热搅拌器85-2 江苏金坛市精达仪器制造厂搅拌反应液电子天平ER-180A 广州市艾安得仪器有限公司准确称量 超声波清洗器KQ-400K DE 昆山市超声仪器有限公司超声分散 高速离心机TG16G 盐城凯特实验仪器有限公司高速离心 电热恒温鼓风干燥箱DHG-902 3A 上海市精宏实验设备有限公司样品干燥 紫外可见分光光度计TU-1901 北京普析通用仪器有限责任公司性能测试 图1 实验装置图 实验过程: 一:TiO2的制备 量取17mL钛酸丁酯,在磁力搅拌器搅拌下滴加入到22mL的无水乙醇中,制得钛酸丁酯/乙醇溶液(A);将22mL无水乙醇和一定量蒸馏水混合,并加入一定量的浓硝酸和冰醋酸,调节pH值在2~3之间(B)。将B以2d/s的速度在磁力搅拌器快速搅拌下滴入A中;滴完后继续搅拌,形成均匀溶胶之后,持续快速搅拌至反应器中无气泡产生;将混合后的溶胶抽虑;所得样品至于电热恒温鼓风干燥箱中于95℃干燥三个小时。将干燥后的样品研磨放入马弗炉中于500℃下煅烧处理,升温速率为3℃/min,保温时间为2h,自然冷却至室温,研磨,即得所需产品,待用。二:实验现象

相关文档
最新文档