TiO2光催化原理及应用

合集下载

纳米TiO2光催化降解水体中有机污染物

纳米TiO2光催化降解水体中有机污染物

纳米TiO2光催化降解水体中有机污染物纳米TiO2光催化技术为一种有效的水体净化方法,可用于降解水体中的有机污染物。

本文将详细介绍纳米TiO2光催化降解有机污染物的原理、应用和未来发展趋势。

1. 简介水体污染是当前环境问题的重要方面之一,有机污染物的存在严重威胁水生态系统的健康和人类的生存。

因此,研究和开发高效的水体净化技术变得尤为重要。

纳米TiO2光催化技术凭借其高效、无毒、无副产物、易操作等优势,被广泛应用于水体净化领域。

2. 纳米TiO2光催化的原理纳米TiO2光催化技术是通过TiO2纳米颗粒的吸光吸收能量,形成带隙激发,产生电子和空穴对,进而参与化学反应。

在光照的作用下,纳米TiO2表面形成活性氧种,如羟基自由基和超氧阴离子自由基等,这些活性氧种具有较强的氧化能力,可将有机污染物分解为无害的物质。

3. 纳米TiO2光催化应用案例纳米TiO2光催化技术在水体净化领域有着广泛的应用。

以染料为例,纳米TiO2光催化技术可将有机染料降解为无色的无害物质。

此外,纳米TiO2光催化技术还可用于降解苯酚、有机酸类、农药等有机污染物。

这些应用案例充分展示了纳米TiO2光催化技术在水体净化中的潜力和优势。

4. 纳米TiO2光催化的改进方向虽然纳米TiO2光催化技术具有广泛的应用前景,但仍然存在一些问题需要解决。

首先,纳米TiO2材料的光催化效率仍有提升空间,需要进一步改进催化剂的结构和合成方法。

其次,纳米TiO2光催化技术受光照强度、温度等外部条件的影响较大,需要优化反应条件以提高降解效率。

此外,考虑到纳米TiO2颗粒对环境的潜在风险,还需要研究纳米TiO2的生物降解性以及对水生态系统的影响等问题。

5. 结论纳米TiO2光催化技术作为一种高效、环保的水体净化方法,具有重要的应用前景。

通过对纳米TiO2的研究和改进,可以进一步提高光催化降解有机污染物的效果,为水体净化事业做出更大的贡献。

未来,纳米TiO2光催化技术有望成为一种重要的工程应用,为改善水环境质量和保护生态环境做出积极的贡献。

tio2光催化氧化技术

tio2光催化氧化技术

tio2光催化氧化技术文章标题:TIO2光催化氧化技术:从原理到应用的逐步解析引言:TIO2光催化氧化技术是一种通过利用钛白粉(TiO2)在紫外光照射下产生的催化作用来降解及去除有害物质的环境治理技术。

该技术具有高效、无污染、自洁性等优点,因而在空气净化、水处理、有机废弃物处理等领域展现出广阔的应用前景。

本文将从原理、催化剂的制备、反应条件的优化以及应用领域四个方面逐步解析TIO2光催化氧化技术的实施过程。

第一部分:原理的解析TIO2光催化氧化技术的核心原理是光催化效应。

当钛白粉受到紫外光照射时,导带上的电子被激发到价带上,形成电子空穴对。

电子空穴对之间的迁移与它们与溶液中有机污染物之间的氧化反应同时发生。

TIO2表面吸附的有机污染物在电子空穴对的作用下,经历一连串的氧化反应,最终转化为无害的物质。

催化剂的选择和制备工艺是实现高效光催化氧化的关键。

第二部分:催化剂的制备催化剂的制备包括物理法、化学法和物理化学方法。

物理法主要是利用物理能量引起物料结构的改变,如溅射法等;化学法通常是通过溶液反应合成催化剂,如溶胶-凝胶法、水热法等;而物理化学方法则是将物理和化学方法结合使用,如浸渍法、气相法等。

不同的制备方法将导致催化剂的物理和化学性质产生差异,进而影响催化效果。

第三部分:反应条件的优化反应条件的优化在TIO2光催化氧化技术中至关重要。

反应条件包括溶液pH值、催化剂浓度、反应温度、光照强度等。

适当调节反应条件可以提高光催化效果。

例如,适当增加溶液pH值有助于提高催化效果,而过高的催化剂浓度可能导致催化剂之间的覆盖效应,从而减缓反应速率。

反应温度的升高可以加快有机废物的降解速度,但过高的温度可能对催化剂的稳定性产生不利影响。

第四部分:应用领域的探索TIO2光催化氧化技术在空气净化、水处理以及有机废弃物处理等领域均有广泛应用。

在空气净化方面,TIO2催化剂可用于去除大气中的有机污染物和臭氧;在水处理方面,通过TIO2光催化氧化技术可以降解废水中的有机物、重金属离子等;在有机废弃物处理方面,利用TIO2光催化氧化技术可以有效降解有害物质。

tio2光催化析氢

tio2光催化析氢

tio2光催化析氢一、概述TIO2光催化析氢是一种利用可见光或紫外光照射下的二氧化钛催化剂,将水分解成氢气和氧气的技术。

它具有高效、环保、可持续等优点,被广泛应用于能源、环保等领域。

二、TIO2的性质1. 物理性质TIO2是一种白色晶体粉末,无味无臭,不溶于水和有机溶剂。

它具有高硬度、高熔点和高热稳定性等特点。

2. 化学性质TIO2是一种弱碱性物质,在酸性条件下易溶解,并与酸反应生成相应的盐。

它还可以与金属离子形成络合物。

3. 光学性质TIO2在紫外光下表现出良好的吸收能力,而在可见光下则表现出较差的吸收能力。

这是由于其带隙能量较大所致。

三、TIO2光催化析氢的原理1. 光催化反应机理当二氧化钛吸收到光子后,会产生电子-空穴对,并形成电子和空穴的超强氧化还原能力。

在水中,电子和空穴会与水分子发生反应,生成氢气和氧气。

2. 影响催化效率的因素TIO2光催化析氢的效率受多种因素影响,包括催化剂的晶体结构、表面形貌、掺杂物种类和浓度、光照强度等。

四、TIO2光催化析氢的应用1. 水处理TIO2光催化技术可以有效地去除污染物,如重金属离子、有机物等。

它被广泛应用于水处理领域,具有高效、环保等优点。

2. 氢能源TIO2光催化技术可以将太阳能转化为氢能源,具有可持续性和环保性。

它被认为是一种重要的新能源技术。

3. 空气净化TIO2光催化技术可以将空气中的有害物质转化为无害物质,如将甲醛转化为二氧化碳和水。

它被广泛应用于空气净化领域。

五、结论随着环境污染问题的日益严重和新能源需求的不断增加,TIO2光催化析氢技术将在未来得到更广泛的应用。

同时,我们也需要不断地研究和改进这项技术,以提高其效率和稳定性。

二氧化钛光催化反应方程式

二氧化钛光催化反应方程式

二氧化钛光催化反应方程式引言光催化技术是一种利用光能将物质转化为其他形式的技术。

在光催化反应中,二氧化钛(TiO2)是最常用的催化剂之一。

二氧化钛光催化反应方程式描述了二氧化钛在光照条件下催化反应的过程。

本文将详细探讨二氧化钛光催化反应方程式及其应用。

二氧化钛光催化反应方程式的基本原理光催化反应是通过将光能转化为化学能,促使化学反应发生。

二氧化钛在光照条件下具有良好的光催化性能,可以催化多种反应。

二氧化钛光催化反应方程式描述了二氧化钛在光照条件下催化反应的化学过程。

二氧化钛的光催化性能源于其特殊的电子结构。

二氧化钛是一种半导体材料,其带隙宽度较大,能够吸收可见光和紫外光的能量。

当二氧化钛受到光照时,光子激发了二氧化钛中的电子,使其跃迁到导带中。

在导带中,电子具有较高的能量,可以参与化学反应。

二氧化钛的光催化反应方程式通常包括两个基本步骤:光激发和反应发生。

在光激发步骤中,二氧化钛吸收光子能量,激发电子跃迁到导带中。

在反应发生步骤中,光激发的电子参与化学反应,与其他物质发生相互作用,从而催化反应的进行。

二氧化钛光催化反应方程式的应用二氧化钛光催化反应方程式在许多领域中得到了广泛的应用。

以下是几个常见的应用领域:1. 环境污染治理二氧化钛光催化反应可以有效地降解有机污染物。

光催化反应通过将有机污染物分解为无害的物质,从而净化水和空气。

例如,光催化反应可以降解废水中的有机染料和有机溶剂,净化废气中的有机污染物。

2. 水分解产氢二氧化钛光催化反应可以促进水的光解反应,产生氢气。

光催化水分解是一种可持续发展的产氢方法,可以利用太阳能转化为化学能。

这种方法具有环境友好、无污染和可再生的优点,有潜力成为未来氢能源的重要来源。

3. 光催化杀菌二氧化钛光催化反应可以杀灭细菌和病毒,具有抗菌和消毒的能力。

光催化杀菌可以应用于饮用水处理、医疗器械消毒等领域。

相比传统的消毒方法,光催化杀菌无需添加化学物质,避免了二次污染的问题。

TiO2光催化原理及应用

TiO2光催化原理及应用

TiO2光催化原理及应用一.前言在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。

根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。

长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界范围内每年大概有200 万人由于水传播疾病死亡。

水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。

常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。

包括我国在内世界范围内广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。

臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。

这些缺点限制了它们的应用范围,迫切需要发展一种高效、绿色、简单的净化水技术。

自然界中,植物、藻类和某些细菌能在太阳光的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。

这种光合作用是一系列复杂代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。

光化学反应的过程与植物的光合作用很相似。

光化学反应一般可以分为直接光解和间接光解两类。

直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。

直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。

间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。

半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。

半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。

纳米tio2的光催化原理及其应用

纳米tio2的光催化原理及其应用

纳米tio2的光催化原理及其应用下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documents can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!纳米TiO2的光催化原理及其应用。

TiO2光催化反应及其在废水处理中的应用

TiO2光催化反应及其在废水处理中的应用

TiO2光催化反应及其在废水处理中的应用随着人口的增加和工业化的快速发展,水资源的污染问题日益突出,给环境和人类健康带来了巨大威胁。

因此,寻找高效、低成本的废水处理技术变得尤为重要。

TiO2光催化反应由于其高效、环境友好的特点,在废水处理中得到了广泛应用。

TiO2是一种常见的金属氧化物,具有良好的稳定性、耐腐蚀性和光催化性能。

光催化反应是指在光照下,光催化剂吸收光能产生活性氧物种,通过氧化还原反应将有机污染物转化为无害的物质。

TiO2光催化反应的原理主要基于其能带结构和表面活性位点。

当光照入射到TiO2表面时,激活光子会激发电子从价带跃迁到导带,产生电子-空穴对。

电子和空穴在晶体内部进行迁移,发生氧化还原反应。

此外,TiO2表面的羟基(OH)和缺陷位点也可以吸附有机污染物,提高催化剂的活性。

尽管TiO2光催化反应具有良好的光催化性能,但纯TiO2的光响应范围较窄,主要在紫外线(UV)区域。

为了拓展其光响应范围,研究者们通过掺杂、复合和修饰等方法进行了改性。

掺杂将其他金属或非金属元素引入TiO2晶格中,改变了其能带结构和吸收光谱。

复合将TiO2与其他材料进行复合,形成新的光催化剂。

修饰利用纳米材料对TiO2进行修饰,增强了其光催化性能。

这些方法不仅提高了光催化剂的光响应范围,还改善了其光催化效率。

在废水处理中,TiO2光催化反应被广泛应用于去除有机物、重金属离子和细菌等污染物。

有机污染物是废水中主要的污染源之一,包括有机溶剂、农药、染料和药物等。

这些物质具有难降解性和毒性,传统的废水处理方法往往效果不佳。

而TiO2光催化反应能够将有机污染物降解为无害的物质,大大提高了废水处理的效果。

重金属离子是废水中另一个常见的污染物,具有持久性和生物蓄积性。

TiO2光催化反应能够将重金属离子还原为金属,或通过与金属形成络合物沉淀,有效去除废水中的重金属污染物。

此外,TiO2光催化剂还可以发生光生杀菌作用,通过破坏细菌细胞结构和代谢功能来净化废水。

光催化剂的原理和应用实例

光催化剂的原理和应用实例

光催化剂的原理和应用实例1. 光催化剂的原理介绍光催化剂是一种利用光照下产生的电子和空穴进行化学反应的催化剂,广泛应用于环境净化、能源转换、有机合成等领域。

其原理主要基于半导体的光电效应和催化反应。

光催化剂一般由半导体材料构建,例如二氧化钛(TiO2)、氧化锌(ZnO)等。

这些半导体材料具有宽能隙,能够吸收可见光或紫外光进行电子激发。

当光照射到半导体表面时,光子能量被吸收,激发产生电子-空穴对。

其中,电子具有还原性,可以参与氧化反应;空穴具有氧化性,可以参与还原反应。

在光催化过程中,半导体表面吸附的污染物或有机物会被电子和空穴进行氧化还原反应,生成无害物质。

同时,光催化剂通过吸附光照,还可以产生活性氧物种,如羟基自由基(•OH),其具有高度氧化性,可以进一步降解有机污染物。

2. 光催化剂的应用实例2.1 环境净化光催化剂在环境净化方面有着广泛的应用。

通过利用光催化剂的性质,可以高效地降解空气中的有机污染物、甲醛、苯系物质等,净化空气,改善室内和室外环境。

以二氧化钛(TiO2)为例,可以将其制备成薄膜、纳米球、纳米棒等形式,用于室内空气净化器、车内空气净化器等产品中。

在光照下,TiO2能够降解有机污染物为无害物质,提高空气质量。

2.2 水处理光催化剂在水处理领域也有着广泛的应用。

通过光催化剂的光电解和光氧化作用,可以高效地降解水中的有机物、色素、重金属等污染物,达到净化水质的目的。

例如,光催化剂可以用于太阳能光催化水分解产氢。

在光照下,光催化剂产生的电子和空穴参与水分子的分解反应,生成氢气和氧气,实现清洁能源的生产。

2.3 有机合成光催化剂也可以应用于有机合成领域。

通过光催化剂的激发效应,可以实现有机物的氧化、还原、打断键合等反应,实现高效、绿色的有机合成。

光催化剂在有机合成中的应用例子有很多,例如光催化羟醇类化合物的合成、光催化醛类化合物的还原等。

通过光催化剂的催化作用,可以提高反应速率和选择性,减少副反应产物的生成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TiO2光催化原理及应用一.前言在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。

根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。

长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界范围内每年大概有200 万人由于水传播疾病死亡。

水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。

常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。

包括我国在内世界范围内广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。

臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。

这些缺点限制了它们的应用范围,迫切需要发展一种高效、绿色、简单的净化水技术。

自然界中,植物、藻类和某些细菌能在太阳光的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。

这种光合作用是一系列复杂代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。

光化学反应的过程与植物的光合作用很相似。

光化学反应一般可以分为直接光解和间接光解两类。

直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。

直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。

间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。

半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。

半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。

与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。

光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。

第二,光催化可利用紫外光或太阳光作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。

二.TiO2的性质及光催化原理许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。

但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。

在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。

TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板钛矿的光催化性能和稳定性最差,基本没有相关的研究和应用。

而锐钛矿型和金红石型均属四方晶系,两种晶型都是由相互连接的TiO6八面体组成的,每个Ti原子都位于八面体的中心,且被6个O原子围绕。

两者的差别主要是八面体的畸变程度和相互连接方式不同。

金红石和锐钛矿晶胞结构的差异也导致了这两种晶型物化性质的不同。

从热力学角度看,金红石是相对最稳定的晶型,熔点为1870℃;而锐钛矿是二氧化钛的低温相,一般在500℃~600℃时转变为金红石。

二氧化钛晶型转变的实质是晶胞结构组成单元八面体的结构重排。

金红石晶型结构中原子排列更加致密,密度、硬度、介电常数更高,对光的散射也更大。

因此,金红石是常用的白色涂料和防紫外线材料,对紫外线有非常强的屏蔽作用,在工业涂料和化妆品方面有着广泛的应用。

锐钦矿的带隙宽度为稍大于金红石的,光生电子和空穴不易在表面复合,因而具有更高的光催化活性能够直接利用太阳光中的紫外光进行光催化降解,而且不会引起二次污染。

因此,锐钛矿是常用的处理环境污染方面问题的光催化材料。

TiO2的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而跃迁至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+)。

如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。

TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,生成超氧自由基·O2-;而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成羟基自由基·OH;·OH和·O2-的氧化能力极强,几乎能够使各种有机物的化学键断裂,因而能氧化绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO2和H2O等物质。

反应过程如下:TiO2+ hv → h+ +e-h+ + OH-→ ·O Hh+ + H2O →·OH + H+e- + O2→·O2-H2O + ·O2-→ HO2· + OH-2HO2·+e-+H2O→H2O2+OH-H2O2 + e- → ·OH+OH-H2O2 + ·O2-→ ·OH+H+·OH + dye →···→ CO2 + H2O·O2-+ dye →···→ CO2 + H2O当然也会发生,光生电子与空穴的复合:h+ + e-→ 热能由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。

羟基自由基是含有一个未成对电子自由基,这使得它几乎能跟水中的几乎所有机污染物和大部分的无机污染物反应。

它与污染物的反应速度非常快,反应速度仅仅受限于羟基自由基在水中的扩散速度。

羟基自由基与污染物的反应机理主要包括在不饱和的双键、三键上的加成反应,氢取代和电子的转移。

很多研究表明,羟基自由基在光催化降解的过程中起主导作用。

虽然超氧自由基、单基态氧和双氧水的氧化电位低于羟基自由基,但是他们在降解的过程中也起到不可或缺的作用。

TiO2光催化主要通过生成的含氧自由基与水中的污染物反应,达到降解的目的,并且最终产生对环境无害的水、二氧化碳、氮气等。

TiO2光催化可以同时产生带正电荷的空穴以及带有负电荷的电子,这使得催化体系既有氧化能力又有还原能力。

所以剧毒的三价砷(砒霜的有效成分就是三价砷)可以被氧化成低毒的五价砷,对人有害的六价铬被还原成无毒的三价铬。

TiO2作为光催化剂它具有以下几个优点:1. 把太阳能转化为化学能加以利用。

2. 降解速度快,光激发空穴产生的·OH是强氧化自由基,可以在较短的时间内成功的分解包括难降解有机物在内的大多数有机物。

3. 降解无选择性,几乎能降解任何有机污染物。

4. 降解范围广,几乎对所有的污水都可以采用。

5. 具有高稳定性、耐光腐蚀、无毒等特点,并且在处理过程中不产生二次污染;有机污染物能被氧化降解为CO2和H2O,并且其对人体无毒。

6. 反应条件温和,投资少,能耗低,用紫外光照射或暴露在太阳光下即可发生光催化化学反应。

7. 反应设备简单,易于操作控制。

光催化反应具有稳定性,一般情况下,负载TiO2光催化剂能多次使用,不影响反应效果,催化作用持久长效。

三.TiO2的应用领域TiO2能有效的将废水中的有机物、无机物氧化或还原为CO2、PO43-、SO42-、NO3-、卤素离子等无机小分子,达到完全无机化的目的。

染料废水、农药废水、表面活性剂、氯代物、氟里昂、含油废水等都可以被TiO2催化降解。

而且TiO2具有杀菌效果,这种特性几乎是无选择性的,包括各种细菌和病毒。

·OH起主导作用的反应较复杂:·OH既可以与表面Ti缔合成Ti4+HO·来氧化表面污染物,也可以扩散到液相中来氧化污染物:对于二者共同作用来说,表面氧化反应和液相氧化反应应该是同时进行的。

这可归结为反应物、中间体与产物在催化剂表面上进行的竞争吸附导致反应位置由催化剂表面向液相中转移。

现已发现有300多种有机物可被光催化分解,而且美国环保局公布的114种有机物均被证实可通过光催化氧化降解矿化。

可采用TiO2光催化处理的有机废水及有机物的种类如下:染料废水:甲基橙、甲基蓝、罗丹明-6G、罗丹明B、水杨酸、羟基偶氮苯、水杨酸、分散大红、含磺酸基的极性偶氮染料等。

农药废水:除草剂、有机磷农药、三氯苯氧乙酸、2,4,5-三氯苯酚,DDVP、DTHP、DDT等等。

表面活性剂:十二磺基苯磺酸钠、氯化卞基十二磺基二甲基胺、壬基聚氧乙烯苯、乙氧基烷基苯酚等。

氯代物:三氯乙烯、三氯代苯、三氯甲烷、四氯化碳、4-氯苯酚、2-氯代二苯并嗯英、7-氯代二苯并二嗯英、多氯代二苯并二嗯英、四氯联苯、氟里昂、五氟苯酚、氟代烯烃、氟代芳烃等。

油类:水面漂浮油类及有机污染物。

许多无机物在TiO2表面也具有光化学活性,早在1977年就有科学研究人员用TiO2悬浮粉末光解Cr2O72-,将其还原为Cr3+。

利用二氧化钛催化剂的强氧化还原能力,可以将污水中汞、铬、铅、以及氧化物等降解为无毒物质。

TiO2光催化剂能将CN-氧化为OCN-,再进一步反应生成CO2、N2和NO3-的过程,如TiO2光催化法从Au(CN)4中还原Au,同时氧化CN-为NH3和CO2的过程,二氧化钛光催化用于电镀工业废水的处理,不仅能还原镀液中的贵金属,而且还能消除镀液中氰化物对环境的污染,是一种有实用价值的处理方法。

在保洁除菌方面的研究,Matsunaga在1958年首先发现二氧化钛(TiO2)在金卤灯照射下,能有效杀灭乳干嗜酸菌、酵母菌和大肠杆菌等细菌。

进一步研究还发现,在光催化反应过程中产生的高氧化性羟基自由基(·OH),可有效破坏细菌的细胞壁和凝固病毒的蛋白质,从而灭活它们。

并且,这种杀菌效果几乎是无选择性的,包括各种细菌和病毒。

因此,从20世纪90年代以来,日本在其实施的环境空气恶臭管理法的推动下,大力开展大气除臭、净化、防污、抗菌、防霉、防雾等工作。

与此同时,日本学者Fujishima等人研究发现在玻璃、陶瓷表面涂上一层TiO2透明薄膜,经光照后,表面具有灭菌、除臭和防污自洁功能,从而开辟了光催化剂薄膜功能材料研究这一新领域。

3.1室内有害挥发性有机物的治理随着物质生活的提高,居室装修和家用电器、家具的大量使用,室内挥发性有害有机化合物(V olatile organic compounds ,VOCs)的释放源在不断的增多,人类进入到以“室内空气污染”为标志的第三污染时期,室内空气污染已被列为全球四个关键的环境问题之一。

相关文档
最新文档