【三维设计】2016届(新课标)高考数学(文)大一轮复习课件:第4章 第四节 数系的扩充与复数的引入
【三维设计】高考数学大一轮复习讲义(备考基础查清+热点命题悟通)第四章 平面向量、数系的扩充与复

第四章 平面向量、数系的扩充与复数的引入第一节平面向量的概念及其线性运算对应学生用书P591.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 2.向量的线性运算平行四边形法则向量a (a≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .1.作两个向量的差时,要注意向量的方向是指向被减向量的终点;2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个; 3.要注意向量共线与三点共线的区别与联系. [试一试]1.(2013²苏锡常镇二调)如图,在△OAC 中,B 为AC 的中点,若OC=x OA +y OB(x ,y ∈R ),则x -y =________.解析:法一:(直接法)根据图形有⎩⎪⎨⎪⎧OC =OA +AC , AC =2AB, AB=OB-OA ,所以OC =OA +2(OB -OA ),所以OC =-OA +2OB ,而OC =x OA +y OB ,所以⎩⎪⎨⎪⎧ x =-1,y =2,故x -y =-3.法二:(间接法)由B 为AC 的中点得OC +OA =2OB ,所以OC =-OA +2OB ,而OC =x OA +y OB ,所以⎩⎪⎨⎪⎧x =-1,y =2,故x -y =-3.答案:-32.若菱形ABCD 的边长为2,则|AB -CB+CD |=________.解析:|AB -CB +CD |=|AB +BC +CD |=|AD|=2.答案:21.向量的中线公式若P 为线段AB 的中点,O 为平面内一点,则OP =12(OA +OB).2.三点共线等价关系A ,P ,B 三点共线⇔AP =λAB(λ≠0)⇔ OP =(1-t )²OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP =x OA +y OB(O 为平面内异于A ,P ,B 的任一点,x∈R ,y ∈R ,x +y =1).[练一练]1.D 是△ABC 的边AB 上的中点,若CD =x BA+y BC ,则x +y =________.解析:∵CD =BD -BC =12BA -BC ,则x =12,y =-1∴x +y =-12.答案:-122.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 解析:由题意知a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.答案:-13对应学生用书P60向量的有关概念1.①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =CD是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.解析:①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB =DC ,∴|AB |=|DC |且AB ∥DC,又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,则AB ∥DC 且|AB |=|DC |,因此,AB =DC.③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.⑤不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是②③. 答案:②③.2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是________.解析:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.答案:3[备课札记] [类题通法]平面向量中常用的几个结论(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)向量可以平移,平移后的向量与原向量是相等向量.解题时不要把它与函数图像的平移混为一谈.(3)a |a |是与a 同向的单位向量,-a|a |是与a 反向的单位向量. 向量的线性运算[典例] (2013²江苏高考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE =λ1AB+λ2AC (λ1,λ2为实数),则λ1+λ2的值为________.[解析] 由题意DE =DB +BE =12AB +23BC =12AB +23(BA +AC )=-16AB+23AC , 所以λ1=-16,λ2=23,即λ1+λ2=12.[答案] 12[备课札记]解析:∵CD =CA +AD ,CD =CB +BD ,∴2CD =CA +CB +AD +BD .又∵AD =2BD ,∴2CD =CA +CB +13AB=CA +CB +13(CB -CA )=23CA+43CB . ∴CD =13CA +23CB ,即λ=23.答案:23[类题通法]在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.[针对训练]若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB +CD =BC +DA ;②AC +BD =BC +AD; ③AC -BD =DC +AB.其中正确的有________个.解析:①式的等价式是AB -BC =DA -CD ,左边=AB +CB ,右边=DA +DC,不一定相等;②式的等价式是AC -BC =AD -BD ,AC +CB =AD +DB =AB成立;③式的等价式是AC -DC =AB +BD ,AD =AD成立.答案:2共线向量定理的应用[典例] (1)若AB=a +b ,BC =2a +8b ,CD =3(a -b ),求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.[解] (1)证明:∵AB=a +b ,BC =2a +8b ,CD =3(a -b ),∴BD =BC +CD =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB. ∴AB ,BD共线,又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量, ∴k -λ=λk -1=0, ∴k 2-1=0.∴k =±1.[备课札记] [类题通法]1.共线向量定理及其应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值.(2)若a ,b 不共线,则λa +μb =0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB=λAC ,则A 、B 、C 三点共线.[针对训练]已知a ,b 不共线,OA =a ,OB =b ,OC =c ,OD =d ,OE=e ,设t ∈R ,如果3a=c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD =d -c =2b -3a ,CE=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE =k CD,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b . 因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.对应学生用书P61[课堂练通考点] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量. ②两个向量不能比较大小,但它们的模能比较大小. ③λa =0(λ为实数),则λ必为零.④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的有________个.解析:①错误,两向量共线要看其方向而不是起点或终点.②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a =0时,不论λ为何值,λa =0.④错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量. 答案:32.如图,已知AB =a ,AC =b ,BD =3DC ,用a ,b 表示AD,则AD=________.解析:∵CB =AB -AC=a -b ,又BD=3DC , ∴CD =14CB =14(a -b ),∴AD =AC +CD =b +14(a -b )=14a +34b .答案:14a +34b3.(2013²苏锡常镇二调)已知点P 在△ABC 所在的平面内,若2PA +3PB+4PC =3AB,则△PAB 与△PBC 的面积的比值为________.解析:因为2PA +3PB +4PC =3AB,所以2PA +3PB +4PC =3PB -3PA,即5PA+4PC =0,所以△PAB 与△PBC 的面积的比为PA ∶PC =4∶5. 答案:454.(2014²“江南十校”联考)如图,在△ABC 中,∠A =60°,∠A 的平分线交BC 于D ,若AB =4,且AD =14AC +λAB(λ∈R ),则AD 的长为________.解析:因为B ,D ,C 三点共线,所以有14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN =14AC ,AM=34AB , 经计算得AN =AM =3,AD =3 3. 答案:3 35.在▱ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN=________(用a ,b 表示).解析:由AN =3NC 得4AN=3AC =3(a +b ), AM =a +12b ,所以MN =34(a +b )-⎝ ⎛⎭⎪⎫a +12b =-14a +14b .答案:-14a +14b6.设点M 是线段BC 的中点,点A 在直线BC 外,BC 2=16,|AB +AC |=|AB -AC|,则|AM|=________.解析:由|AB +AC |=|AB -AC |可知,AB ⊥AC,则AM 为Rt △ABC 斜边BC 上的中线,因此,|AM |=12|BC|=2.答案:2 [课下提升考能] 第Ⅰ组:全员必做题1.设a 、b 是两个非零向量,下列结论正确的有________.(填写序号) ①若|a +b |=|a |-|b |,则a ⊥b ②若a ⊥b ,则|a +b |=|a |-|b |③若|a +b |=|a |-|b |,则存在实数λ,使得b =λa ④若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |解析:对于①,可得cos a ,b =-1,因此a ⊥b 不成立;对于②,满足a ⊥b 时|a +b |=|a |-|b |不成立;对于③,可得cos a ,b =-1,因此成立,而④显然不一定成立. 答案:③2.(2013²徐州期中)设O 是△ABC 内部一点,且OA +OC =-2OB,则△AOB 与△AOC的面积之比为________.解析:设M 为边AC 的中点.因为OA +OC =-2OB,所以点O 是△ABC 的中线BM 的中点,从而所求面积之比为1∶2.答案:1∶23.在△ABC 中,N 是AC 边上一点,且AN =12NC ,P 是BN 上的一点,若AP =m AB+29AC,则实数m 的值为________.解析:如图,因为AN =12NC,所以AN =13AC ,AP =m AB +29AC =m AB +23AN,因为B 、P 、N 三点共线,所以m +23=1,所以m =13.答案:134.(2013²南通期中)设D ,P 为△ABC 内的两点,且满足AD =14(AB +AC ),AP=AD +15BC ,则S △APDS △ABC=________.解析:设E 为边BC 的中点.由AD =14(AB +AC)可知,点D 在△ABC 的中线AE 上,且AD =12AE ,由AP =AD +15BC ,得DP =15BC,利用平面几何知识知S △APD S △ABC =12³15=110. 答案:1105.(2014²南通期末)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且3a BC +4b CA+5c AB=0,则a ∶b ∶c =________.解析:在△ABC 中有BC +CA +AB=0,又3a BC +4b CA +5c AB =0,消去AB 得(3a -5c ) BC +(4b -5c ) CA=0,从而3a -5c =0,4b -5c =0, 故a ∶b ∶c =20∶15∶12. 答案:20∶15∶126.(2014²淮阴模拟)已知△ABC 和点M 满足MA +MB +MC=0.若存在实数m 使得AB +AC =m AM成立,则m =________.解析:由题目条件可知,M 为△ABC 的重心,连接AM 并延长交BC 于D ,则AM =23AD,因为AD 为中线,则AB +AC =2AD =3AM,所以m =3. 答案:37.(2014²苏北四市质检)已知a ,b 是非零向量,且a ,b 的夹角为π3,若向量p =a|a |+b|b |,则|p |=________. 解析:a |a |和b|b |分别表示与a ,b 同向的单位向量,所以长度均为1.又二者的夹角为π3,故|p |= 1+1+2³1³1³cos π3= 3.答案: 38.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC =a ,CA=b ,给出下列命题:①AD =12a -b ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确命题的个数为________.解析:BC =a ,CA =b ,AD =12CB+AC=-12a -b ,故①错;BE =BC +12CA =a +12b ,故②错;CF =12(CB +CA )=12(-a +b )=-12a +12b ,故③正确;∴AD +BE +CF =-b -12a +a +12b +12b -12a =0.∴正确命题为②③④. 答案:39.(2013²苏北四市三调)如图,在边长为1的正三角形ABC 中,E ,F分别是边AB ,AC 上的点,若AE =m AB ,AF=n AC ,其中m ,n ∈(0,1).设EF 的中点为M ,BC 的中点为N .(1)若A ,M ,N 三点共线,求证:m =n ;(2)若m +n =1,求|MN|的最小值.解:(1)证明:由A ,M ,N 三点共线,得AM ∥AN.设AM =λAN (λ∈R ),即12(AE +AF )=12λ(AB +AC ),所以m AB +n AC =λ(AB +AC).因为AB 与AC不共线,所以m =n .(2)因为MN =AN -AM =12(AB +AC )-12(AE +AF )=12(1-m )AB +12(1-n ) AC ,又m +n =1,所以MN =12(1-m ) AB +12m AC,所以|MN |2=14(1-m )22AB +14m 22AC +12(1-m )m ²AB ²AC =14(1-m )2+14m 2+14(1-m )m=14⎝⎛⎭⎪⎫m -122+316,故当m =12时,|MN |min =34.10.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE =23AD,AB=a ,AC =b .(1)用a ,b 表示向量AD ,AE ,AF ,BE ,BF;(2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD =12AG ,连接BG ,CG ,得到▱ABGC ,所以AG=a +b , AD =12AG =12(a +b ),AE =23AD =13(a +b ),AF =12AC=12b ,BE =AE -AB =13(a +b )-a =13(b -2a ),BF =AF -AB =12b -a =12(b -2a ).(2)证明:由(1)可知BE =23BF,又因为BE ,BF有公共点B ,所以B ,E ,F 三点共线. 第Ⅱ组:重点选做题1.A ,B ,O 是平面内不共线的三个定点,且OA =a ,OB=b ,点P 关于点A 的对称点为Q ,点Q 关于点B 的对称点为R ,用a 、b 表示PR ,则PR=________.解析:PR =OR -OP =(OR +OQ )-(OP +OQ)=2OB -2OA=2(b -a ).答案:2(b -a )2.已知O 为四边形ABCD 所在平面内一点,且向量OA ,OB ,OC ,OD 满足等式OA+OC =OB +OD,则四边形ABCD 的形状为________.解析:由OA +OC =OB +OD得 OA -OB =OD -OC ,∴BA =CD.所以四边形ABCD 为平行四边形.答案:平行四边形第二节平面向量的基本定理及坐标表示对应学生用书P611.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB=(x 2-x 1,y 2-y 1), |AB |= x 2-x 1 2+ y 2-y 1 2.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.1.若a 、b 为非零向量,当a ∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错;2.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0.[试一试]1.(2014²南京、盐城一模)若向量a =(2,3),b =(x ,-6),且a ∥b ,则实数x =________. 解析:由a ∥b 得2³(-6)=3x ,解得x =-4. 答案:-42.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值是________.解析:∵u =(1+2x,4),v =(2-x,3),u ∥v ,∴8-4x =3+6x ,∴x =12.答案:12用基向量表示所求向量时,注意方程思想的运用. [练一练]设e 1、e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2, 所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2) =(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.答案:23 -13对应学生用书P61平面向量的坐标运算1.(2014²苏中三市、宿迁调研(一))在平面直角坐标系中,已知向量AB =(2,1),AC=(3,5),则向量BC的坐标为________.解析:BC =AC -AB=(1,4).答案:(1,4)2.(2013²北京高考)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解析:设i ,j 分别为水平方向和竖直方向上的正向单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),根据平面向量基本定理得λ=-2,μ=-12,所以λμ=4.答案:43.已知A (-2,4),B (3,-1),C (-3,-4).设AB=a ,BC =b ,CA =c .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24) =(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.[备课札记] [类题通法]1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.平面向量基本定理及其应用[典例] 如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA=a ,BC =b ,试用a ,b 为基底表示向量EF ,DF ,CD.[解析] EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a ,CD =CF +FD =-12b -⎝ ⎛⎭⎪⎫16b -a =a -23b . [备课札记] [类题通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.[针对训练](2014²济南调研)如图,在△ABC 中,AN =13NC,P 是BN 上的一点,若AP =m AB +211AC,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB +k (AN -AB)=AB +k ⎝ ⎛⎭⎪⎫14AC-AB=(1-k )AB +k 4AC,且AP =m AB +211AC,所以1-k =m ,k 4=211,解得k =811,m =311.答案:311平面向量共线的坐标表示[典例] -1,2),c =(1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ;[解] (1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2³(3+4k )-(-5)³(2+k )=0. ∴k =-1613.[备课札记]由题意得⎩⎪⎨⎪⎧4 x -4 -2 y -1 =0,x -4 2+ y -1 2=5,得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d =(3,-1)或(5,3). [类题通法]1.向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.2.两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.[针对训练]已知A (1,1),B (3,-1),C (a ,b ). (1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC =2AB,求点C 的坐标.解:(1)由已知得AB =(2,-2),AB=(a -1,b -1),∵A ,B ,C 三点共线,∴AB ∥AB.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC =2AB ,∴(a -1,b -1)=2(2,-2). ∴⎩⎪⎨⎪⎧a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3). 对应学生用书P63[课堂练通考点]1.(2013²南京二模)若平面向量a ,b 满足|a +b |=1,a +b 平行于y 轴,a =(2,-1),则b =________.解析:设b =(x ,y ),则a +b =(2+x ,y -1),由条件知2+x =0,|y -1|=1,解得x =-2,y =0或x =-2,y =2,故b =(-2,0)或(-2,2).答案:(-2,2)或(-2,0)2.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则m n等于________. 解析:由题意得m a +n b =(2m -n,3m +2n )a -2b =(4,-1),由于(m a +n b )∥(a -2b ),可得-(2m -n )-4(3m +2n )=0,可得m n =-12.答案:-123.(2014²苏北四市质检)已知向量a =(sin θ,cos θ),b =(3,-4),若a ∥b ,则tan 2θ=________.解析:由题意,得-4sin θ-3cos θ=0,所以tan θ=-34,所以tan 2θ=2³⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247.答案:-2474.已知点A (2,1),B (0,2),C (-2,1),O (0,0),给出下面的结论:①直线OC 与直线BA 平行;②AB +BC=CA ; ③OA +OC =OB ;④AC =OB -2OA .其中正确结论的个数是________.解析:∵由题意得k OC =1-2=-12,k BA =2-10-2=-12,∴OC ∥BA ,①正确;∵AB +BC=AC ,∴②错误; ∵OA +OC =(0,2)=OB,∴③正确; ∵OB -2OA =(-4,0),AC=(-4,0),∴④正确.答案:35.已知两点A (1,0),B (1,1),O 为坐标原点,点C 在第二象限,且∠AOC =135°,设OC=-OA +λOB(λ∈R ),则λ的值为________.解析:由∠AOC =135°知,点C 在射线y =-x (x <0)上,设点C 的坐标为(a ,-a ),a <0,则有(a ,-a )=(-1+λ,λ),得a =-1+λ,-a =λ,消掉a 得λ=12.答案:126.在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB+μAC ,则λ+μ的值为________.解析:∵M 为边BC 上任意一点,∴可设AM =x AB+y AC (x +y =1).∵N 为AM 中点,∴AN =12AM =12x AB +12y AC =λAB+μAC .∴λ+μ=12(x +y )=12.答案:12[课下提升考能] 第Ⅰ组:全员必做题1.(2013²辽宁高考改编)已知点A (1,3),B (4,-1),则与向量AB同方向的单位向量为________.解析:AB =(3,-4),则与其同方向的单位向量e =AB|AB |=15(3,-4)=⎝ ⎛⎭⎪⎫35,-45. 答案:⎝ ⎛⎭⎪⎫35,-452.已知△ABC 中,点D 在BC 边上,且CD =2DB ,CD =r AB+s AC ,则r +s 的值是________.解析:∵CD =2DB, ∴CD =23CB =23(AB -AC),∴CD =23AB -23AC ,又CD =r AB +s AC ,∴r =23,s =-23,∴r +s =0. 答案:03.已知向量a =⎝ ⎛⎭⎪⎫8,12x ,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x 的值为________.解析:a -2b =⎝ ⎛⎭⎪⎫8-2x ,12x -2,2a +b =(16+x ,x +1), 由已知(a -2b )∥(2a +b ),显然2a +b ≠0, 故有⎝ ⎛⎭⎪⎫8-2x ,12x -2=λ(16+x ,x +1),λ∈R ,∴⎩⎪⎨⎪⎧8-2x =λ 16+x ,12x -2=λ x +1 ⇒x =4(x >0).答案:44. 创新题 若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为________.解析:∵a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),∴⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.∴a 在基底m ,n 下的坐标为(0,2). 答案:(0,2)5.如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E ,则下列说法错误的是________.(填写序号)①AC =AB +AD②BD =AD -AB③AO =12AB +12AD④AE =53AB +AD解析:由向量减法的三角形法则知,BD =AD -AB,排除②;由向量加法的平行四边形法则知,AC =AB +AD ,AO =12AC =12AB +12AD,排除①、③.答案:④6.在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若PA =(4,3),PQ=(1,5),则BC=________.解析:AQ =PQ -PA=(-3,2), ∴AC =2AQ=(-6,4). PC =PA +AC=(-2,7), ∴BC =3PC=(-6,21).答案:(-6,21)7.P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q 等于________.解析:P 中,a =(-1+m,1+2m ),Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧-1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23). 答案:{} -13,-238.已知向量OA =(1,-3),OB =(2,-1),OC=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ,AC不共线.∵AB =OB-OA =(2,-1)-(1,-3)=(1,2), AC =OC -OA=(k +1,k -2)-(1,-3)=(k ,k +1),∴1³(k +1)-2k ≠0,解得k ≠1.答案:k ≠19.已知a =(1,0),b =(2,1).求: (1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向? 解:(1)因为a =(1,0),b =(2,1),所以a +3b =(7,3), 故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝ ⎛⎭⎪⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.10.已知点O 为坐标原点,A (0,2),B (4,6),OM =t 1OA +t 2AB.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线.解:(1) OM =t 1OA +t 2AB=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0. (2)证明:当t 1=1时,由(1)知OM=(4t 2,4t 2+2).∵AB =OB-OA =(4,4),AM =OM -OA =(4t 2,4t 2)=t 2(4,4)=t 2AB,∴A ,B ,M 三点共线. 第Ⅱ组:重点选做题1.(2013²南通二模)如图,正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点.设AP =αAB +βAF(α,β∈R ),则α+β的取值范围是________.解析:法一:分别延长DC ,AB 交于点G ,则 CG ∥AF ,且CG =AF ,从而AC =AG +GC =2AB +AF ,同理可得AE =AB +2AF, AD =2AB +2AF,因为点P 在△CDE 内部(包括边界),所以α+β∈[3,4].法二:建立如图所示的直角坐标系, 不妨设正六边形ABCDEF 的边长为2,则点A (0,0),B (2,0),C (3,3),D (2,23),E (0,23),F (-1,3),从而点P 位于区域⎩⎨⎧x +3y ≥6,3x +y ≤43,y ≤23,中.又AP =αAB +βAF=(2α-β,3β),代入可行域得⎩⎪⎨⎪⎧α+β≥3,α≤2,β≤2,于是α+β∈[3,4].答案:[3,4]2.(2014²苏锡常镇一模)如图,在正方形ABCD 中,E 为AB 的中点,P 为以A为圆心、AB 为半径的圆弧上的任意一点,设向量AC =λDE+μAP,则λ+μ的最小值为________.解析:以A 为原点,如图建立直角坐标系,不妨设正方形ABCD 的边长为1,则AC =(1,1),DE =⎝ ⎛⎭⎪⎫12,-1.设AP =(cos α,sin α),α∈⎣⎢⎡⎦⎥⎤0,π2.由AC =λDE+μAP 得⎩⎪⎨⎪⎧1=λ2+μcos α,1=-λ+μsin α,所以μ=32cos α+sin α,故λ+μ=μsin α-1+μ=3²1+sin α2cos α+sin α-1.设f (α)=1+sin α2cos α+sin α,α∈⎣⎢⎡⎦⎥⎤0,π2,则f ′(α)=2+2sin α-cos α2cos α+sin α2.因为f ′(α)>0恒成立,故f (α)在⎣⎢⎡⎦⎥⎤0,π2上单调增.所以当α=0时,f (α)min =f (0)=12,所以(λ+μ)min =12.答案:12第三节平面向量的数量积与平面向量应用举例对应学生用书P631.平面向量的数量积 平面向量数量积的定义已知两个非零向量a 和b ,它们的夹角为θ,把数量|a||b|cos θ叫做a 和b 的数量积(或内积),记作a²b .即a²b =|a||b|cos θ,规定0²a =0.2.向量数量积的运算律 (1)a²b =b²a ;(2)(λa )²b =λ(a²b )=a²(λb ); (3)(a +b )²c =a²c +b²c . 3.平面向量数量积的有关结论 已知非零向量a =(x 1,y 1),b =(x 2,y 2)1.若a ,b ,c 是实数,则ab =ac ⇒b =c (a ≠0);但对于向量就没有这样的性质,即若向量a ,b ,c ,若满足a ²b =a ²c (a ≠0),则不一定有b =c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.2.数量积运算不适合结合律,即(a ²b )²c ≠a ²(b ²c ),这是由于(a ²b )²c 表示一个与c 共线的向量,a ²(b ²c )表示一个与a 共线的向量,而a 与c 不一定共线,因此(a ²b )²c 与a ²(b ²c )不一定相等.[试一试]1.(2014²苏锡常镇一调)已知两个单位向量e 1,e 2的夹角为120°,若向量a =e 1+2e 2,b =4e 1,则a ²b =________.解析:a ²b =(e 1+2e 2)²4e 1=4e 21+8e 1²e 2=4+8³1³1³⎝ ⎛⎭⎪⎫-12=0.答案:02.(2013²镇江期末)在菱形ABCD 中,AB =23,B =2π3,BC=3BE ,DA =3DF ,则EF ²AC=________.解析:如图,依题意向量BC ,BA 所成角为2π3,|BC |=|BA |=23,AC =BC -BA ,EF ―→=13BC+BA ,EF ²AC =⎝ ⎛⎭⎪⎫13BC+BA ²(BC -BA )=13|BC |2+23BC ²BA -|BA |2=-12. 答案:-121.明确两个结论:(1)两个向量a 与b 的夹角为锐角,则有a ²b >0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a ²b <0,反之不成立(因为夹角为π时不成立). 2.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. [练一练]1.已知向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为________. 解析:(a -2b )²a =|a |2-2a ²b =0,(b -2a )²b =|b |2-2a ²b =0,所以|a |2=|b |2,即|a |=|b |,故|a |2-2a ²b =|a |2-2|a |2cos a ,b =0,可得cos a ,b =12,又因为0≤ a ,b ≤π,所以 a ,b =π3.答案:π32.(2013²南通三模)已知向量a 与b 的夹角为60°,且|a |=1,|b |=2,那么(a +b )2的值为________.解析:(a +b )2=1+4+2³1³2cos 60°=7. 答案:7 对应学生用书P64平面向量的数量积的运算1.(2014²南通、泰州、扬州一调)在平面直角坐标系xOy 中,已知向量a =(1,2),a -12b =(3,1),则a ²b =________.解析:法一:由a ²⎝ ⎛⎭⎪⎫a -12b =5,得a 2-12a ²b =5,即5-12a ²b =5,所以a ²b =0.法二:由a =(1,2),a -12b =(3,1),得b =(-4,2),所以a ²b =0 答案:02.已知平面向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ²b =-6.则x 1+y 1x 2+y 2的值为________.解析:由已知得,向量a =(x 1,y 1)与b =(x 2,y 2)反向,3a +2b =0,即3(x 1,y 1)+2(x 2,y 2)=(0,0),得x 1=-23x 2,y 1=-23y 2,故x 1+y 1x 2+y 2=-23.答案:-233.(2012²江苏高考)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB ²AF =2,则AE ²BF的值是________.解析:以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系,则AB =(2,0),AE =(2,1),AD =(0,2).设AF =(x,2),x >0,则AB ²AF=2x =2,解得x =1.所以F (1,2),BF =(1-2,2),于是AE ²BF= 2.答案: 24.在△ABC 中,若∠A =120°,AB ²AC=-1,则|BC ―→|的最小值是________.解析:∵AB ²AC =-1,∴|AB|²|AC |cos 120°=-1,即|AB |²|AC |=2,∴|BC |2=|AC -AB |2=AC 2-2AB²AC +AB 2≥2|AB |²|AC |-2AB ²AC=6,∴|BC|min = 6.答案: 6[备课札记] [类题通法]向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ²b =|a ||b |cos a ,b . (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ²b =x 1x 2+y 1y 2.运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.平面向量数量积的性质平面向量数量积的性质是高考的重点,归纳起来常见的命题角度有:(1)平面向量的模;(2)平面向量的夹角; (3)平面向量的垂直.角度一 平面向量的模1.(2014²南京一模)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为________.解析:设AD =a ,AB=b ,如图所示,|BD |2=1+4-2³1³2cos π3=3,所以BD = 3. 答案: 3角度二 平面向量的夹角2.(1)(2013²盐城二模)已知向量a 的模为2,向量e 为单位向量,e ⊥(a -e ),则向量a 与e 的夹角大小为________.解析:由条件得e ²(a -e )=0,从而e ²a =1. 所以cos 〈a ,e 〉=12,故〈a ,e 〉=π3.答案:π3(2)(2014²苏北四市一调)设a ,b ,c 是单位向量,且a =b +c ,则向量a ,b 的夹角等于________.解析:a ,b ,c 是单位向量,模都为1,由a =b +c 得a -b =c ,所以(a -b )2=c 2,即a 2+b 2-2a ²b =c 2,得a ²b =12,所以|a ||b |²cos θ=12,即cos θ=12,故θ=π3.答案:π3角度三 平面向量的垂直3.(1)(2013²盐城二模)已知向量a =(-3,2),b =(-1,0),且向量λa +b 与a -2b 垂直,则实数λ的值为________.解析:由条件知|a |=13,|b |=1,a ²b =3, 又λa +b 与a -2b 垂直,所以(λa +b )²(a -2b )=0, 即λa 2-2b 2+(1-2λ)a ²b =0,于是13λ-2+(1-2λ)³3=0,解得λ=-17.答案:-17(2)在直角三角形ABC 中,已知AB=(2,3),AC =(1,k ),则k 的值为________.解析:①当A =90°时,∵AB ⊥AC ,∴AB ²AC=0.∴2³1+3k =0,解得k =-23.②当B =90°时,∵AB ⊥BC, 又BC =AC -AB=(1,k )-(2,3)=(-1,k -3),∴AB ²BC=2³(-1)+3³(k -3)=0,解得k =113.③当C =90°时,∵AC ⊥BC,∴1³(-1)+k (k -3)=0,即k 2-3k -1=0.∴k =3±132.答案:-23或113或3±132.[备课札记] [类题通法]1.求两非零向量的夹角时要注意: (1)向量的数量积不满足结合律;(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角就是钝角.2.利用数量积求解长度问题的处理方法 (1)a 2=a ²a =|a |2或|a |=a ²a . (2)|a ±b |= a ±b 2=a 2±2a ²b +b 2. (3)若a =(x ,y ),则|a |=x 2+y 2.平面向量与三角函数的综合[典例α,sin α)sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ²b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ²b =2,即a ²b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos (π-β),由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β.代入sin α+sin β=1, 得sin α=sin β=12,而α>β,所以α=5π6,β=π6.[备课札记] [类题通法]平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.[针对训练]已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ, 于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |,知sin 2θ+(cos θ-2sin θ)2=5, 所以1-2sin 2θ+4sin 2θ=5.从而-2sin 2θ+2(1-cos 2θ)=4,即sin 2θ+cos 2θ=-1, 于是sin ⎝ ⎛⎭⎪⎫2θ+π4=-22. 又由0<θ<π,知π4<2θ+π4<9π4,所以2θ+π4=5π4或2θ+π4=7π4.因此θ=π2或θ=3π4.对应学生用书P65[课堂练通考点]1.(2011²江苏高考)已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2.若a²b =0,则实数k 的值为________.解析:由题得|e 1|=|e 2|=1,e 1²e 2=|e 1|²|e 2|cos2π3=-12,所以a ²b =(e 1-2e 2)²(k e 1+e 2)=k |e 1|2+(1-2k )²e 1e 2-2|e 2|2=k +2k -12-2=0,解得k =54. 答案:542.在△ABC 中,若AB ²AC =AB ²CB=2,则边AB 的长等于________.解析:由题意得AB ²AC +AB ²CB =AB ²(AC +CB )=|AB |2=4,所以AB=2.答案:23.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则实数k 的取值范围是________. 解析:因为a =(-2,2),b =(5,k ),所以a +b =(3,k +2),所以|a +b |=32+ k +2 2=13+4k +k 2≤5,解得-6≤k ≤2答案:[-6,2]4.(2013²淮安二模)在△ABC 中,已知AB =2,BC =3,∠ABC =60°,BD ⊥AC ,D 为垂足,则BD²BC ―→的值为________.解析:BD ²BC =BD ²(BA +AC )=BD ²BA +BD ²AC=BD ²BA =|BD |²|BA |²cos∠ABD =|BD |2.在△ABC 中,由余弦定理得AC =7,又S △ABC =12AB ²BC ²sin∠ABC =12³2³3³sin 60°=332,所以12AC ²BD =332,所以BD =3217, 所以BD ²BC =|BD |2=277.答案:2775.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 解析:由|a |=|a +2b |,两边平方,得|a |2=(a +2b )2=|a |2+4|b |2+4a ²b ,所以a ²b =-|b |2.又|a |=3|b |,所以cos a ,b =a ²b |a ||b |=-|b |23|b |2=-13.答案:-136.在△ABC 中,AB =10,AC =6,O 为BC 的垂直平分线上一点,则AO ²BC=________.解析:取BC 边的中点D ,连接AD ,则AO ²BC =(AD +DO )²BC =AD ²BC+DO ²BC =AD ²BC =12(AB +AC )²(AC -AB )=12(AC2-AB 2)=12(62-102)=-32.答案:-32 [课下提升考能] 第Ⅰ组:全员必做题1.(2013²盐城二模)若e 1,e 2是两个单位向量,a =e 1-2e 2,b =5e 1+4e 2,且a ⊥b ,则e 1,e 2的夹角为________.解析:因为a ⊥b ,所以a ²b =0,从而5-6e 1²e 2-8=0,所以e 1²e 2=-12,故〈e 1²e 2〉=2π3. 答案:2π32.(2014²南通一模)在△ABC 中,若AB =1,AC =3,|AB +AC|=|BC |,则BA ²BC|BC |=________. 解析:由条件得|AB +AC |=|AC -AB |,故AC ²AB=0,即AC ⊥AB ,故|BC |=2,∠ABC =60°,从而原式=1³2³cos 60°2=12.答案:123.在平面直角坐标系中,O 为坐标原点,已知向量OA =(2,2),OB=(4,1),在x 轴上取一点P ,使AP ²BP有最小值,则P 点的坐标是________.解析:设P 点坐标为(x,0),则AP =(x -2,-2),BP=(x -4,-1). AP ²BP=(x -2)(x -4)+(-2)³(-1)=x 2-6x +10=(x -3)2+1.当x =3时,AP ²BP有最小值1.∴此时点P 坐标为(3,0). 答案:(3,0)4.在直角三角形ABC 中,∠C =π2,AC =3,取点D 使BD =2DA ,那么CD ²CA =________.解析:如图,CD =CB +BD.又∵BD =2DA ,∴CD =CB +23BA =CB+23(CA -CB ),即CD =23CA +13CB ,∵∠C =π2,∴CA ²CB =0,∴CD ²CA =⎝ ⎛⎭⎪⎫23 CA +13 CB ²CA=23CA2+13CB ²CA =6.答案:65.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC ―→²EM ―→的取值范围是________.解析:将正方形放入如图所示的平面直角坐标系中,设E (x,0),0≤x ≤1.又M ⎝ ⎛⎭⎪⎫1,12,C (1,1),所以EM =⎝⎛⎭⎪⎫1-x ,12,EC =(1-x,1),所以EM ²EC =⎝⎛⎭⎪⎫1-x ,12²(1-x,1)=(1-x )2+12.因为0≤x ≤1,所以12≤(1-x )2+12≤32,即EM ²EC 的取值范围是⎣⎢⎡⎦⎥⎤12,32.答案:⎣⎢⎡⎦⎥⎤12,326.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 解析:∵a ,b 的夹角为45°,|a |=1, ∴a ²b =|a |²|b |²cos 45°=22|b |, ∴|2a -b |2=4-4³22|b |+|b |2=10.∴|b |=3 2. 答案:3 27.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN的模为________.解析:∵a ∥b ,∴x =4.∴b =(4,-2),∴a +b =(6,-3),b -c =(1,-2-y ).∵(a +b )⊥(b -c ),∴(a +b )²(b -c )=0, 即6-3(-2-y )=0,解得y =-4.∴向量MN =(-8,8),∴|MN|=8 2.。
【三维设计】2016届(新课标)高考数学(文)大一轮复习课件:第3章 第六节 简单的三角恒等变换

解:(1)由
5π 3 f12 = ,得 2
2π 3 Asin = , 3 2
2π 3 又 sin = ,∴A= 3. 3 2
(2)由(1)得 f(x)=
π 3sinx+ 4 ,
π π 3 3 由 f(θ)+f(-θ)= ,得 3sinθ+4 + 3sin-θ+4 = , 2 2 π 6 化简得 cos θ= ,∵θ∈0, 2 , 4
∴sin θ= 1-cos θ= 故
3π f 4 -θ=
2
1-
10 6 2 = , 4 4 3sin θ
3π π 3sin 4 -θ+4 =
10 30 = 3× = . 4 4
角度二:给角求值
3 1 2.(2015· 衡水中学二调) - = cos 10° sin 170° A.4 C.-2 B. 2 D.-4
1 2cos x-2cos x+ 2 2.化简: π π . 2tan4-xsin24+x
4 2
1 -2sin xcos x+ 2 解:原式= π π 2 2sin4-xcos 4-x π cos4-x
2 2
1 1 2 2 1-sin 2x cos 2x 2 2 1 = π π = π =2cos 2x. 2sin4-xcos4 -x sin2-2x
12 = . 9 5 1- 4
考点一
三角函数式的化简 (基础送分型考点——自主练透)
[题组练透]
sin 2α-2cos2α 2 2cos α 1.化简: = __________. π sinα-4
2sin αcos α-2cos2α 解析:原式= =2 2cos α. 2 sin α-cos α 2
【三维设计】2016届(新课标)高考数学(文)大一轮复习精品讲义:第五章 数列 Word版含答案

第五章 数 列第一节数列的概念与简单表示法对应学生用书P71基础盘查一 数列的有关概念 (一)循纲忆知了解数列的概念(定义、数列的项、通项公式、前n 项和) (二)小题查验 1.判断正误(1)1,2,3,4和1,2,4,3是相同的数列( ) (2)同一个数在数列中可以重复出现( ) (3)a n 与{a n }是不同的概念( )(4)所有的数列都有通项公式,且通项公式在形式上一定是唯一的( ) 答案:(1)× (2)√ (3)√ (4)×2.(人教A 版教材例题改编)写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,-12,13,-14;(2)2,0,2,0.答案:(1)a n =(-1)n +1n(2)a n =(-1)n +1+1基础盘查二 数列的表示方法 (一)循纲忆知1.了解数列三种简单的表示方法(列表法、图象法、通项公式法); 2.了解数列是自变量为正整数的一类特殊函数. (二)小题查验 1.判断正误(1)数列是一种特殊的函数( )(2)毎一个数列都可用三种表示法表示( )(3)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n ( ) 答案:(1)√ (2)× (3)√2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5等于________.答案:1161基础盘查三 数列的分类 (一)循纲忆知了解数列的分类(按项数分、按项间的大小等). (二)小题查验1.(人教B 版教材例题改编)已知函数f (x )=x -1x ,设a n =f (n )(n ∈N *),则{a n }是________数列(填“递增”或“递减”)答案:递增2.对于数列{a n },“a n +1>|a n |(n =1,2…)”是“{a n }为递增数列”的________条件. 答案:充分不必要对应学生用书P71考点一 由数列的前几项求数列的通项公式(基础送分型考点——自主练透)[必备知识]数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.[提醒] 不是所有的数列都有通项公式,若有,也不一定唯一.[题组练透]1.已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+(-1)n 2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( ) A .①②③ B .①②④ C .②③④D .①③④解析:选A 检验知①②③都是所给数列的通项公式. 2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…;(3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1),n ∈N *.(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1),n ∈N *.(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[类题通法]用观察法求数列的通项公式的技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n 或(-1)n+1来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[必备知识]数列的前n 项和通常用S n 表示,记作S n =a 1+a 2+…+a n ,则通项a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[提醒] 若当n ≥2时求出的a n 也适合n =1时的情形,则用一个式子表示a n ,否则分段表示.[典题例析]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . 解:(1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式.∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.[类题通法]已知S n 求a n 的三个步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[演练冲关]已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合于此式, 所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.考点三 由递推关系式求数列的通项公式(常考常新型考点——多角探明)[必备知识]递推公式:如果已知数列{a n }的第一项(或前几项),且任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.[多角探明]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.n +1n n 1.在数列{a n }中,a 1=1,前n 项和S n =n +23a n .求数列{a n }的通项公式.解:由题设知,a 1=1. 当n ≥2时,a n =S n -S n -1=n +23a n -n +13a n -1. ∴a n a n -1=n +1n -1. ∴a n a n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3.以上n -1个式子的等号两端分别相乘,得到a n a 1=n (n +1)2.又∵a 1=1,∴a n =n (n +1)2.角度二:形如a n +1=a n +f (n ),求a n2.(1)在数列{a n }中,a 1=2,a n +1=a n +1n (n +1),求数列{a n }的通项公式.(2)若数列{a n }满足:a 1=1,a n +1=a n +2n ,求数列{a n }的通项公式. 解:(1)由题意,得a n +1-a n =1n (n +1)=1n -1n +1,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=⎝⎛⎭⎫1n -1-1n +⎝⎛⎭⎫1n -2-1n -1+…+⎝⎛⎭⎫12-13+⎝⎛⎭⎫1-12+2=3-1n . (2)由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+2+1=1-2n 1-2=2n-1.角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. 解:∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.角度四:形如a n +1=Aa n Ba n +C(A ,B ,C 为常数),求a n4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).[类题通法]由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,(如角度二),注意:有的问题也可利用构造法,即通过对递推式的等价变形,(如角度三、四)转化为特殊数列求通项.对应A 本课时跟踪检测(二十九)一、选择题1.数列1,23,35,47,59,…的一个通项公式a n =( )A.n 2n +1B.n 2n -1C.n 2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故通项为n2n -1.2.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =( ) A .2n -1 B .n 2 C.(n +1)2n 2D.n 2(n -1)2解析:选D 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2(n -1)2.3.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72.故选B. 4.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024 解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8,a 9=512.故选C.5.已知数列{a n }的前n 项和为S n =kn 2,若对所有的n ∈N *,都有a n +1>a n ,则实数k 的取值范围是( )A .(0,+∞)B .(-∞,1)C .(1,+∞)D .(-∞,0)解析:选A 由S n =kn 2得a n =k (2n -1).因为a n +1>a n ,所以数列{a n }是递增的,因此k >0,故选A.6.(2015·北京海淀区期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0, ∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7. 二、填空题7.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第____________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0. 解得n =10或n =52(舍去).答案:108.已知数列{a n }的前n 项和S n =3-3×2n ,n ∈N *,则a n =________. 解析:分情况讨论:①当n =1时,a 1=S 1=3-3×21=-3;②当n ≥2时,a n =S n -S n -1=(3-3×2n )-(3-3×2n -1)=-3×2n -1.综合①②,得a n =-3×2n -1.答案:-3×2n -19.(2015·大连双基测试)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1)·3n +1+3(n∈N *),则数列{a n }的通项公式a n =________.解析:a 1+3a 2+5a 3+…+(2n -3)·a n -1+(2n -1)·a n =(n -1)·3n +1+3,把n 换成n -1得,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2)·3n +3,两式相减得a n =3n .答案:3n10.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:28 三、解答题11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得 a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0, 所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 12.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,知5<2-a 2<6,∴-10<a <-8.故a的取值范围为(-10,-8).第二节等差数列及其前n项和对应学生用书P73基础盘查一等差数列的有关概念(一)循纲忆知理解等差数列的概念(定义、公差、等差中项).(二)小题查验1.判断正误(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列()(2)等差数列的公差是相邻两项的差()(3)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2()答案:(1)×(2)×(3)√2.(人教A版教材例题改编)判断下面数列是否为等差数列.(只写结果)(1)a n=2n-1;(2)a n=pn+q(p、q为常数).答案:(1)是(2)是基础盘查二等差数列的有关公式(一)循纲忆知1.掌握等差数列的通项公式与前n项和公式;2.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;3.了解等差数列与一次函数的关系.(二)小题查验1.判断正误(1)等差数列{a n}的单调性是由公差d决定的()(2)等差数列的前n项和公式是常数项为0的二次函数()(3)已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列()答案:(1)√(2)√(3)√2.(人教A 版教材例题改编)已知等差数列5,427,347,…,则前n 项和S n =________.答案:114(75n -5n 2)基础盘查三 等差数列的性质 (一)循纲忆知掌握等差数列的性质及其应用. (二)小题查验 1.判断正误(1)在等差数列{a n }中,若a m +a n =a p +a q ,则一定有m +n =p +q ( ) (2)数列{a n },{b n }都是等差数列,则数列{a n +b n }也一定是等差数列( )(3)等差数列{a n }的首项为a 1,公差为d ,取出数列中的所有奇数项,组成一个新的数列,一定还是等差数列( )(4)数列{a n }的通项公式为a n =3n +5,则数列{a n }的公差与函数y =3x +5的图象的斜率相等( )答案:(1)× (2)√ (3)√ (4)√2.(北师大版教材例题改编)已知等差数列{a n },a 5=-20,a 20=-35,则a n =________ 答案:-15-n3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于________. 答案:88对应学生用书P74考点一 等差数列的基本运算(基础送分型考点——自主练透)[必备知识]等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. [题组练透]1.(2014·福建高考)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12D .14解析:选C 设等差数列{a n }的公差为d ,则S 3=3a 1+3d ,所以12=3×2+3d ,解得d=2,所以a 6=a 1+5d =2+5×2=12,故选C.2.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-723.在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0, 解得k =7或k =-5.又k ∈N *,故k =7.[类题通法]等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程组解决问题的思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.考点二 等差数列的判断与证明(题点多变型考点——全面发掘)[必备知识](1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.[提醒] 要注意定义中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.[一题多变][典型母题][题点发散1] 试说明本例中数列{a n }是不是等差数列. 解:当n ≥2时,a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1).∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列. [题点发散2] 若将本例条件改为“a 1=2,S n =S n -12S n -1+1(n ≥2)”,问题不变,试求解.解:(1)∵S n =S n -12S n -1+1,∴1S n =2S n -1+1S n -1=1S n -1+2. ∴1S n -1S n -1=2. ∴⎩⎨⎧⎭⎬⎫1S n 是以12为首项,以2为公差的等差数列.(2)由(1)知1S n =12+(n -1)×2=2n -32,即S n =12n -32.当n ≥2时,a n =S n -S n -1=12n -32-12n -72 =-2⎝⎛⎭⎫2n -32⎝⎛⎭⎫2n -72;当n =1时,a 1=2不适合上式,故a n=⎩⎨⎧2(n =1),-2⎝⎛⎭⎫2n -32⎝⎛⎭⎫2n -72(n ≥2).[题点发散3] 若本例变为:已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n=1a n -1(n ∈N *).求证:数列{b n }是等差数列. 证明:∵a n =2-1a n -1, ∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列. [类题通法]等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .[提醒] 在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.考点三 等差数列的性质及最值(重点保分型考点——师生共研)[必备知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d ,(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.[典题例析]1.等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值是( ) A .20 B .22 C .24D .-8解析:选C ∵a 1+3a 8+a 15=5a 8=120,∴a 8=24, ∴2a 9-a 10=a 10+a 8-a 10=a 8=24.2.(2014·北京高考)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.解析:∵数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,∴a 8>0.又a 7+a 10=a 8+a 9<0,∴a 9<0.∴当n =8时,其前n 项和最大.答案:83.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60. 答案:604.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324,∴18n =324,∴n =18.∵a 1+a n =36,n =18,∴a 1+a 18=36, 从而a 9+a 10=a 1+a 18=36.[类题通法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[演练冲关]1.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100D .-37解析:选C 设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n+1-b n )=d 1+d 2,∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100,∴{a n +b n }为常数列,∴a 37+b 37=100.2.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40解析:选A 设这个数列有2n 项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd ,即25-15=2n ,故2n =10,即数列的项数为10.3.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n取得最大值,并求出它的最大值.解:∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.法一:由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653. 得a 13=0.即当n ≤12时,a n >0,n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.法二:∴S n =20n +n (n -1)2·⎝⎛⎭⎫-53=-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 法三: 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.对应B 本课时跟踪检测(三十)[A 卷——夯基保分]一、选择题1.设S n 为等差数列的前n 项和,公差d =-2,若S 10=S 11,则a 1=( ) A .18 B .20 C .22D .24解析:选B 由S 10=S 11,得a 11=0.又已知d =-2,则a 11=a 1+10d =a 1+10×(-2)=0,解得a 1=20.2.(2015·兰州、张掖联考)等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( )A .13B .26C .52D .156解析:选B ∵3(a 3+a 5)+2(a 7+a 10+a 13)=24, ∴6a 4+6a 10=24,∴a 4+a 10=4,∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26,故选B.3.已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( )A .8B .9C .10D .11解析:选C 由S n -S n -3=51得, a n -2+a n -1+a n =51,所以a n -1=17, 又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10.4.(2015·辽宁鞍山检测)已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2 014=( )A .1 006×2 013B .1 006×2 014C .1 007×2 013D .1 007×2 014解析:选C 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2 014=2 014×2 0132=1 007×2 013. 5.(2015·洛阳统考)设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.6.(2015·河北唐山一模)各项均为正数的数列{a n }的前n 项和为S n ,且3S n =a n a n +1,则a 2+a 4+a 6+…+a 2n =( )A.n (n +5)2B.n (5n +1)2C.3n (n +1)2D.(n +3)(n +5)2解析:选C 当n =1时,3S 1=a 1a 2,3a 1=a 1a 2,∴a 2=3.当n ≥2时,由3S n =a n a n +1,可得3S n -1=a n -1a n ,两式相减得3a n =a n (a n +1-a n -1),又∵a n ≠0,∴a n +1-a n -1=3,∴{a 2n }为一个以3为首项,3为公差的等差数列,∴a 2+a 4+a 6+…+a 2n =3n +n (n -1)2×3=3n (n +1)2,选C.二、填空题7.(2014·江西高考)在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________. 解析:∵2a n =a n -1+a n +1, 又a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=2(2n -1)=38,解得n =10. 答案:109.(2015·无锡一模)已知数列{a n }中,a 1=1,a 2=2,当整数n ≥2时,S n +1+S n -1=2(S n +S 1)都成立,则S 15=________.解析:由S n +1+S n -1=2(S n +S 1)得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),所以数列{a n }从第二项起构成等差数列,则S 15=1+2+4+6+8+…+28=211.答案:21110.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a n b n 为整数,故使得a nb n为整数的正整数n 的个数是5.答案:5 三、解答题11.(2015·长春调研)设等差数列{a n }的前n 项和为S n ,其中a 1=3,S 5-S 2=27. (1)求数列{a n }的通项公式;(2)若S n,22(a n +1+1),S n +2成等比数列,求正整数n 的值. 解:(1)设等差数列{a n }的公差为d , 则S 5-S 2=3a 1+9d =27, 又a 1=3,则d =2,故a n =2n +1.(2)由(1)可得S n =n 2+2n ,又S n ·S n +2=8(a n +1+1)2, 即n (n +2)2(n +4)=8(2n +4)2,化简得n 2+4n -32=0, 解得n =4或n =-8(舍),所以n 的值为4.12.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求a n 和S n ;(2)若数列{b n }是等差数列,且b n =S n n +c ,求非零常数c .解:(1)∵数列{a n }为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1,d =4.∴通项公式a n =4n -3.∴S n =na 1+n (n -1)2×d =2n 2-n .(2)由(1)知S n =2n 2-n ,∴b n =S nn +c =2n 2-n n +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c .∵数列{b n }是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.[B 卷——增分提能]1.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.解:∵2a n +1=a n +a n +2,∴a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4. ∴a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧ b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0,解得292≤n ≤312,∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小.∵数列{b n }的首项是-29,公差为2, ∴T 15=15(-29+2×15-31)2=-225,∴数列{b n }的前n 项和T n 的最小值为-225.2.(2015·安徽宿州调研)已知函数f (x )=x 2-2(n +1)x +n 2+5n -7.(1)设函数y =f (x )的图象的顶点的纵坐标构成数列{a n },求证:{a n }为等差数列; (2)设函数y =f (x )的图象的顶点到x 轴的距离构成数列{b n },求{b n }的前n 项和S n . 解:(1)证明:∵f (x )=x 2-2(n +1)x +n 2+5n -7 =[x -(n +1)]2+3n -8, ∴a n =3n -8,∵a n +1-a n =3(n +1)-8-(3n -8)=3, ∴数列{a n }为等差数列. (2)由题意知,b n =|a n |=|3n -8|, ∴当1≤n ≤2时,b n =8-3n ,S n =b 1+…+b n =n (b 1+b n )2=n [5+(8-3n )]2=13n -3n 22;当n ≥3时,b n =3n -8,S n =b 1+b 2+b 3+…+b n =5+2+1+…+(3n -8) =7+(n -2)[1+(3n -8)]2=3n 2-13n +282.∴S n=⎩⎨⎧13n -3n 22,1≤n ≤2,3n 2-13n +282,n ≥3.3.设同时满足条件:①b n +b n +22≤b n +1(n ∈N *);②b n ≤M (n ∈N *,M 是与n 无关的常数)的无穷数列{b n }叫“特界”数列.(1)若数列{a n }为等差数列,S n 是其前n 项和,a 3=4,S 3=18,求S n ; (2)判断(1)中的数列{S n }是否为“特界”数列,并说明理由. 解:(1)设等差数列{a n }的公差为d ,则a 1+2d =4,S 3=a 1+a 2+a 3=3a 1+3d =18, 解得a 1=8,d =-2,∴S n =na 1+n (n -1)2d =-n 2+9n .(2){S n }是“特界”数列,理由如下:由S n +S n +22-S n +1=(S n +2-S n +1)-(S n +1-S n )2 =a n +2-a n +12=d2=-1<0, 得S n +S n +22<S n +1,故数列{S n }适合条件①. 而S n =-n 2+9n =-⎝⎛⎭⎫n -922+814(n ∈N *), 则当n =4或5时,S n 有最大值20, 即S n ≤20,故数列{S n }适合条件②. 综上,数列{S n }是“特界”数列.第三节等比数列及其前n 项和对应学生用书P76基础盘查一 等比数列的有关概念 (一)循纲忆知理解等比数列的概念(定义、公比、等比中项). (二)小题查验 1.判断正误(1)常数列一定是等比数列( ) (2)等比数列中不存在数值为0的项( )(3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列( ) (4)G 为a ,b 的等比中项⇔G 2=ab ( ) 答案:(1)× (2)√ (3)× (4)×2.已知数列a ,a (1-a ),a (1-a )2,…是等比数列,则实数a 的取值范围是( ) A .a ≠1 B .a ≠0或a ≠1 C .a ≠0 D .a ≠0且a ≠1答案:D基础盘查二 等比数列的有关公式 (一)循纲忆知1.掌握等比数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系. (二)小题查验 1.判断正误(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n ( ) (2)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a( )答案:(1)× (2)×2.(人教A 版教材习题改编)在等比数列{a n }中,已知a 1=-1,a 4=64,则q =________,S 4=________.答案:-4 51基础盘查三 等比数列的性质 (一)循纲忆知掌握等比数列的性质及应用. (二)小题查验 1.判断正误(1)q >1时,等比数列{a n }是递增数列( )(2)在等比数列{a n }中,若a m ·a n =a p ·a q ,则m +n =p +q ( )(3)在等比数列{a n }中,如果m +n =2k (m ,n ,k ∈N *),那么a m ·a n =a 2k ( )(4)若数列{a n }是等比数列,则数列⎩⎨⎧⎭⎬⎫1a n 是等比数列( )(5)如果数列{a n }为等比数列,则数列{ln a n }是等差数列( ) 答案:(1)× (2)× (3)√ (4)√ (5)×2.(北师大版教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列答案:B对应学生用书P76考点一 等比数列的基本运算(基础送分型考点——自主练透)[必备知识]等比数列的有关公式(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.[提醒] 运用等比数列的前n 项和公式时,必须对q =1与q ≠1分类讨论.[题组练透]1.(2015·东北三校联考)已知数列{a n }满足2a n +1+a n =0,a 2=1,则数列{a n }的前10项和S 10为( )A.43(210-1) B.43(210+1) C.43(2-10-1) D.43(2-10+1) 解析:选C ∵2a n +1+a n =0,∴a n +1a n =-12.又a 2=1,∴a 1=-2,∴数列{a n }是首项为-2,公比为q =-12的等比数列,∴S 10=a 1(1-q 10)1-q=-2(1-2-10)1+12=43(2-10-1),故选C. 2.在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或12解析:选C 根据已知条件得⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21, ∴1+q +q 2q 2=3.整理得2q 2-q -1=0, 解得q =1或q =-12.3.(2015·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=( )A .4n -1B .4n -1C .2n -1D .2n -1 解析:选D 设{a n}的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52①,a 1q +a 1q 3=54②,由①②可得1+q 2q +q3=2,∴q =12,代入①得a 1=2,∴a n =2×⎝⎛⎭⎫12n -1=42n , ∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S na n =4⎝⎛⎭⎫1-12n 42n=2n -1,选D.4.设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n ,求数列{b n }前n 项和T n .解:(1)当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),∴a n =3a n -1.∴数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.(2)∵b n =1a n =⎝⎛⎭⎫13n -2,∴{b n }是首项为3,公比为13的等比数列,∴T n =b 1+b 2+…+b n =3⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=92⎣⎡⎦⎤1-⎝⎛⎭⎫13n .[类题通法]解决等比数列有关问题的常用思想方法(1)方程的思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想:等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q.考点二 等比数列的判定与证明(题点多变型考点——全面发掘)[必备知识]1.定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.定义的表达式为a n +1a n=q .2.等比中项G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab . [提醒] 在等比数列中每项与公比都不为0.[一题多变][典型母题][题点发散1] 在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2), 证明:{b n }是等比数列.证明:∵由(2)知a n =1-⎝⎛⎭⎫12n , ∴当n ≥2时,b n =a n -a n -1 =1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12也符合上式,∴b n =⎝⎛⎭⎫12n . ∴b n +1b n =12,数列{b n }是等比数列. [题点发散2] 本例条件变为:已知数列{a n }满足:a 1=1,a 2=a (a ≠0),a n +2=p ·a 2n +1a n(其中p 为非零常数,n ∈N *).试判断数列⎩⎨⎧⎭⎬⎫a n +1a n 是不是等比数列. 解:由a n +2=p ·a 2n +1a n ,得a n +2a n +1=p ·a n +1a n .令c n =a n +1a n,则c 1=a ,c n +1=pc n .∵a ≠0,∴c 1≠0,c n +1c n=p (非零常数),∴数列⎩⎨⎧⎭⎬⎫a n +1a n 是等比数列. [类题通法]等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n -1(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明,而后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.考点三 等比数列的性质(重点保分型考点——师生共研)[必备知识](1)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(2)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n bn (λ≠0)仍然是等比数列;(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k ;(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 4n 不一定构成等比数列.[典题例析]1.(2015·长春调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14, 答案:142.(2014·广东高考)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.解析:因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20) =ln [(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50. 答案:50[类题通法]等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[演练冲关]1.(2014·江苏高考)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.解析:设等比数列{a n }的公比为q ,q >0,则a 8=a 6+2a 4即为a 4q 4=a 4q 2+2a 4,解得q 2=2(负值舍去),又a 2=1,所以a 6=a 2q 4=4.答案:42.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析:由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.答案:-12对应A 本课时跟踪检测(三十一)[A 卷——夯基保分]一、选择题1.(2014·重庆高考)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0,因此a 3,a 6,a 9一定成等比数列,选D.2.(2015·昆明、玉溪统考)等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n 解析:选C 依题意,a n =2n -1,1a n a n +1=12n -1·2n =122n -1=12×14n -1,所以T n =12⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=23⎣⎡⎦⎤1-⎝⎛⎭⎫14n . 3.若正项数列{a n }满足lg a n +1=1+lg a n ,且a 2 001+a 2 002+a 2 003+…+a 2 010=2 014,则a 2 011+a 2 012+a 2 013+…+a 2 020的值为( )A .2 014×1010B .2 014×1011C .2 015×1010D .2 015×1011解析:选A 由条件知lg a n +1-lg a n =lga n +1a n =1,即a n +1a n=10,所以{a n }是公比为10的等比数列.因为(a 2 001+…+a 2 010)·q 10=a 2 011+…+a 2 020,所以a 2 011+…+a 2 020=2 014×1010,选A.4.(2015·山西四校联考)等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:选A 由等比数列的性质,得a 3·a 2n -3=a 2n =22n ,从而得a n =2n.法一:log 2a 1+log 2a 2+…+log 2a 2n -1=log 2[(a 1a 2n -1)·(a 2a 2n -2)·…·(a n -1a n +1)a n ]=log 22n (2n-1)=n (2n -1).法二:取n =1,log 2a 1=log 22=1,而(1+1)2=4,(1-1)2=0,排除B ,D ;取n =2,log 2a 1+log 2a 2+log 2a 3=log 22+log 24+log 28=6,而22=4,排除C ,选A.5.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为( )A .-2B .2C .-3D .3解析:选B 设公比为q ,若q =1,则S 2m S m =2,与题中条件矛盾,故q ≠1.∵S 2mS m =a 1(1-q 2m )1-q a 1(1-q m )1-q =q m +1=9,∴q m =8.∴a 2m a m =a 1q2m -1a 1q m 1=q m =8=5m +1m -1,∴m =3,∴q 3=8, ∴q =2.6.设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形的面积(i =1,2,…),则{A n }为等比数列的充要条件是( )A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同解析:选D ∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n =q ,从而{A n }为等比数列.二、填空题7.(2014·安徽高考)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.解析:法一:因为数列{a n }是等差数列,所以a 1+1,a 3+3,a 5+5也成等差数列,又a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,所以a 1+1,a 3+3,a 5+5是常数列,故q =1.法二:因为数列{a n }是等差数列,所以可设a 1=t -d ,a 3=t ,a 5=t +d ,故由已知得(t +3)2=(t -d +1)(t +d +5),得d 2+4d +4=0,即d =-2,所以a 3+3=a 1+1,即q =1.答案:18.(2015·兰州模拟)已知等比数列{a n }的前n 项和为S n ,且S n =m ·2n -1-3,则m =________.解析:a 1=S 1=m -3,当n ≥2时,a n =S n -S n -1=m ·2n -2,。
【三维设计】2016届(新课标)高考数学(文)大一轮复习课件:第3章 第三节 三角函数的图象与性质

是[-π+2kπ,2kπ](k∈Z),单调递减区间是[2kπ,2kπ+π](k∈Z);
π π 正切函数的单调递增区间是-2+kπ,2+kπ(k∈Z).
π y =- tanx+6 + 2
的定义域为
考点一 三角函数的定义域与值域 (基础送分型考点——自主练透)
[必备知识]
正弦、余弦函数的定义域为 R,正切函数的定义域为
π xx≠kπ+ ,k∈Z 2 ;正弦、余弦函数的值域为[-1,1],正切函
2
( B. 0 1 D.- 2
x=-2sin
)
解析:f(x)=1-2sin x+2sin
1 2 3 x- + ,所以函数 2 2
3 f(x)的最大值是 ,最小值是-3,所以最大值与最小值的和是 2 3 - ,故选 C. 2
4 . ( 人教 A 版教材习题改编 ) 函数
π xx≠kπ+ ,k∈Z 3 . ____________________
1 解析:由 2sin x-1≥0, 得 sin x≥ , 2 π 5π 所以 2kπ+ ≤x≤2kπ+ (k∈Z). 6 6
2.函数
π π f(x)=3sin2x-6 在区间0,2 上的值域为 3 B.-2,3 3 3 D.- ,3 2
数的值域为 R.
[题组练透]
1.函数 y= 2sin x-1的定义域为
π 5π A.6, 6 π 5π C.2kπ+6 ,2kπ+ 6 (k∈Z)
【三维设计】(新课标)2016届高考数学大一轮复习精品讲义 第三章 三角函数、解三角形(含解析)

第三章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数基础盘查一角的有关概念(一)循纲忆知了解任意角的概念(角的定义、分类、终边相同角).(二)小题查验1.判断正误(1)三角形的内角必是第一、二象限角( )(2)第一象限角必是锐角( )(3)不相等的角终边一定不相同( )(4)若β=α+k·720°(k∈Z),则α和β终边相同( )答案:(1)×(2)×(3)×(4)√2.(人教A版教材习题改编)3 900°是第________象限角,-1 000°是第________象限角.答案:四一3.若α=k·180°+45°(k∈Z),则α在第________象限.答案:一、三基础盘查二弧度的定义和公式(一)循纲忆知了解弧度制的概念,能进行弧度与角度的互化.(二)小题查验1.判断正误(1)终边落在x轴非正半轴上的角可表示为α=2πk+π(k∈Z)( )(2)一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位( )答案:(1)×(2)√2.(人教A版教材练习改编)已知半径为120 mm的圆上,有一条弧的长是144 mm,则该弧所对的圆心角的弧度数为________.答案:1.2基础盘查三任意角的三角函数(一)循纲忆知理解任意角的三角函数(正弦、余弦、正切)的定义.(二)小题查验1.判断正误(1)三角函数线的长度等于三角函数值( )(2)三角函数线的方向表示三角函数值的正负( )(3)点P (tan α,cos α)在第三象限,则角α终边在第二象限( ) (4)α为第一象限角,则sin α+cos α>1( ) 答案:(1)× (2)√ (3)√ (4)√2.(人教A 版教材练习改编)已知角θ的终边经过点P (-12,5),则cos θ=________,sin θ=________,tan θ=________.答案:513 -1213 -1253.若角α终边上有一点P (x,5),且cos α=x13(x ≠0),则 sin α=________.答案:513对应学生用书P44考点一 角的集合表示及象限角的判定(基础送分型考点——自主练透)[必备知识]角的概念(1)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.[题组练透]1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个解析:选C -3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.2.设集合M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅解析:选B 法一:由于M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .3.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°[类题通法](1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.(2)利用终边相同的角的集合S ={β|β=2k π+α,k ∈Z }判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.考点二 三角函数的定义(题点多变型考点——全面发掘)[必备知识]任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)三角函数值在各象限内符号为正的口诀 一全正,二正弦,三正切,四余弦.(3)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.[提醒] 三角函数线是有向线段.[一题多变][典型母题]设角α终边上一点P (-4a,3a )(a <0),求 sin α的值.[解] 设P 与原点的距离为r , ∵P (-4a,3a ),a <0, ∴r =-4a2+3a2=|5a |=-5a .∴sin α=3a -5a =-35. [题点发散1] 若本例中“a <0”,改为“a ≠0”,求 sin α的值. 解:当a <0时,sin α=-35;当a >0时, r =5a, sin α=35.[题点发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α, cos α, tan α的值.解:设α终边上任一点为P (-4a,3a ),当a >0时,r =5a ,sin α=35,cos α=-45,tan α=-34;当a <0时,r =-5a ,sin α=-35,cos α=45,tan α=-34.[题点发散3] 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α, tan α的值. 解:由题设知x =-3,y =m ,∴r 2=|OP |2=()-32+m 2(O 为原点),r =3+m 2.∴sin α=m r=2m 4=m 22, ∴r =3+m 2=22, 即3+m 2=8,解得m =± 5.当m =5时,r =22,x =-3,y =5, ∴cos α=-322=-64, tan α=-153;当m =-5时,r =22,x =-3,y =-5, ∴cos α=-322=-64, tan α=153.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 扇形的弧长及面积公式(题点多变型考点——全面发掘)[必备知识]弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.[一题多变][典型母题][题点发散1] 去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?解:设圆心角是θ,半径是r , 则2r +r θ=10.S =12θ·r 2=12r (10-2r )=r (5-r )=-⎝ ⎛⎭⎪⎫r -522+254≤254,当且仅当r =52时,S max =254,θ=2.所以当r =52,θ=2时,扇形面积最大.[题点发散2] 若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.解析:设圆半径为r ,则圆内接正方形的对角线长为2r , ∴正方形边长为2r , ∴圆心角的弧度数是2rr= 2.答案: 2[题点发散3] 若本例条件变为:扇形的圆心角是α=120°,弦长AB =12 cm ,求弧长l .解:设扇形的半径为r cm ,如图.由sin 60°=6r,得r =4 3 cm ,∴l =|α|·r =2π3×43=833π cm.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.对应A 本课时跟踪检测十七一、选择题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3 B.π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.故选A.3.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A. 3 B .± 3 C .- 2D .- 3解析:选D 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,选D. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12 解析:选A 由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32. 5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C.35D.45解析:选B 取终边上一点(a,2a )(a ≠0),根据任意角的三角函数定义,可得cos θ=±55,故 cos 2θ=2cos 2θ-1=-35. 6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 二、填空题7.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________. 解析:2 010°=676π=12π-5π6,∴与2 010°终边相同的角中绝对值最小的角的弧度数为-5π6.答案:-5π68.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)9.已知角θ的终边上有一点(a ,a ),a ∈R 且a ≠0,则sin θ的值是________. 解析:由已知得r =a 2+a 2=2|a |,则sin θ=ar=a2|a |=⎩⎪⎨⎪⎧22,a >0,-22,a <0.所以sin θ的值是22或-22. 答案:22或-2210.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.解析:由α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z ),k π+π2<α2<k π+3π4(k∈Z ),知α2是第二或第四象限角,再由⎪⎪⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角.答案:四 三、解答题11.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)法一:∵2r +l =8 ∴S 扇=12lr =14l ·2r≤14⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4, 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值4. ∴圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=l r=2时,扇形面积取得最大值4. ∴弦长AB =2sin 1×2=4sin 1. 12.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断 tan α2sin α2cos α2的符号.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π<α<2k π+3π2,k ∈Z . (2)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0, sin α2<0, cos α2>0,所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.第二节同角三角函数的基本关系与诱导公式对应学生用书P46基础盘查一 同角三角函数的基本关系 (一)循纲忆知理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.(二)小题查验 1.判断正误(1)对任意角α,sin 23α+cos 23α=1都成立( ) (2)对任意角α,sinα2cosα2=tan α2都成立( )(3)对任意的角α,β有sin 2α+cos 2β=1( ) 答案:(1)√ (2)× (3)×2.(人教A 版教材例题改编)已知sin α=-35,则tan α=________.答案:34或-343.化简:2sin 2α-11-2cos 2α=________. 答案:1基础盘查二 三角函数的诱导公式 (一)循纲忆知能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.(二)小题查验 1.判断正误(1)六组诱导公式中的角α可以是任意角( )(2)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化( )(3)角π+α和α终边关于y 轴对称( ) 答案:(1)√ (2)√ (3)× 2.(人教A 版教材习题改编)(1)sin ⎝ ⎛⎭⎪⎫-31π4=________,(2)tan ⎝ ⎛⎭⎪⎫-263π=________. 答案:(1)22(2) 3对应学生用书P46考点一 三角函数的诱导公式(基础送分型考点——自主练透)[必备知识][提醒] 对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.[题组练透]1.已知sin ⎝⎛⎭⎪⎫5π2+α=15,那么cos α=( )A .-25B .-15C.15D.25解析:选C sin ⎝⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=15.2.已知A =k π+αsin α+k π+αcos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}解析:选C 当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.3.sin 600°+tan 240°的值等于________.解析:sin 600°+tan 240°=sin(720°-120°)+tan(180°+60°)=-sin 120°+tan 60°=-32+3=32. 答案:324.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________. 解析:tan ⎝⎛⎭⎪⎫5π6+α=tan ⎝ ⎛⎭⎪⎫π-π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案:-335.化简:π-απ-α⎝ ⎛⎭⎪⎫-α+3π2-α-π-π-α.解:原式=-tan α·cos α-cos απ+α-π+α=tan α·cos α·cos α-cos α·sin α=sin αcos α·cos α-sin α=-1.考点二 同角三角函数的基本关系(题点多变型考点——全面发掘)[必备知识]同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1(α∈R ).(2)商数关系:tan α=sin αcos α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z . [一题多变][典型母题]已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值. [解] (1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2 α+cos 2 α=1, ②由①得 cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形内角, ∴⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝ ⎛⎭⎪⎫152,即1+2sin αcos α=125,∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0, cos α<0, sin α-cos α >0. ∴sin α-cos α=75.由⎩⎨⎧sin α+cos α=15,α-cos α=75,得⎩⎨⎧sin α=45,α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α =sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α. ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257. [题点发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求 sin α+cos α的值.解:法一:由tan α=-13,得sin α= -13cos α,将其代入 sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0, ∴cos α=-31010, sin α=1010,故 sin α+cos α=-105. 法二:∵α是三角形的内角且tan α=-13,∴α为第二象限角, ∴sin α=1010, cos α=-31010, ∴sin α+cos α=-105. [题点发散2] 保持本例条件不变, 求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由例题可知: tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2 =-43-45×⎝ ⎛⎭⎪⎫-43+2=87.(2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825. [题点发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5, 求tan α的值.解:由sin α+3cos α3cos α-sin α=5, 得tan α+33-tan α=5,即tan α=2.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.对应B 本课时跟踪检测十八一、选择题1.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( ) A .sin θ<0,cos θ>0 B .sin θ>0,cos θ<0 C .sin θ>0,cos θ>0D .sin θ<0,cos θ<0解析:选B ∵sin(θ+π)<0,∴-sin θ<0,sin θ>0. ∵cos(θ-π)>0,∴-cos θ>0,cos θ<0.2.(2015·成都外国语学校月考)已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝⎛⎭⎪⎫α+π2=( )A.45 B .-45C.35D .-35解析:选B tan(α-π)=34⇒tan α=34.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-45. 3.已知f (α)=π-απ-α-π-αα,则f ⎝ ⎛⎭⎪⎫-31π3的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin α·cos α-cos α tan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫10π+π3 =-cos π3=-12.4.(2015·福建泉州期末)若tan α=2,则2sin 2α+1sin 2α的值为( )A.53 B .-134C.135D.134解析:选D 法一:(切化弦的思想):因为tan α=2, 所以 sin α=2cos α, cos α=12sin α.又因为sin 2α+cos 2α=1, 所以解得 sin 2α=45.所以2sin 2α+1sin2α=2sin 2α+12sin α cos α=2sin 2α+1sin 2α=2×45+145=134.故选D. 法二:(弦化切的思想):因为2sin 2α+1sin 2α=3sin 2α+cos 2α2sin α cos α=3tan 2α+12tan α=3×22+12×2=134.故选D.5.(2015·湖北黄州联考)若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sinB -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π2-A >0,∴sin A >sin ⎝⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0, sin B -cos A >0, ∴点P 在第二象限,选B.6.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 015)的值为( )A .-1B .1C .3D .-3解析:选D ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 015)=a sin(2 015π+α)+b cos(2 015π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-(a sin α+b cos β)=-3. 即f (2 015)=-3. 二、填空题7.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=________.解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α =-1-sin 2α=-35,∴tan α= sin αcos α=-43.答案:-438.化简:sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-απ+α+π-α⎝ ⎛⎭⎪⎫π2+απ+α=________.解析:原式=cos α·sin α-cos α+sin α-sin α-sin α=-sin α+sin α=0. 答案:09.(2015·绍兴二模)若f (cos x )=cos 2x, 则f (sin 15°)=________. 解析:f (sin 15°)=f (cos 75°)=cos 150°=cos(180°-30°)=-cos 30°=-32. 答案:-3210.(2015·新疆阿勒泰二模)已知α为第二象限角, 则cos α1+tan 2α+sin α1+1tan 2α=________. 解析:原式=cos α sin 2α+cos 2αcos 2α+sin α sin 2α+cos 2αsin 2α=cos α1|cos α|+ sin α1|sin α|,因为α是第二象限角,所以sin α>0, cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0.答案:0 三、解答题11.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°·(-sin 1 050°)+tan 945° =-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 12.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解:由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α =sin 2α+sin 2αsin 2α+14sin 2α=85.第三节三角函数的图象与性质对应学生用书P47基础盘查 正弦函数、余弦函数、正切函数的图象和性质 (一)循纲忆知1.能画出y =sin x, y =cos x, y =tan x 的图象,了解三角函数的周期性. 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. (二)小题查验 1.判断正误(1)函数y =sin x 的图象介于直线y =1与y =-1之间( ) (2)将余弦曲线向右平移π2个单位就得到正弦曲线( )(3)函数y =sin ⎝⎛⎭⎪⎫2x +3π2是奇函数( ) (4)函数y =sin x 的对称轴方程为x =2k π+π2(k ∈Z )( )(5)正切函数在整个定义域内是增函数( ) 答案:(1)√ (2)√ (3)× (4)× (5)×2.(人教A 版教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上都是减函数C .在[0,π]上是增函数,在[]-π,0上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π和⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数 答案:B3.(2015·皖南八校模拟)函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:选C f (x )=1-2sin 2x +2sin x =-2⎝ ⎛⎭⎪⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C. 4.(人教A 版教材习题改编)函数y =-tan ⎝⎛⎭⎪⎫x +π6+2的定义域为____________________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π3,k ∈Z对应学生用书P48考点一 三角函数的定义域与值域(基础送分型考点——自主练透)[必备知识]正弦、余弦函数的定义域为R ,正切函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z;正弦、余弦函数的值域为[-1,1],正切函数的值域为R .[题组练透]1.函数y =2sin x -1的定义域为( ) A.⎣⎢⎡⎦⎥⎤π6,5π6B.⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ) C.⎝⎛⎭⎪⎫2k π+π6,2k π+5π6(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π+π6,k π+5π6(k ∈Z ) 解析:选B 由2sin x -1≥0, 得sin x ≥12,所以2k π+π6≤x ≤2k π+5π6(k ∈Z ).2.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32B.⎣⎢⎡⎦⎥⎤-32,3C.⎣⎢⎡⎦⎥⎤-332,332D.⎣⎢⎡⎦⎥⎤-332,3 解析:选B 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.3.函数y =lg(sin 2x )+9-x 2的定义域为________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,π2∪⎝ ⎛⎭⎪⎫0,π2.答案:⎣⎢⎡⎭⎪⎫-3,π2∪⎝ ⎛⎭⎪⎫0,π24.求函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的最大值与最小值.解:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎪⎫||x ≤π4的最大值为54,最小值为1-22.[类题通法]1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.考点二 三角函数的单调性(重点保分型考点——师生共研)[必备知识]正弦函数的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π(k ∈Z ),单调递减区间是⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z );余弦函数的单调递增区间是[-π+2k π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z );正切函数的单调递增区间是⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k∈Z ).[典题例析]写出下列函数的单调区间: (1)y =sin ⎝ ⎛⎭⎪⎫-2x +π3;(2)y =|tan x |.解:(1)y =sin ⎝ ⎛⎭⎪⎫-2x +π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,它的递增区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的递减区间,它的递减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的递增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z ;递增区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z .(2)观察图象(图略)可知,y =|tan x |的递增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z ,递减区间是⎝ ⎛⎦⎥⎤k π-π2,k π,k ∈Z . [类题通法]三角函数的单调区间的求法 (1)代换法:所谓代换法,就是将比较复杂的三角函数整理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.[提醒] 求解三角函数的单调区间时,若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.[演练冲关]1.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2)解析:选A 由π2<x <π,ω>0得,ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 在⎝ ⎛⎭⎪⎫π2,3π2上递减,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A.2.函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为__________________________________.解析:函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .答案:⎣⎢⎡⎦⎥⎤k π-7π12,k π-π12(k ∈Z ) 考点三 三角函数的奇偶性、周期性及对称性(常考常新型考点——多角探明)[必备知识]1.正弦、正切函数是奇函数,余弦函数是偶函数.2.正弦、余弦函数的最小正周期为T =2π,函数y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 的周期是T =2π|ω|;正切函数的最小正周期为T =π,函数y =A tan(ωx +φ)+b的周期是T =π|ω|.3.正弦函数y =sin x 的对称轴是x =k π+π2,k ∈Z ,对称中心为(k π,0),k ∈Z .余弦函数y =cos x 的对称轴是x =k π,k ∈Z ,对称中心为⎝ ⎛⎭⎪⎫π2+k π,0,k ∈Z ,即弦函数的对称轴是过函数的最高点或最低点且垂直于x 轴的直线,对称中心是图象与x 轴的交点,即函数的零点;正切函数没有对称轴,其对称中心为⎝⎛⎭⎪⎫k π2,0,k ∈Z . [多角探明]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心; (3)三角函数对称性的应用. 角度一:三角函数的周期1.函数y =-2cos 2⎝ ⎛⎭⎪⎫π4+x +1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数解析:选A 因为y =-cos ⎝ ⎛⎭⎪⎫π2+2x =sin 2x ,所以是最小正周期为π的奇函数. 2.(2015·长沙一模)若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3.答案:2或3角度二:求三角函数的对称轴或对称中心 3.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎪⎫3π4-x ( )A .是奇函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称解析:选C ∵当x =π4时,函数f (x )取得最小值,∴sin ⎝ ⎛⎭⎪⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝ ⎛⎭⎪⎫x +2k π-3π4=sin ⎝ ⎛⎭⎪⎫x -3π4.∴y =f ⎝ ⎛⎭⎪⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎪⎫3π4-x 是奇函数,且图象关于直线x =π2对称.角度三:三角函数对称性的应用4.(2015·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( )A .-34B .-14C .-12D.34解析:选D 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f ⎝ ⎛⎭⎪⎫16=12cos π6=34.5.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________. 解析:由题意,得y =cos(3x +φ)是奇函数,故φ=k π+π2(k ∈Z ).答案:k π+π2(k ∈Z )[类题通法]函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.对应A 本课时跟踪检测十九一、选择题 1.函数y =cos x -32的定义域为( ) A.⎣⎢⎡⎦⎥⎤-π6,π6 B.⎣⎢⎡⎦⎥⎤k π-π6,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z ) D .R解析:选C ∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 2.(2015·石家庄一模)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. 3.给定性质:①最小正周期为π;②图象关于直线x =π3对称,则下列四个函数中,同时具有性质①②的是( )A .y =sin ⎝ ⎛⎭⎪⎫x 2+π6 B .y =sin ⎝ ⎛⎭⎪⎫2x -π6C .y =sin ⎝⎛⎭⎪⎫2x +π6 D .y =sin|x |解析:选B 注意到函数y =sin ⎝⎛⎭⎪⎫2x -π6的最小正周期T =2π2=π,当x =π3时,y =sin ⎝⎛⎭⎪⎫2×π3-π6=1,因此该函数同时具有性质①②.4.(2015·沈阳质检)已知曲线f (x )=sin 2x +3cos 2x 关于点(x 0,0)成中心对称,若x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( ) A.π12 B.π6 C.π3D.5π12解析:选C 由题意可知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,其对称中心为(x 0,0),故2x 0+π3=k π(k ∈Z ),∴x 0=-π6+k π2(k ∈Z ),又x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴k =1,x 0=π3,故选C. 5.若函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,且|φ|<π2在区间⎣⎢⎡⎦⎥⎤π6,2π3上是单调减函数,且函数值从1减少到-1,则f ⎝ ⎛⎭⎪⎫π4=( )A.12B.22C.32D .1解析:选C 由题意得函数f (x )的周期T =2⎝⎛⎭⎪⎫2π3-π6=π,所以ω=2,此时f (x )=sin(2x +φ),将点⎝ ⎛⎭⎪⎫π6,1代入上式得sin ⎝ ⎛⎭⎪⎫π3+φ=1⎝ ⎛⎭⎪⎫|φ|<π2,所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,于是f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π2+π6=cos π6=32.6.(2015·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎪⎫x +π3为( )A .奇函数且在⎝ ⎛⎭⎪⎫0,π4上单调递增B .偶函数且在⎝ ⎛⎭⎪⎫0,π2上单调递增C .偶函数且在⎝ ⎛⎭⎪⎫0,π2上单调递减D .奇函数且在⎝⎛⎭⎪⎫0,π4上单调递减 解析:选D 因为函数f (x )=cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6,则y =f ⎝ ⎛⎭⎪⎫x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-π6=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝ ⎛⎭⎪⎫0,π4上单调递减,故选D.二、填空题 7.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调减区间为______________.解析:由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )8.函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是________解析:由2x +π4=k π(k ∈Z )得,x =k π2-π8(k ∈Z ).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z . 答案:⎝⎛⎭⎪⎫k π2-π8,0,k ∈Z 9.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝ ⎛⎭⎪⎫π6+x=f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为________.解析:∵f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝ ⎛⎭⎪⎫π6=±2. 答案:2或-210.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3-1,x ∈⎣⎢⎡⎦⎥⎤0,π3的值域为________,并且取最大值时x 的值为________.解析:∵0≤x ≤π3,∴π3≤2x +π3≤π,∴0≤sin ⎝⎛⎭⎪⎫2x +π3≤1, ∴-1≤2sin ⎝ ⎛⎭⎪⎫2x +π3-1≤1,即值域为[-1,1]; 且当sin ⎝ ⎛⎭⎪⎫2x +π3=1,即x =π12时,y 取最大值. 答案:[-1,1] π12三、解答题11.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.解:∵由f (x )的最小正周期为π,则T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ), 展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z .12.设函数f (x )=sin ⎝⎛⎭⎪⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝ ⎛⎭⎪⎫πx 3-π3-1,所以y =f (x )的最小正周期T =2ππ3=6.由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z ,得6k -12≤x ≤6k +52,k ∈Z ,所以y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤6k -12,6k +52,k ∈Z .(2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎢⎡⎦⎥⎤2π3,π,sin ⎝ ⎛⎭⎪⎫π3x -π3∈⎣⎢⎡⎦⎥⎤0,32,f (x )∈⎣⎢⎡⎦⎥⎤-1,12, 即当x ∈[0,1]时,函数y =g (x )的最大值为12.第四节函数y =A sin(ωx +φ)的图象及三角函数模型的简单应用对应学生用书P50基础盘查一 y =A sin(ωx +φ)的有关概念 (一)循纲忆知了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.(二)小题查验(人教A 版教材习题改编)函数y =23sin ⎝ ⎛⎭⎪⎫12x -π4的振幅为________,周期为________,初相为________.答案:23 4π -π4基础盘查二 “五点法”作函数y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤 (一)循纲忆知熟练运用“五点法”作函数y =A sin(ωx +φ)的图象. (二)小题查验(人教A 版教材例题改编)用“五点法”作函数y =2sin ⎝ ⎛⎭⎪⎫13x -π6的图象,试写出相应的五个点坐标.答案:⎝⎛⎭⎪⎫π2,0,(2π,2),⎝ ⎛⎭⎪⎫7π2,0,(5π,-2),⎝ ⎛⎭⎪⎫13π2,0基础盘查三 y =sin x 变换到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤 (一)循纲忆知了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题,并能进行图象变换.(二)小题查验1.判断正误(1)将函数y=sin ωx的图象向右平移φ(φ>0)个单位长度,得到函数y=sin(ωx-φ)的图象( )(2)要得到函数y =sin ωx (ω>0)的图象,只需将函数y =sin x 上所有点的横坐标变为原来的ω倍( )(3)将函数y =sin x 图象上各点的纵坐标变为原来的A (A >0)倍,便得到函数y =A sin x 的图象( )(4)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0( )(5)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2( ) 答案:(1)× (2)× (3)√ (4)√ (5)√2.(人教A 版教材例题改编)如图是某简谐运动的图象,则这个简谐运动的函数表达式为________________.答案:y =2sin 5π2x ,x ∈[0,+∞)对应学生用书P50考点一 求函数y =Aωx +φ的解析式(基础送分型考点——自主练透)[必备知识]1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)+b ,求出需要确定的系数A ,ω,φ,b ,得到三角函数的解析式.[题组练透]1.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,||φ<π2的部分图象如图所示,则y =f ⎝⎛⎭⎪⎫x +π6取得最小值时x 的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π6,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k π-π3,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k π-π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z解析:选B 根据所给图象,周期T =4×⎝⎛⎭⎪⎫7π12-π3=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过⎝⎛⎭⎪⎫7π12,0,代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f ⎝ ⎛⎭⎪⎫x +π6=sin ⎝⎛⎭⎪⎫2x +π6,当2x +π6=-π2+2k π(k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f ⎝⎛⎭⎪⎫x +π6取得最小值.2.(2015·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝⎛⎭⎪⎫4x +π3+2 D .y =2sin ⎝⎛⎭⎪⎫4x +π6+2 解析:选D 由函数y =A sin(ωx +φ)+b 的最大值为4,最小值为0,可知b =2,A =2.由函数的最小正周期为π2,可知2πω=π2,得ω=4.由直线x =π3是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2.[类题通法]确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:。
【三维设计】高考数学一轮复习 第4节 算法初步课件

A.7
B.8
C.10
D.11
[解析] 当 x3=7 时,|6-9|<|9-7|,即 3<2,此时 p=9+2 7=8, 输出 p=8,A 不正确;当 x3=8 时, |6-9|<|9-8|,即 3<1,此时 p=9+2 8=8.5,输出 p=8.5.
[答案] B
[理]下图中 x1,x2,x3 为某次考试三个评阅人对同一道题的独
下图表示
的是给定x的值求其对应的函数值y的算法框图.①处应
填写________;②处应填写________.
解析:由框图可知只要满足①条件则对应的函数解析式 为y=2-x,故此处应填写x<2,则②处应填写y=log2x. 答案:x<2 y=log2 x
[冲关锦囊]
1.选择结构中包含一个判断框,根据给定的条件是否成 立而选择执行哪一个处理框.
答案:4
5.(教材习题改编)阅读下图所示的程序框图,若运行该程序后输 出的y值为18,则输入的实数x值为________.
解析:由流程图可得,该程序为一分段函数
2x2-1,x>0,
y=12x,x≤0,
分别令
2x2-1=18, x>0,
或12x=18, x≤0,
解得x=34.
答案:34
1.循环结构程序框图中的三个必要条件: (1)确定循环变量和初始条件; (2)确定循环体; (3)确定循环的终止条件.
2.使用选择结构要注意两点: (1)要注意需要判断的条件是什么; (2)是判断后的条件分别对应着什么样的结果. 3.选择结构的典型问题就是分段函数的求值问题及需要
分类的其他问题.
[精析考题] [例2] (2011•江西高考)下图的算法框图,则运行后输 出的结果是____.
【三维设计】2016届(新课标)高考数学(理)大一轮复习精讲课件:第八章 解析几何 第五节 椭圆
椭圆
基础盘查一
椭圆的定义
(一)循纲忆知
掌握椭圆的定义,了解椭圆的简单应用.
(二)小题查验
1.判断正误
(1)平面内与两个定点 F1,F2 的距离之和等于常数的点的轨迹 是椭圆 ( × )
(2)动点 P 到两定点 A(0,-2),B(0,2)的距离之和为 4,则点 P 的轨迹是椭圆 ( × )
x2 y2 2.(人教 B 版教材习题改编)已知椭圆a2+b2=1,作一个三角形,使 它的一个顶点为焦点 F1,另两个顶点 D,E 在椭圆上且边 DE 过
2.利用定义求焦点三角形的周长和面积,解焦点三角形常利 用椭圆的定义和正弦正理,常用到结论有:(其中,θ=∠F1PF2)
(1)|PF1|+|PF2|=2a;
(2)4c2=|PF1|2+|PF2|2-2|PF1|· |PF2|cos θ; (3)当 P 为短轴端点时,θ 最大.
1 sin θ (4)S△PF1F2 =2|PF1||PF2|sin θ= · b2 1+cos θ θ =b2tan 2=c· |y0|. 当 y0 = ± b,即 P 为短轴端点时,S△PF1F2 有最大值为 bc.
∴PF1⊥PF2,∠F1PF2=90° . 设|PF1|=m,|PF2|=n,则 m+n=2a. m2+n2=4c2,∴(m+n)2-2mn=4c2. ∴4a2-2mn=4c2,∴4b2=2mn. ∴mn=2b2. 1 ∴S△F1PF2= mn=b2. 2
[ 题点发散 3]
本例条件变为“P 到两焦点的距离之比为 2∶
[一题多变]
[典型母题]
x2 y2 (2015· 广州二模)设 F1,F2 分别是椭圆 C:a2+b2=1(a>b>0) 的左、右焦点,点 P 在椭圆 C 上,若线段 PF1 的中点在 y 轴上, ∠PF1F2=30° ,则椭圆的离心率为 3 A. 3 1 C. 3 3 B. 6 1 D. 6 ( )
【三维设计】2016届(新课标)高考数学(文)大一轮复习课件解答题增分 系列讲座(四)
[失分警示]
易漏 “ 面内相 交线 ” 这一条 件, 导致判定 线面垂直失 误丢分.
而 AC1⊂平面 ACC1, 所以 BD⊥AC1.
[解题流程] A1B1,A1D1 的中点,
第三步
利用平 行 性 证 明
MN⊥AC1, PN ⊥ AC1 , 可证 AC1 ⊥
平面 PQMN. ⊥平面 PQMN.
⇐
⇐
证 明 : (1) 连 接 AD1 , 由 ABCDA1B1C1D1 是正方体, 知 AD1∥BC1, 中点,所以 FP∥AD1. 从而 BC1∥FP. (3 分)
[失分警示]易漏线面平因为 F,P 分别是 AD,DD1 的 行 判 定 定 理
中的条件, 导 致失分.
而 FP⊂平面 EFPQ,且 BC1⊄ 平面 EFPQ ,故直 线 BC1 ∥平面 EFPQ. (6 分)
[解题流程]
第二步 利用图 形特征 AC ⊥ BD 及 CC1 ⊥ 平 面 ABCD 推证 BD ⊥ 平 面 ACC1, 从而 得 AC1 ⊥ BD.
⇐
(2)如图,连接 AC,BD, 则 AC ⊥ BD. 由 CC1⊥平 面 ABCD, BD⊂ 平面 ABCD,可 得 CC1⊥BD. (7 分) (8 分) 又 AC∩CC1=C, 所以 BD⊥平面 ACC1. (9 分)
“立体几何”类题目的审题技巧与解 题规范
[技法概述]
在高考数学试题中,问题的条件以图形的形式或将条件隐 含在图形之中给出的题目较多,因此在审题时,要善于观察图 形, 洞悉图形所隐含的特殊的关系、 数值的特点、 变化的趋势, 抓住图形的特征,利用图形所提供信息来解决问题.
[适用题型]
以下几种类型常用到此审题方法:
【三维设计】2016届(新课标)高考数学(理)大一轮复习精讲课件:第八章几何第八节曲线与方程
“课后演练提能”见“课时跟踪检测(五十七)” (单击进入电子文档)
谢谢观看
4.已知圆的方程为 x2+y2=4,若抛物线过点 A(-1,0),B(1,0)且以圆 的切线为准线,则抛物线的焦点轨迹方程是_x4_2_+__y3_2=__1_(_y_≠__0_)_. 解析:设抛物线焦点为 F,过 A,B,O 作准线的垂线 AA1,BB1, OO1,则|AA1|+|BB1|=2|OO1|=4,由抛物线定义得|AA1|+|BB1| =|FA|+|FB|,∴|FA|+|FB|=4,故 F 点的轨迹是以 A,B 为焦
解:(1)由题知|CA|+|CB|=|CP|+|CQ|+|AP|+|BQ|=2|CP|+|AB| =4>|AB|, 所以曲线 M 是以 A,B 为焦点,长轴长为 4 的椭圆(挖去与 x 轴的 交点). 设曲线 M:xa22+by22=1(a>b>0,y≠0),
则 a2=4,b2=a2-|A2B|2=3, 所以曲线 M:x42+y32=1(y≠0)为所求. (2)如图,由题意知直线 BC 的斜率不为 0,且 过定点 B(1,0), 设 lBC:x=my+1,C(x1,y1),D(x2,y2),
2.用相关点法求轨迹方程的关键是寻求关系式:x′= f(x,y),y′=g(x,y),然后代入已知曲线方程.求对称曲线 (轴对称、中心对称等)方程实质上也是用代入法(相关点法)解题.
[典题例析]
(2015·广州模拟)在圆x2+y2=4上任取一点P,设点P在x轴上的正投 影为点D.当点P在圆上运动时,动点M满足 PD =2 MD ,动点M形成 的轨迹为曲线C. (1)求曲线C的方程; (2)已知点E(1,0),若A,B是曲线C上的两个动点,且满足EA⊥EB, 求 EA·BA的取值范围. 解:(1)法一:由 PD=2 MD知点M为线段PD的中点. 设点M的坐标是(x,y),则点P的坐标是(x,2y). 因为点P在圆x2+y2=4上,
【三维设计】(新课标)高考数学大一轮复习精品讲义 第一章 集合与常用逻辑用语(含解析)
一、重视教材习题的母题功能你知道高考题是怎样命制的吗?看完本讲内容,洞晓了高考命题的5大常用手段,你就明白了教材经典题目的重要性.你还会陷入“高考高于天,教材放一边”的备考误区吗?编写本讲的目的,我们旨在提醒您:一轮复习要“抓纲靠本”,“纲”就是考纲,“本”就是课本.要重拾起被遗忘忽视的课本,重温基础知识,重做典型题目,重视教材“母题”的引领作用,发挥教材母题做一当十的功效.在此,仅以2014年新课标全国卷两套试题为例进行说明,以佐证教材习题的重要性.教材这样练《人教A 版·必修4》P119 B 组第1题第(4)小题.已知D ,E ,F 分别是△ABC的边BC ,CA ,AB 的中点,且BC =a ,CA =b ,AB =c ,则①EF =12c -12b ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0中正确的等式的个数为( )A .1B .2C .3D .4高考这样变(2014·新课标全国卷Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB +FC =( )A .AD B.12ADC .BC D.12BC教材这样练《人教A 版·选修2-1》P69例4.斜率为1的直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A ,B 两点,求线段AB 的长. 高考这样变(2014·新课标全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B .6C .12D .7 3教材这样练《人教B版·必修5》P30练习A. 写出下面数列{a n}的前5项:1.a1=2,a n=12a n-1(n=2,3,4,…);2.a1=3,a n=a n-1+2(n=2,3,4,…);3.a1=1,a n=a n-1+1a n-1(n=2,3,4,…).高考这样变(2014·新课标全国卷Ⅱ)数列{a n}满足a n+1=11-a n,a8=2,则a1=________.教材这样练《人教A版·必修5》P14例5.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北15°的方向上,行驶5 km后到达B处,测得此山顶在西偏北25°的方向上,仰角为8°,求此山的高度CD(精确到1 m).高考这样变(2014·新课标全国卷Ⅰ)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100 m,则山高MN=________m.教材这样练《人教A版·必修1》P39B 组第3题.已知函数f(x)是偶函数,而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.高考这样变(2014·新课标全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是________.总之,教材中的例题、习题是经过精心挑选而设计的,它蕴藏着丰富的思想方法和研究资源.不少试题所涉及的思想方法,都源于教材.高考数学一轮复习中,要做到对教材中的经典题目能够熟练地求解,掌握它的通性通法、答题规范、思路分析及知识内涵.研读教材、汲取营养,充分发挥例题、习题潜在的功能,发挥教材“母本”的作用.为减少考生翻阅教材、查找典型题目之苦,充分发挥我们编者占有广泛教学资源的优势,我们在人教A版、人教B版、北师大版等教材中优中选优地筛选了一些经典题目,做为课前自检基础知识使用,就是充分发挥教材母题的引领带动作用.二、重视经典题目的发散思维本讲内容是上一讲内容的顺承和拓展,其主旨还是让学生在做题的过程中学会多思考和多领悟.如果说上一讲是教给学生“做什么”的问题,那么这一讲是教给学生“怎么做”的问题.在平时的复习备考中,做海量试题必不可少,但绝非上策.应当充分发挥典型试题的带动作用和举一反三的功能,注意培养多题一解、一题多解和一题多变思维能力的养成.多题一解有利于培养学生的求同思维,一题多解有利于培养学生的求异思维,一题多变有利于培养学生思维的灵活性与深刻性.多题一解和一题多解主要靠学生在平时做题的过程中,发挥主观能动性,多思考,多总结,而一题多解则需要教师多找一些典型题目多拓展,多发散,帮学生举一反三、悟通练透.本书在“一题多变”上主要做了以下两方面的尝试:(一)经典“题根”的发散茫茫题海,寻根是岸.木有本,水有源,题有根.在平时的训练中,可将一些经典的题目做为“题根”,在题目发散中,要学会演变题目条件、背景,变换设问,在不断变换的过程中,将此类问题厘清弄透,从一个个小问题中获取大知识,让其“枝繁叶茂”、“生机盎然”,从而彻底打通各知识点间的关节.示例:利用基本不等式求最值(二)考查角度的发散高考中的一些热门考点,虽知年年必考,但学生往往却在这类考点上失分,究其原因,主要是此类考点考查灵活、角度多变.为将这类考点练深练透,有必要对这类考点进行多维探究.备考不留死角,高考不留遗憾!角度二:比较两个函数值或两个自变量的大小若本题条件变为:已知a >0,b >0,a +2b =3,则2a +1b的最小值为________. 本题的条件变为:已知a >0,b>0,c >0,且a +b +c =1,则1a +1b +1c的最小值为________. 本题的条件和结论互换,即:已知a >0,b >0,1a +1b =4,则a +b的最小值为________.已知a >0,b >0,a +b =1,则1a +1b的最小值为________.[解析] ∵a >0,b >0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b的最小值为4,当且仅当a =b =12时等号成立.[答案] 4已知各项为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n =22a 1,则1m +4n 的最小值为________.本题的条件不变,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.利用基本不等式求最值的方法及注意点(1)知和求积的最值:求解此类问题的关键:明确“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立. (2)知积求和的最值:明确“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.(4)利用基本不等式求最值时应注意:①非零的各数(或式)均为正;②和或积为定值;③等号能否成立,即“一正、二定、三相等”,这三个条件缺一不可.角度三:解函数不等式 ⇑角度四:利用单调性求参数的取值范围或值4.已知函数f (x )=⎩⎪⎨⎪⎧a -x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2] D.⎣⎢⎡⎭⎪⎫138,2 由单调性求参数范[类题通法] 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.(4)利用单调性求最值.应先确定函数的单调性,然后再由单调性求出最值.第一章集合与常用逻辑用语第一节集__合对应学生用书P5基础盘查一元素与集合(一)循纲忆知1.了解集合的含义、元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(二)小题查验1.判断正误(1)一个集合中可以找到两个相同的元素( )(2)集合{x|x>3}与集合{t|t>3}表示的是同一集合( )(3)a在集合A中,可用符号表示为a⊆A( )(4)零不属于自然数集( )答案:(1)×(2)√(3)×(4)×2.(人教A版教材练习)选择适当的方法表示下列集合:(1)由小于8的所有素数组成的集合;(2)不等式4x-5<3的解集.答案:(1){2,3,5,7} (2){x|x<2}基础盘查二集合间的基本关系(一)循纲忆知1.理解集合之间包含与相等的含义,能识别给定集合的子集.2.在具体情境中,了解全集与空集的含义.(二)小题查验1.判断正误(1)若A=B,则A⊆B( )(2)若A B,则A⊆B且A≠B( )(3)N*N Z( )(4)空集是任何集合的子集,两元素集合是三元素集合的子集( )答案:(1)√(2)√(3)√(4)×2.(人教A版教材例题改编)集合{a,b}的所有子集为________________.答案:{a},{b},{a,b},∅基础盘查三集合的基本运算(一)循纲忆知1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用韦恩(Venn)图表达集合的关系及运算.(二)小题查验1.判断正误(1)若A∩B=A∩C,则B=C( )(2)集合A与集合A在全集U中的补集没有公共元素( )(3)并集定义中的“或”能改为“和”()(4)A∩B是由属于A且属于B的所有元素组成的集合( )答案:(1)×(2)√(3)×(4)√2.(人教A版教材习题改编)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=________.答案:{2,4}3.已知集合A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________________.答案:{x|x≤2或x≥10}对应学生用书P6考点一集合的基本概念(基础送分型考点——自主练透)[必备知识]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉. (3)集合的表示法:列举法、描述法、Venn 图. 2.常见数集及其表示符号自然数集用N 表示,正整数集用N *或N +表示,整数集用Z 表示,有理数集用Q 表示,实数集用R 表示.[提醒] 解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[题组练透]1.(2015·洛阳统考)已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( )A .3B .6C .8D .9解析:选D 集合B 中元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.2.现有三个实数的集合,既可以表示为⎩⎨⎧⎭⎬⎫a ,b a ,1,也可以表示为{a 2,a +b,0},则a2 015+b2 015=________.解析:由已知,得b a=0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 015+b2 015=(-1)2 015=-1.答案:-13.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 解析:因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.答案:-32[类题通法]1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.考点二 集合间的基本关系(重点保分型考点——师生共研)[必备知识](1)子集:对任意的x ∈A ,都有x ∈B ,则A ⊆B (或B ⊇A ); (2)真子集:若集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,则A B (或B A );(3)性质:∅⊆A ;A ⊆A ;A ⊆B ,B ⊆C ⇒A ⊆C . (4)集合相等:若A ⊆B ,且B ⊆A ,则A =B . [提醒] 写集合的子集时不要忘了空集和它本身.[典题例析]1.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:选D 用列举法表示集合A ,B ,根据集合关系求出集合C 的个数. 由x 2-3x +2=0得x =1或x =2, ∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 2.已知集合A ={x |x 2-2 015x +2 014<0},B ={x |x <m },若A ⊆B ,则实数m 的取值范围是________.解析:由x 2-2 015x +2 014<0,解得1<x <2 014,故A ={x |1<x <2 014}. 而B ={x |x <m },由于A ⊆B ,如图所示,则m ≥2 014.答案:[2 014,+∞)[类题通法](1)已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍.(2)当题目中有条件B ⊆A 时,不要忽略B =∅的情况![演练冲关]1.(2015·中原名校联盟一模)设A ={1,4,2x },若B ={1,x 2},若B ⊆A ,则x =________. 解析:由B ⊆A ,则x 2=4或x 2=2x .当x 2=4时,x =±2,但x =2时,2x =4,这与集合元素的互异性相矛盾;当x 2=2x 时,x =0或x =2,但x =2时,2x =4,这与集合元素的互异性相矛盾.综上所述,x =-2或x =0.答案:0或-22.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.解析:当B =∅时,有m +1≥2m -1, 则m ≤2.当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4. 答案:(-∞,4]考点三 集合的基本运算(题点多变型考点——全面发掘)[必备知识]1.集合的并、交、补运算: 并集:A ∪B ={x |x ∈A ,或x ∈B }; 交集:A ∩B ={x |x ∈A ,且x ∈B };补集:∁U A ={x |x ∈U ,且x ∉A };U 为全集,∁U A 表示集合A 相对于全集U 的补集. 2.集合的运算性质(1)A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B ; (2)A ∩A =A ,A ∩∅=∅; (3)A ∪A =A ,A ∪∅=A ;(4)A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .[提醒] Venn 图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.[一题多变][典型母题]已知集合A ={y |y =x 2-2x ,x ∈R },B ={y |y =-x 2+2x +6,x ∈R },则A ∩B = .[解析] y =x 2-2x =x -2-1≥-1,y =-x 2+2x +6=-x -2+7≤7,∴A ={y |y ≥-1},B ={y |y ≤7}, 故A ∩B ={y |-1≤y ≤7}. [答案] {y |-1≤y ≤7}[题点发散1] 若集合A 变为A ={x |y =x 2-2x ,x ∈R },其他条件不变,求A ∩B . 解:因A 中元素是函数自变量,则A =R , 而B ={y |y ≤7},则A ∩B ={y |y ≤7}.[题点发散2] 若集合A 、B 中元素都为整数,求A ∩B . 解:A ∩B ⊆{y |-1≤y ≤7},又因为y ∈Z , 故A ∩B ={-1,0,1,2,3,4,5,6,7}.[题点发散3] 若集合A 、B 不变,试求∁R A ∪∁R B . 解:∵A ={y |y ≥-1},B ={y |y ≤7}, ∴∁R A ={y |y <-1},∁R B ={y |y >7}, 故∁R A ∪∁R B ={y |y <-1或y >7}.[题点发散4] 若集合A 、B 变为:A ={(x ,y )|y =x 2-2x ,x ∈R },B ={(x ,y )|y =-x 2+2x +6,x ∈R },求A ∩B .解:由⎩⎪⎨⎪⎧y =x 2-2x ,y =-x 2+2x +6⇒x 2-2x -3=0,解得x =3或x =-1.于是,⎩⎪⎨⎪⎧x =3,y =3或⎩⎪⎨⎪⎧x =-1,y =3,故A ∩B ={(3,3),(-1,3)}.[类题通法]解集合运算问题应注意以下三点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.考点四 集合的新定义问题(重点保分型考点——师生共研)[典题例析]1.如图所示的Venn 图中,A ,B 是非空集合,定义集合A B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x,x >0},则A B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:选D 因为A ={x |0≤x ≤2},B ={y |y >1},A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},所以A B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2},故选D.2.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i两数中至少有一个属于A ,则称集合A 为“权集”,则( )A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中元素可以有0D .“权集”中一定有元素1解析:选B 由于3×4与43均不属于数集{1,3,4},故A 不正确,由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确,由“权集”的定义可知a ja i需有意义,故不能有0,同时不一定有1,C ,D 错误,选B.[类题通法]解决集合创新型问题的方法(1)紧扣新定义:首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.[演练冲关]1.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A .1B .3C .7D .31解析:选B 具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.2.对于任意两个正整数m ,n ,定义运算(用⊕表示运算符号):当m ,n 都是正偶数或都是正奇数时,m ⊕n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ⊕n =m ×n .例如4⊕6=4+6=10,3⊕7=3+7=10,3⊕4=3×4=12.在上述定义中,集合M ={(a ,b )|a ⊕b =12,a ,b ∈N *}的元素有________个.解析:m ,n 同奇同偶时有11组:(1,11),(2,10),…,(11,1);m ,n 一奇一偶时有4组:(1,12),(12,1),(3,4),(4,3),所以集合M 的元素共有15个.答案:15对应A 本课时跟踪检测一一、选择题1.(2015·广州测试)已知集合A =⎩⎨⎧⎭⎬⎫x |x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5解析:选C ∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 值分别为5,3,1,-1,故集合A 中的元素个数为4,故选C.2.(2014·江西高考)设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(∁RB )=( )A .(-3,0)B .(-3,-1)C .(-3,-1]D .(-3,3)解析:选C 由题意知,A ={x |x 2-9<0}={x |-3<x <3},∵B ={x |-1<x ≤5},∴∁R B ={x |x ≤-1或x >5}.∴A ∩(∁R B )={x |-3<x <3}∩{x |x ≤-1或x >5}={x |-3<x ≤-1}. 3.已知集合A ={x |y =1-x 2},B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B ⊆A解析:选B 由题意知A ={x |y =1-x 2},∴A ={x |-1≤x ≤1},∴B ={x |x =m 2,m ∈A }={x |0≤x ≤1},∴B A ,故选B.4.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为( )A .[-1,0]B .(-1,0)C .(-∞,-1)∪[0,1)D .(-∞,-1]∪(0,1)解析:选D 因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1], 所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1),选D.5.(2015·西安一模)设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( )A .0B .1C .2D .3解析:选C 由题中集合可知,集合A 表示直线x +y =1上的点,集合B 表示直线x -y =3上的点,联立⎩⎪⎨⎪⎧x +y =1,x -y =3可得A ∩B ={(2,-1)},M 为A ∩B 的子集,可知M 可能为{(2,-1)},∅,所以满足M ⊆(A ∩B )的集合M 的个数是2,故选C.6.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a -b ∈[0]”.其中,正确结论的个数是( ) A .1 B .2 C .3D .4解析:选C 因为2 014=402×5+4,又因为[4]={5n +4|n ∈Z },所以2 014∈[4],故①正确;因为-3=5×(-1)+2,所以-3∈[2],故②不正确;因为所有的整数Z 除以5可得的余数为0,1,2,3,4,所以③正确;若a ,b 属于同一‘类’,则有a =5n 1+k ,b =5n 2+k ,所以a -b =5(n 1-n 2)∈[0],反过来,如果a -b ∈[0],也可以得到a ,b 属于同一“类”,故④正确.故有3个结论正确.二、填空题7.已知A ={0,m,2},B ={x |x 3-4x =0},若A =B ,则m =________. 解析:由题知B ={0,-2,2},A ={0,m,2},若A =B ,则m =-2. 答案:-28.(2014·重庆高考)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.解析:由题意,得U ={1,2,3,4,5,6,7,8,9,10},故∁U A ={4,6,7,9,10},所以(∁U A )∩B ={7,9}.答案:{7,9}9.(2015·昆明二模)若集合A ={x |x 2-9x <0,x ∈N *},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪4y∈N *,y ∈N *,则A ∩B中元素的个数为________.解析:解不等式x 2-9x <0可得0<x <9,所以A ={x |0<x <9,x ∈N *}={1,2,3,4,5,6,7,8},又4y∈N *,y ∈N *,所以y 可以为1,2,4,所以B ={1,2,4},所以A ∩B=B ,A ∩B 中元素的个数为3.答案:310.(2015·南充调研)已知集合A ={x |4≤2x≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2] 三、解答题11.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值. (1)9∈(A ∩B ); (2){9}=A ∩B .解:(1)∵9∈(A ∩B ),∴2a -1=9或a 2=9, ∴a =5或a =3或a =-3.当a =5时,A ={-4,9,25},B ={0,-4,9};当a =3时,a -5=1-a =-2,不满足集合元素的互异性; 当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 所以a =5或a =-3.(2)由(1)可知,当a =5时,A ∩B ={-4,9},不合题意, 当a =-3时,A ∩B ={9}. 所以a =-3.12.(2015·福州一模)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. 解:(1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}. (2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).第二节命题及其关系、充分条件与必要条件对应学生用书P8基础盘查一 四种命题及其关系 (一)循纲忆知 1.理解命题的概念.2.了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(二)小题查验 1.判断正误(1)“x 2+2x -3<0”是命题( ) (2)“sin 45°=1”是真命题( )(3)命题“若p ,则q ”的否命题是“若p ,则綈q ”( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真( ) 答案:(1)× (2)× (3)× (4)√2.(人教A 版教材习题)已知命题:若m >0,则方程x 2+x -m =0有实数根.则其逆否命题为____________________________________.答案:若方程x2+x-m=0无实根,则m≤0基础盘查二充分条件与必要条件(一)循纲忆知理解必要条件、充分条件与充要条件的意义.(二)小题查验1.判断正误(1)当q是p的必要条件时,p是q的充分条件( )(2)当p是q的充要条件时,也可说成q成立当且仅当p成立( )(3)q不是p的必要条件时,“p⇒/q”成立( )答案:(1)√(2)√(3)√2.(人教A版教材练习)在下列各题中,p是q的什么条件?(1)p:x2=3x+4,q:x=3x+4;(2)p:x-3=0,q:(x-3)(x-4)=0;(3)p:b2-4ac≥0(a≠0),q:ax2+bx+c=0(a≠0)有实根.答案:(1)必要(2)充分(3)充要对应学生用书P8考点一命题及其相互关系(基础送分型考点——自主练透)[必备知识]1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.[提醒] 当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动.[题组练透]1.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为( )A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C 根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故选C.2.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.答案:②④[类题通法]1.由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.2.命题真假的判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题和其逆否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[必备知识]1.充分条件与必要条件的相关概念(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇒/p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇒/q,则p是q的必要不充分条件;(5)如果p⇒/q,且q⇒/p,则p是q的既不充分又不必要条件.2.从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={p(x)},B={q(x)},则关于充分条件、必要条件又可以叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分又不必要条件.[提醒] 充分条件与必要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”.(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”⇒“p⇒r”(“p⇐q且q⇐r”⇒“p⇐r”).[典题例析]1.(2014·浙江高考)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A 当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD.当四边形ABCD 中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD 为菱形”是“AC⊥BD”的充分不必要条件.2.给定两个命题p,q.若綈p是q的必要而不充分条件,则p是綈q的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由q⇒綈p且綈p⇒/q可得p⇒綈q且綈q⇒/p,所以p是綈q的充分不必要条件.[类题通法]充分条件、必要条件的判定方法有定义法、集合法和等价转化法.三种不同的方法各适用于不同的类型,定义法适用于定义、定理判断性问题,而集合法多适用于命题中涉及字母的范围的推断问题,等价转化法适用于条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.[提醒] 区别A是B的充分不必要条件(A⇒B且B⇒/A)与A的充分不必要条件是B(B⇒A 且A⇒/B)两者的不同.[演练冲关]1.若p:|x|=x,q:x2+x≥0.则p是q的( )A.充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A p :{x ||x |=x }={x |x ≥0}=A ,q :{x |x 2+x ≥0}={x |x ≥0或x ≤-1}=B ,∵AB ,∴p 是q 的充分不必要条件.2.(2015·石家庄第一次模拟)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx+φ)(ω≠0)是偶函数,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q 的必要条件,故p 是q 的充要条件,故选A.考点三 充分必要条件的应用(题点多变型考点——全面发掘)[一题多变][典型母题]已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.[解] 由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].[题点发散1] 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[题点发散2] 本例条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/ P . ∴[--m,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).[类题通法]利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.其思维方式是:(1)若p 是q 的充分不必要条件,则p ⇒q 且q ⇒/ p ; (2)若p 是q 的必要不充分条件,则p ⇒/ q ,且q ⇒p ; (3)若p 是q 的充要条件,则p ⇔q .对应B 本课时跟踪检测二一、选择题1.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B M ={x |0<x ≤3},N ={x |0<x ≤2},所以N M ,故a ∈M 是a ∈N 的必要不充分条件.2.(2014·陕西高考)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假解析:选B 原命题正确,所以逆否命题正确.模相等的两复数不一定互为共轭复数,同时因为逆命题与否命题互为逆否命题,所以逆命题和否命题错误.故选B.3.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.4.(2014·湖北高考)设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C 是A ∩B ≠∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件解析:选C 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.5.命题“任意x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5D .a ≤5解析:选C 命题“任意x ∈[1,2],x 2-a ≤0”为真命题的充要条件是a ≥4.故其充分不必要条件是集合[4,+∞)的真子集,正确选项为C.6.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )等于( )A .1B .2C .3D .4解析:选B 原命题p 显然是真命题,故其逆否命题也是真命题.而其逆命题是:若a 1b 2-a 2b 1=0,则两条直线l 1与l 2平行,这是假命题,因为当a 1b 2-a 2b 1=0时,还有可能l 1与l 2重合,逆命题是假命题,从而否命题也为假命题,故f (p )=2.二、填空题7.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:原命题为假命题,则逆否命题也为假命题,逆命题也是假命题,则否命题也是假命题.故假命题的个数为3.答案:38.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 x -1=0, 解析:由纯虚数的定义知: x+1≠0,
⇒x=1,选 C.
5 2.(2015· 安徽“江南十校”联考)若 a+bi= (i 是虚数单位, 1+2i a,b∈R),则 ab= A.-2 C.1 B.-1 D.2 ( )
5 解析:a+bi= =1-2i,所以 a=1,b=-2,ab=-2. 1+2i
∴λ+μ=1.
[类题通法] 对复数几何意义的理解及应用
(1)复数 z、复平面上的点 Z 及向量 OZ 相互联系,即 z=a+ bi(a,b∈R)⇔Z(a,b)⇔ OZ .
[必备知识]
1.复数的概念 形如 a+bi(a,b∈R)的数叫复数,其中 a,b 分别是它的 实部和虚部.若 b=0,则 a+bi 为实数;若 b≠0,则 a+bi 为虚数;若 a=0 且 b≠0,则 a+bi 为纯虚数.
2.复数相等 a+bi=c+di⇔a=c 且 b=d(a,b,c,d∈R).
(2)解题时一定要先看复数是否为 a+bi(a,b∈R)的形式, 以确定实部和虚部.
考点二
复数的几何意义 (基础送分型考点——自主练透)
[必备知识]
一一对应 (1)复数 z=a+bi b)(a, b∈R). 复平面内的点 Z(a,
一一对应 (2)复数 z=a+bi(a,b∈R) 平面向量 OZ .
第四节
数系的扩充与复数的引入
基础盘查一
复数的有关概念
(一)循纲忆知
1.理解复数的基本概念; 2.理解复数相等的充要条件.
(二)小题查验
1.判断正误
(1)已知 z=a+bi(a,b∈R),当 a=0 时复数 z 为纯虚数( × ) (2)复数 z=a+bi(a,b∈R)中,虚部为 bi
(3)复数中有相等复数的概念,因此复数可以比较大小
i3-4i 4 i i i 解析:因为 z= = = = = + 25 25 -2-i2 4+4i-1 3+4i
4 3 3 i,所以 z 在复平面内所对应的点25,25在第一象限,故 25
选 A.
3.已知复数 z1=-1+2i,z2=1-i,z3=3-4i,它们在复平面 上对应的点分别为 A,B,C,若 OC =λ OA +μ OB ,(λ,μ∈
3.共轭复数 a+bi 与 c+di 共轭⇔a=c,b=-d(a,b,c,d∈R).
4.复数的模 向量 OZ 的模 r 叫做复数 z=a+bi(a,b∈R)的模,记作|z| 或|a+bi|,即|z|=|a+bi|= a2+b2.
[题组练透]
1.(2015· 湖北八校联考)设 x∈R,则“x=1”是“复数 z=(x2-1) +(x+1)i 为纯虚数”的 A.充分不必要条件 C.充分必要条件 B.必要不充分条件 D.既不充分也不必要条件 ( )
- 解析: 依题意得 (1 - z)· z = (2+ i)( - 1+ i) =- 3+ i ,则 |(1 - - z)· z |=|-3+i|= -32+12= 10.
[类题通法]
解决复数概念问题的方法及注意事项
(1)复数的分类及对应点的位置问题都可以转化为复数的实 部与虚部应该满足的条件问题,只需把复数化为代数形式,列 出实部和虚部满足的方程(不等式)组即可.
1.会进行复数代数形式的四则运算; 2.了解复数代数形式的加、减运算的几何意义.
(二)小题查验
1.判断正误
(1)若复数 z1,z2 满足 z1-z2>0,则 z1>z2 ( × )
(2)复数的减法不满足结合律,即(z1-z2)-z3=z1-(z2+z3)可能 不成立
(3)两个复数的积与商一定是虚数
(2)复数的模实质上就是复平面内复数对应的点到原点的距离, 也就是复数对应的向量的模 (√ )
2.(人教 A 版教材习题改编)ABCD 是复平面内的平行四边形, A,B,C 三点对应的复数分别是 1+3i,-i,2+i,则点 D
3+5i . 对应的复数为________
基础盘查三 复数的运算
(一)循纲忆知
1 . R),则 λ+μ 的值是____
解析:由条件得 OC =(3,-4), OA =(-1,2),
OB =(1,-1),
根据 OC =λ OA +μ OB 得 (3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),
-λ+μ=3, ∴ 2λ-μ=-4, λ=-1, 解得 μ=2.
( × )
( × )
2. (人教 A 版教材例题改编)如果(x+y)+(y-1)i=(2x+3y)+(2y
4 -2 +1)i,则 x=________ ,y=________.
基础盘查二的代数表示法及其几何意义.
(二)小题查验
1.判断正误
(1)原点是实轴与虚轴的交点 ( √)
( × )
( × )
(4)复数加减乘除的混合运算法则是先乘除,后加减
( √ )
2.(人教 A 版教材习题改编)计算: 2 4 54+i2 2i - + i 1-38i 5 5 ,(2) (1) =________ =________. 2-i i2+i
考点一
复数的有关概念 (基础送分型考点——自主练透)
[题组练透]
1.(2014· 新课标全国卷Ⅱ)设复数 z1,z2 在复平面内的对应点关 于虚轴对称,z1=2+i,则 z1z2= A.-5 C.-4+i B.5 D.-4-i ( )
解析:由题意可知 z2=-2+i,所以 z1z2=(2+i)· (-2+i) =i2-4=-5.
i 2.(2015· 山西四校联考)复数 z= (i 为虚数单位),z 在复 -2-i2 平面内所对应的点在 A.第一象限 C.第三象限 B.第二象限 D.第四象限 ( )
z 3.设 i 是虚数单位, z 表示复数 z 的共轭复数.若 z=1+i,则 i +i· z= A.-2 C.2 B.-2i D.2i ( )
z 解析:因为 z=1+i,所以 +i· z =-i+1+i+1=2. i
4.(2015· 洛阳统考)设复数 z=-1-i(i 为虚数单位),z 的共轭复 - 数为 z ,则|(1-z)· z |= A. 10 C. 2 B.2 D.1 ( )