数学全等三角形教案8篇

合集下载

三角形全等判定的教案

三角形全等判定的教案
2
画法:1画线段bc=4
2分别以a、b为圆心,以2和3为半径作弧,交于点c。则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ sss ”用数学语言表述:
在△abc和△ def中
∴ △≌△ def(sss)
(二)新课讲解:
问题1:如图:在△abc和△def中,ab=de,bc=ef,ac=df, ∠a=
∠d, ∠b=∠e, ∠c=∠f,则△abc和△def全等吗?
问题2: △abc和△def全等是不是一定要满足
ab=de,bc=ef,ac=df, ∠a=∠d, ∠b=∠e, ∠c=∠f这六个条
件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角
满足三个条件有几种情形呢?
3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
角相等
例:画△abc,使ab=2,ac=3,bc=4
画法:1画线段bc=42分别以a、b为圆心,以2和3为半径作弧,交于点c。
则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否
1、如图,d、f是线段bc上的两点,
ab=ec,af=ed,要使△abf≌△ecd,还需要条件
2、已知:b、e、c、f在同一直线上, ab=de,ac=df a
并且be=cf,
求证: △ abc≌ △ def
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
2证明三角形全等的书写步骤。3证明三角形be全等应注意的问题。
我们知道如果两个三角形的对应边、对应角都相等,那么这两个三角形全等。判定两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?

《全等三角形》说课稿(通用4篇)

《全等三角形》说课稿(通用4篇)

《全等三角形》说课稿(通用4篇)《全等三角形》篇1教师在吃透教材、简析教材内容、教学目的、教学重点、难点的基础上,遵循整体构思、融为一体、综合论述的原则,分块写清,分步阐述教学内容,以进一步提高教学效果。

下面是由小编为大家带来的关于《全等三角形》说课稿,希望能够帮到您!尊敬的各位评委老师:大家好!今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》。

下面,我将从教材分析、教学方法、教学过程等几个方面对本课的设计进行说明。

一、说教材全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。

本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。

本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。

通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

二、说学情学生在小学阶段已经学习了三角形的性质和类型,已经知道三角形可以分为锐角三角形、钝角三角形和直角三角形,但是对于全等三角形这一特殊的三角形却还是一个新的知识点。

三角形是最基本的几何图形之一,它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。

学生对于研究它的全等的判定有着足够的感知经验,但是也存在着以下困难:全等三角形的判定对于学生的识图能力和逻辑思维能力是一个挑战,特别是学生的逻辑思维能力,在此之前,学生所接触的逻辑判断中直观多余抽象,用自己的语言表述多于用数学语言表述。

所以,怎样引导学生发挥认知和操作方面的经验,为掌握规范和有效的数学思维方式服务将是学习本节内容的关键。

三、说教学目标本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。

根据课程标准,确定本节课的教学目标如下:1.知识目标:(1)理解全等三角形的概念。

《全等三角形》教案

《全等三角形》教案

第三届全国中小学“教学中的互联网搜索”优秀教学案例评选教案设计中学数学(全等三角形)一、教案背景1、面向学生:□中学√□小学2、学科:人教版八年级数学上册3、课时数:1课时4、课前准备:教学课件二、教学课题【教学目标】1.知识与能力理解全等三角形及相关概念,能够从图形中寻找全等三角形,探索并掌握全等三角形的性质,能够利用性质解决简单的问题。

2.过程与方法在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径。

3.情感、态度与价值观培养学生的识图能力、归纳总结能力和应用意识。

【教学重点】(1)全等三角形以及相关概念。

(2)探索全等三角形的性质。

【教学难点】不同情况下的三角形全等的图形归纳。

三、教学方法及教学思路利用课件和部分视频,创建活动让学生亲身参与,引导学生对问题的思考,并逐步掌握解决问题的关键。

本课的设计内容分为以下几个部分:(一)、创设情境(二)、主体探究(三)、合作交流(四)、应用提高。

课前请参阅百度百科【百度搜索】/view/401.htm 了解全等三角形的知识。

四、教学过程(一)、创设情境,激发学生兴趣,引出本节要讨论的内容活动 1 出示本人制作的全等三角形课件【百度搜索】/view/787fc041a8956bec0975e38f.html 观察出示的图形(教材中的图形),寻找形状大小相同的图形,归纳全等形的概念,进而得出全等三角形的概念.全等形:能够完全重合的两个图形叫做全等形.全等三角形:能够完全重合的两个三角形叫做全等三角形.请参阅【百度搜索】/v/b/62388010-1765862517.html全等三角形的概念和性质。

(二)、主体探究,合作交流,探究全等三角形的性质活动2△ABC与△DEF重合(电脑演示重合过程)参考课件第六页。

这时,点A与点D重合.点B与点E重合.我们把这样互相重合的一对点叫做对应顶点;AB边与DE边重合,这样互相重合的边就叫做对应边;∠A与∠D重合,它们就是对应角.△ABC与△DEF全等,我们把它记作:“△ABC≌△DEF”.读作“△ABC全等于△DEF”.注意:记两个三角形全等时,通常把对应顶点的字母写在对应的位置上.问题你能找出其他的对应点、对应边和对应角吗?点C与点F是对应点,BC边与EF边是对应边,CA边与FD边也是对应边.∠B与∠E是对应角,∠C与∠F也是对应角.活动3问题用两块全等的三角板重合放在桌面上,让其中一块绕一个顶点旋转,你能画出几种不同的位置关系,画出图形并说出对应元素.学生活动设计:学生小组合作,动手操作,一块三角板绕一个顶点旋转,画出以下四种位置关系:不论哪种图形,点A与点A是对应顶点,点B与点E是对应顶点,点C与点D是对应顶点;AB边与AE边是对应边,AC边与AD边、DE边与CB边也是对应边;∠BAC与∠EAD是对应角,∠B与∠E,∠C与∠D是对应角.教师活动设计:本活动主要加深学生对全等三角形概念的理解,以及动手操作能力的培养.活动4拿一张纸对折后,剪成两个全等的三角形,△ABC和△ECD,把这两个三角形一起放在下列图中△ABC的位置上,试一试,如果其中一个三角形不动,怎样移动另一个三角形,能够得到下列图中的各图形,从中你能得到什么启发?学生活动设计:经过观察、操作可以发现,可以经过平移、翻折、旋转得到,变化前后对应角、对应边不变.教师活动设计:组织学生观察、归纳,引导学生归纳全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.(三)、拓展创新、应用提高,培养学生的创新意识和应用能力问题如图,△ABC≌△AEC,∠B=30°,∠ACB=85°.求出△AEC各内角的度数.(学生根据全等三角形的性质独立解决.)解:在△ABC中,已知∠ACB=85°,∠B=30°,根据三角形的内角和等于180°,可得:∠BAC=65°.因为△ABC≌△AEC,所以∠EAC=∠BAC=65°,∠E=∠B=30°,∠ACE=∠ACB=85°.答:△AEC的内角的度数分别为65°、30°、85°.问题如图是一个等边三角形,你能利用折纸的方法把它分成两个全等的三角形吗?你能把它分成三个,四个全等的三角形吗?学生活动设计:学生小组讨论,经过讨论交流自己的方法。

八年级数学上册《全等三角形的判定ASA》教案、教学设计

八年级数学上册《全等三角形的判定ASA》教案、教学设计
2.提出ASA判定的猜想:如果两个三角形中有两个角和它们之间夹的边分别相等,那么这两个三角形全等。
3.教师通过动态几何软件或实体模型,直观演示ASA判定全等三角形的过程,让学生观察、思考。
4.学生在教师的引导下,总结出ASA判定的条件和性质:两个角相等,它们之间夹的边相等,则两个三角形全等。
(三)学生小组讨论,500字
(二)过程与方法
在教学过程中,注重培养学生的逻辑思维能力和几何直观感知能力,提高学生的动手操作及问题解决能力。具体方法如下:
1.引导学生通过观察、实践、讨论等学习活动,探索全等三角形的性质和判定方法;
2.采用直观教学手段,如动态几何软件、实体模型等,帮助学生形象理解全等三角形的变换过程;
3.设计丰富的课堂练习,让学生在不同的实际情境中运用ASA准则解决问题,巩固所学知识;
1.教师将学生分成若干小组,让每组讨论以下问题:
a. ASA判定准则中的“对应角”和“对应边”是什么意思?
b.如何在复杂的图形中找到符合ASA判定条件的三角形?
c.除了ASA判定,你还知道哪些全等三角形的判定方法?
2.学生在小组内分享自己的看法和思考,相互交流,共同解决问题。
3.教师巡回指导,给予提示和解答学生的疑问,引导学生深入理解ASA判定准则。
二、学情分析
八年级学生在学习全等三角形的判定ASA之前,已经掌握了基本的几何知识,如三角形的性质、角的度量、线段的计算等。在此基础上,学生对全等三角形的概念有了初步的了解,但对于判定全等的具体方法,尤其是ASA判定准则,可能还感到陌生。此时,学生正处于由直观思维向抽象逻辑思维过渡的阶段,需要教师在教学过程中给予适当的引导和帮助。
6.家长参与作业:请学生与家长一起讨论全等三角形在实际生活中的应用,并撰写一篇短文,分享自己的感悟。

全等三角形数学教案

全等三角形数学教案

全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。

2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。

3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。

二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。

2. 教学难点:准确判断两个三角形是否全等。

三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。

然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。

(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。

2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。

(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。

以此来帮助他们理解和掌握全等三角形的定义和性质。

(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。

(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。

四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。

同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。

《全等三角形》数学教学PPT课件(6篇)

《全等三角形》数学教学PPT课件(6篇)
加深理解
E A
F
B
C
∆ABC ≌ ∆FDE
对应顶点 对应顶点 对应顶点 对应角 对应角 对应角 对应边 对应边 对应边
41
课堂测试 1.如果∆ABC≌ ∆ADC,AB=AD,∠B=70°, BC=3cm,那么∠D=___7_0,D°C=____3cm
D
课堂测试
2、若△AOC≌△BOD,对应边是 应角是 ;
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
三、巩固练习
基础练习(教材第三十二页练习1-2题)
四、课堂小结,请大家回顾一下:
这节课你学到了什么?还有哪些疑惑?学生充分讨论回答。
点评梳理:
(1)全等三角形的概念及表示方法; (2)全等三角形的性质及应用。
思考
将两个全等三角形重合在一起,
重合的顶点叫对应顶点
A
D
重合的边叫对应边
重合的角叫对应角
根据动画效果,你能说出
这两个全等三角形的对应顶点、
B
CE
F 对应边、对应角各是什么吗?
36
全等三角形表示
如果两个三角形全等,那么该如何表示吗?
A
D
右图中的∆ABC和∆DEF全等
记作: ∆ABC ≌ ∆DEF
五、课后练习
1、教材第33-34页,1-6题。
第十二章 全等三角形
12.1 全等三角形
人教版 数学(初中) (八年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text

八年级数学教案人教版范文3篇

八年级数学教案人教版范文3篇

八年级数学教案人教版范文3篇教案是教师教学计划最为直接的反映。

以下是本人要与大家分享的:八年级数学教案人教版范文,供大家参考!八年级数学教案人教版范文一第十一章全等三角形11.1 全等三角形教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,•两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点?2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.八年级数学教案人教版范文二教学目标:1、进一步认识平均数、众数、中位数都是数据的代表。

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。

遵循启发式教学原则,采用引探式教学方法。

用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

数学全等三角形教案1〖教学目标〗◆1、探索两个直角三角形全等的条件。

◆2、掌握两个直角三角形全等的条件(hl)。

◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用。

〖教学重点与难点〗◆教学重点:直角三角形全等的判定的方法hl。

◆教学难点:直角三角形判定方法的说理过程。

〖教学过程〗一、创设情境,引入新课:教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?二、合作学习:(1)回顾:判定两个直角三角形全等已经有哪些方法?(2)有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。

不限定方法。

教师归纳出方法后,要学生注意两点:hl是仅适用于rt△的特殊方法。

(3)教师引导、学生练习 p47三、应用新知,巩固概念例题讲评例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。

分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)角的内部,到角的两边距离相等的点,在这个角的平分线上。

四、学生练习,巩固提高练一练:p48 1.2.p49 3五、小结回顾,反思提高(1)本节内容学的是什么?你认为学习本节内容应注意些什么?(2)学习本节内容你有哪些体会?(3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)(4)你现在知道的有关角平分线的知识有哪些?六、布置作业数学全等三角形教案2【课前准备】1.定义:能够的两个三角形叫全等三角形。

2.全等三角形的性质,全等三角形的判定方法见下表。

【例题讲解】一.挖掘隐含条件判全等如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)1.如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由。

变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD2.如图点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。

3.如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。

变式训练2.如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO (3)BC=AD二.添条件判全等1.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据SAS需要添加条件;根据ASA需要添加条件;根据AAS需要添加条件。

2.已知AB//DE,且AB=DE,(1)请你只添加一个条件,使△ABC ≌△DEF,你添加的条件是。

三.熟练转化间接条件判全等1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?3.三月三、放风筝,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。

巩固练习:如图,在中,沿过点B的一条直线BE折叠,使点C恰好落在AB变的中点D处,则∠A的度数。

4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D【当堂反馈】1.(20XX攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为全等三角形是△≌△2.如图,已知AB=AD,∠B=∠D,∠1=∠2.说明:BC=DE3.如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A 点直线L的垂线,垂足分别为M、N(1)你能找到一对三角形的全等吗?并说明。

(2)BM,CN,MN之间有何关系?若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?【课后作业】1.如图,要用SAS说明ΔABC≌ΔADC,若AB=AD,则需要添加的条件是。

要用ASA说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是。

2..如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,AD.CE 交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB。

(第3题)(第4题)(第5题)(第6题)3.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有A..2对B.3对C.4对D.5对4.如图,ΔABC中,AB=AC,BE=EC,则由SSS可判定A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对5.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明)。

6.如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?7:如图11-9在△ABC中.⑴分别以AB、AC为边向形外作正方形ABDE、ACFG。

试说明:①CE=BG;②CE⊥BG;⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE。

试说明:①CD=BE;②求CD和BE所成的锐角的度数。

【拓展延伸】如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF ⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由。

数学全等三角形教案3教学目的1、使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角)求这个直角三角形的其他元素。

2、使学生了解在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。

重点、难点、关键1、重点:正弦的概念。

2、难点:正弦的概念。

3、关键:相似三角形对应边成比例的性质。

教学过程一、复习提问1、什么叫直角三角形?2、如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?二、新授1、让学生阅读教科书第一页上的插图和引例,然后回答问题:(1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达)(2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形)(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。

)(4)这个实际问题可归结为怎样的数学问题?(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。

)但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。

2、在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2.根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。

类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2这就是说,当∠A=450时,∠A 的对边与斜边的比值等于/2.根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。

那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢?(引导学生回答;在这些直角三角形中,∠A的对边与斜边的比值仍是一个固定值。

)三、巩固练习:在△ABC中,∠C为直角。

1、如果∠A=600,那么∠B的对边与斜边的比值是多少?2、如果∠A=600,那么∠A的对边与斜边的比值是多少?3、如果∠A=300,那么∠B的对边与斜边的比值是多少?4、如果∠A=450,那么∠B的对边与斜边的比值是多少?四、小结五、作业1、复习教科书第1-3页的全部内容。

2、选用課时作业设计。

数学全等三角形教案4【教学目标】1.使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;2.继续培养学生画图、实验,发现新知识的能力。

相关文档
最新文档