电力系统电压稳定性分析
电力系统中的电压稳定性分析

电力系统中的电压稳定性分析在现代社会,电力系统的稳定运行对于我们的日常生活和工业生产至关重要。
其中,电压稳定性是电力系统运行中的一个关键问题。
理解和分析电力系统中的电压稳定性,对于保障电力供应的质量和可靠性具有重要意义。
电压,简单来说,就是推动电荷在电路中流动的“压力”。
而电压稳定性,指的是电力系统在给定的运行条件下,经受一定的扰动后,各母线电压能够维持在可接受的范围内,不发生电压崩溃的能力。
那么,为什么要关注电压稳定性呢?想象一下,如果电压不稳定,家里的电灯可能会忽明忽暗,电器设备可能会无法正常工作,甚至损坏。
对于工业生产来说,电压不稳定可能导致生产线停工,造成巨大的经济损失。
电力系统中的电压稳定性受到多种因素的影响。
首先是电源的分布和特性。
如果电源分布不合理,或者电源本身的输出特性不稳定,就容易导致电压波动。
比如说,在一个区域内,如果主要依靠远距离输电来供电,那么输电线路上的损耗和电压降就可能较大,从而影响到接收端的电压稳定性。
其次,负荷的变化也是一个重要因素。
当负荷突然增加时,如果电力系统不能及时提供足够的电力,电压就会下降。
相反,当负荷突然减少时,电压可能会升高。
特别是一些大容量的冲击性负荷,如大型电动机的启动,会对电压稳定性产生较大的影响。
再者,电力系统的网络结构也对电压稳定性起着关键作用。
线路的阻抗、变压器的参数等都会影响电压的分布和传输。
如果网络结构不合理,存在薄弱环节,就容易在某些情况下出现电压不稳定的问题。
另外,无功功率的平衡也是影响电压稳定性的重要因素。
无功功率不像有功功率那样直接用于做功,但它对于维持电压的稳定至关重要。
如果无功功率供应不足,电压就会下降;反之,如果无功功率过剩,电压就会升高。
为了分析电力系统的电压稳定性,工程师们采用了各种方法和工具。
其中,静态电压稳定性分析方法是一种常用的手段。
这种方法通过计算电力系统在给定运行状态下的一些指标,如电压灵敏度、负荷裕度等,来评估系统的电压稳定性。
电力系统中的电压稳定分析与调整

电力系统中的电压稳定分析与调整电力系统的电压稳定性是指系统中的电压在经历各种外界扰动或负载变化后,能够保持在合理的范围内,不发生剧烈波动或失控的能力。
这是电力系统运行中非常重要且必须保证的一项指标。
电压稳定与供电质量密切相关,对用户的用电设备和电网设备的正常运行至关重要。
因此,电力系统中的电压稳定分析与调整是保障电力系统稳定运行的重要环节。
首先要进行电力系统中的电压稳定性分析。
电压稳定性分析是通过建立电压稳定分析模型,对电力系统中的各种动态、静态因素进行综合评估和分析,以确定系统是否存在电压稳定问题,找出电压稳定问题的根源。
电压稳定性分析的核心内容是动态稳定和静态稳定。
动态稳定性分析主要研究系统发生大扰动后的动态响应过程,如故障发生时的系统频率衰减和转子振荡,以及系统在故障后的恢复过程。
动态稳定性分析需要进行瞬态稳定分析和暂态稳定分析,重点关注系统中的发电机、变压器、传动系统等关键设备。
静态稳定性分析主要是研究系统的静态稳定问题,如电压幅值的变化、功率平衡失调、电力负载变化等。
静态稳定性分析需要对系统中各个节点的功率平衡进行评估,并进行电压裕度计算,以确定系统中的潜在电压稳定问题。
在电压稳定性分析的基础上,根据分析结果,需要进行相应的电压调整操作,以保证系统的电压稳定。
电压调整方法主要分为静态电压补偿和动态电压调整两种。
静态电压补偿主要通过调整发电机励磁电流、变压器的调压器和无功补偿装置等来实现。
通过提高或降低励磁电流,可以改变发电机的输出电压,从而调整系统中的电压水平。
调压器和无功补偿装置可以根据系统需求,调整变压器与系统之间的电压比例关系,提供无功电力的支持,以保持系统的电压稳定。
动态电压调整主要通过自动电压控制装置(AVR)和功率调整装置(PTC)等来实现。
AVR主要负责调整发电机的励磁电流,通过检测系统中的电压变化,控制发电机的励磁状态,使输出电压保持在合理范围内。
PTC则通过调节发电机的有功输出功率,来调整系统中的电压水平。
电力系统中的电压稳定性分析与改进策略

电力系统中的电压稳定性分析与改进策略电力系统的电压稳定性分析与改进是确保系统正常运行和供电质量稳定的重要环节。
本文将详细介绍电力系统电压稳定性的分析方法,以及改进策略。
一、电压稳定性分析方法(一)静态分析法静态分析法是一种简化了电力系统模型的静态平衡法,通过忽略短期动态响应和系统的非线性特性来分析电压稳定性。
静态分析法可以使用功率流分析进行电压稳定性分析,主要包括节点电压法、导纳阻抗法和调整阻抗法等,通过计算得到系统的节点电压和功率偏差,从而判断系统的电压稳定性。
(二)动态分析法动态分析法是一种考虑了电力系统的瞬态响应和非线性特性的分析方法,通过考虑负载变化、故障和控制器动态响应等因素对系统进行动态模拟和仿真,计算系统响应过程中的电压波动情况。
常用的动态分析方法有振荡等效法、自衔接法、以及时域和频域模拟方法等。
动态分析法能够全面考虑系统的非线性特性和瞬态响应,对电压稳定性的评估更准确。
二、电压稳定性的改进策略(一)发电侧的控制策略1.发电机调整控制:通过调整发电机励磁系统使得电压保持稳定。
2.AVR和无功补偿:采用自动电压调节器(AVR)和无功补偿装置来调节系统电压,并通过改变电源电压变化率减小电压波动。
3.机组统一调度:通过合理的机组出力分配和协调运行,减少机组负荷波动,提高系统的电压稳定性。
(二)负荷侧的控制策略1.合理负荷预测和管理:对负荷进行准确预测,并采取合理的负荷管理措施,控制负荷波动范围,减小对系统电压的影响。
2.负荷调度和优化:通过负荷调度和优化方法,将考虑削峰填谷,均衡负荷和降低电压尖峰,提高系统的电压稳定性。
3.过载保护和限流:对负载过载和瞬态故障采取保护措施,如及时切除过载负荷,限制故障电流对电压的影响。
(三)系统拓扑优化和规划策略1.线路规划和交叉调度:通过合理规划系统线路布局和交叉调度,减小线路阻抗和负载不平衡,提高系统电压稳定性。
2.变电站布置和优化:根据负荷分布和功率流向情况,合理布置变电站和选择变电站参数,以降低系统的电压损耗和提高系统电压稳定性。
电力系统的电压稳定性分析与控制

电力系统的电压稳定性分析与控制电力系统是现代社会不可或缺的核心基础设施,对维持社会经济稳定发挥着至关重要的作用。
而电力系统的稳定性则是保障电力供应的关键因素之一。
其中,电压稳定性作为电力系统的一个重要指标,直接关系到电力系统的正常运行和供电质量。
本文将对电力系统的电压稳定性进行分析与控制的相关内容进行探讨。
一、电力系统电压稳定性的概念与影响因素电力系统的电压稳定性是指系统能够在发生负荷突变、短路故障等异常情况下,保持电压的稳定性和合理的范围内波动。
电压稳定性的好坏直接影响到电力供应质量和用户设备的安全运行。
电力系统的电压稳定性主要受到以下因素的影响:1. 电力负荷变化:电力系统的负荷变化是影响电压稳定性的关键因素之一。
当负荷突然增加时,会导致电压下降;相反,当负荷突然减少时,会引起电压上升。
因此,合理的负荷调节措施对于保持电压稳定具有重要意义。
2. 发电机容量和调度策略:发电机的容量和调度策略也是影响电力系统电压稳定性的重要因素。
发电机的容量过小或者调度策略不合理,会导致系统负荷无法得到满足,电压无法稳定在正常范围内。
3. 输电线路和变压器的损耗:输电线路和变压器的电阻和电抗性损耗是导致电力系统电压下降的主要原因之一。
特别是在长距离输电和高负荷情况下,损耗会更为明显。
二、电力系统电压稳定性分析方法为了保持电力系统的电压稳定性,在设计和运行电力系统时,需要进行相应的电压稳定性分析,以提前预测和解决潜在问题。
1. 潮流分析法:潮流分析法是电力系统电压稳定性分析中最基本的方法之一。
其基本思想是通过计算各个节点的电压和功率,并分析其变化情况,以判断电力系统是否稳定。
2. 稳定状态分析法:稳定状态分析法是通过建立电力系统的稳定状态方程,结合系统的负荷和发电机等参数,通过求解方程组,得到电力系统的稳定状况。
3. 动态响应分析法:动态响应分析法是根据电力系统的动态特性,建立系统的状态方程,从而分析系统的稳定性。
电力系统中的电压稳定性分析

电力系统中的电压稳定性分析电力系统是由发电机、变电所、输电线路、负荷等组成的一个复杂的能源系统。
在电力系统中,保持稳定的电压是非常重要的。
因为电压的不稳定将会导致电力设备的损坏,甚至失去供电,引发重大事故。
因此,电压稳定性分析是电力系统调度和运行的重要问题之一。
一、电压稳定性的基本概念电压稳定性指电力系统的电压波动或变化的程度,通常以电压的净波动指数(NSI)描述。
NSI是电压波动的数量与系统额定电压的比值。
当NSI大于5%时,说明电网电压变化不稳定。
二、电压稳定性的原因电力系统的电压稳定性是由许多因素决定的,其中最主要的因素是电力负荷,其次是输电线路和发电机。
1. 电力负荷:电力系统中的负荷是不断变化的。
当负荷超过一定范围时,电压将出现波动甚至暂时停电,造成电网不稳定。
2. 输电线路:输电线路是电力系统中电能输送的重要部分。
输电线路的阻抗会引起电压波动。
3. 发电机:发电机的负载变化和电压调节引起的电压波动是影响电力系统电压稳定性的两个重要因素。
三、电压稳定性的分析方法电压稳定性的分析方法主要包括静态分析和动态分析两种。
1. 静态分析:通过计算得出电力系统的状态,对电网的电压稳定性进行分析。
静态分析方法主要有潮流计算、潮流灵敏度分析、潮流约束方法等。
2. 动态分析:电压稳定性的动态分析是指对电力系统的电压-功角特性进行分析,寻找系统中临界支路或节点,以及电气机械暂态过程的动态稳定性。
动态分析方法主要有转子运动方程、应用李雅普诺夫定理、频域分析等。
四、提高电压稳定性的措施通过对电力系统的电压稳定性分析,可以提出一些措施来提高电网的稳定性。
1. 选用适当的控制模式和调节参数。
2. 加强智能化的电力监控系统,及时监测电网的各种参数。
3. 增加电容器补偿以提高输电线路的功率因数,减少系统的阻抗。
4. 优化电网结构,调整负荷分布,并加强对发电机的调节。
综上所述,电力系统中的电压稳定性是保证电力系统安全稳定运行的关键之一。
电力系统中的电压稳定性分析与控制策略研究

电力系统中的电压稳定性分析与控制策略研究一、引言随着电力系统规模的不断扩大和电力负荷的增加,电力系统的电压稳定性变得越来越重要。
电力系统的电压稳定性是指电力系统中的电压在正常运行条件下能够维持在合理范围内。
电压稳定性的研究对于保障电力系统的安全稳定运行具有重要意义。
本文将从电压稳定性的分析和控制策略两个方面进行研究和探讨。
二、电压稳定性分析1. 电压稳定性问题的提出电压稳定性问题是由于电力系统的负荷波动、供电系统的故障和电力系统的控制等原因引起的。
因此,电压稳定性分析的目的是为了找出影响电力系统电压稳定性的因素,形成稳定的电压控制策略。
2. 电压稳定性指标电压稳定性指标是评价电压稳定性的重要参数。
常见的电压稳定性指标包括电压偏差、电压波动和电压脉动等。
通过对这些指标的定量分析,可以较准确地评判电力系统的电压稳定性。
3. 电压稳定性分析方法电压稳定性分析的方法主要包括潮流灵敏度分析、暂态稳定分析和小扰动稳定分析等。
这些分析方法通过建立合适的数学模型和计算方法,可以对电力系统的电压稳定性进行定量分析和预测。
三、电压稳定性控制策略1. 传统控制策略传统的电压稳定性控制策略主要包括无功补偿和电压调节等控制手段。
通过无功补偿可以消除电力系统中的无功功率不平衡,从而提高电压的稳定性。
而通过电压调节可以根据实际需求调整电压的大小,保持电力系统的稳定运行。
2. 新型控制策略随着电力系统技术的不断发展和创新,新型的电压稳定性控制策略也得到了广泛应用。
这些新型控制策略包括基于智能算法的电压稳定性控制、基于模糊控制的电压稳定性控制和基于神经网络的电压稳定性控制等。
这些控制策略结合了先进的信息技术和控制算法,能够更加精确地控制电压的稳定性。
四、电压稳定性研究进展1. 国内研究进展在国内,电压稳定性的研究取得了一定的成果。
相关研究机构在电压稳定性分析和控制策略上进行了大量的实践和探索,形成了一些具有中国特色的电压稳定性控制方法。
电力系统中的电压稳定性分析

电力系统中的电压稳定性分析电力系统作为现代社会不可或缺的基础设施,一直以来都承载着巨大的能源供应压力。
而电压稳定性作为电力系统中的一个重要指标,在保障电网运行安全和提供优质电能方面扮演着重要的角色。
本文将对电力系统中的电压稳定性进行分析和探讨。
一、电压稳定性的概念电压稳定性通常指的是电力系统中电压的动态和静态稳定性。
动态稳定性主要指电力系统在扰动下恢复到原有的稳态工作状态的能力;静态稳定性则是指系统在负荷变化或外界干扰下保持合理的电压水平的能力。
在电力系统中,电压稳定性问题的出现可能导致诸多问题,例如电子设备的异常运行、线路过载、电压不平衡等。
因此,确保电力系统的电压稳定性,对于维护供电的可靠性和提高电能质量至关重要。
二、电压暂态稳定性分析电压暂态稳定性是指电力系统在发生大幅度的短时扰动时,恢复到新的工作状态的过程。
典型的电压暂态稳定性问题可以通过进行暂态稳定分析来解决。
暂态稳定分析通常涉及考虑发电机、负荷和传输线路的动态响应。
在这个过程中,需要建立系统的等值模型,并进行仿真计算,以评估系统的暂态响应。
三、电压静态稳定性分析与暂态稳定性不同,电压静态稳定性是指电力系统在长期负荷波动或电网参数变化的情况下,能够保持合理的电压水平。
电压静态稳定性分析旨在评估系统的稳定裕度,并确定是否需要采取一些措施来改善电压稳定性。
静态稳定性分析的过程中,需要考虑电网的负荷水平、电源容量和传输线路的阻抗等因素。
通常使用受控源这一概念来模拟电力系统中的电源,以确定电压稳定性的情况。
四、电力系统中的电压控制措施为了确保电力系统的电压稳定性,可采取一系列的控制措施。
这些措施包括调整电源输出、控制电力网络中的输电容量、调整负荷功率等。
另外,现代电力系统中还引入了静态无功补偿装置,例如STATCOM和SVC 等。
这些装置能够通过调整无功功率的注入或吸收,来改善电力系统中的电压稳定性。
五、电压稳定性与可再生能源随着可再生能源的快速发展,如风电和光伏发电等,电力系统的电压稳定性面临了新的挑战。
电力系统电压暂态稳定性分析

电力系统电压暂态稳定性分析随着电力系统规模的不断扩大和复杂性的增加,电力系统的暂态稳定性问题显得尤为重要。
电力系统的暂态稳定性是指在受到外部扰动时,电力系统能够在较短的时间内恢复到稳态,并保持稳态运行的能力。
电压暂态稳定性是电力系统暂态稳定性的一个重要指标。
当电力系统发生短路故障、大负荷突然变化或其它意外情况时,电网内各节点的电压会发生明显的波动。
如果电网节点的电压过度波动,超出了一定范围,就会导致设备的故障甚至损坏。
因此,对电力系统电压暂态稳定性进行分析和评估,对于保障电网的可靠运行具有重要意义。
电力系统电压暂态稳定性分析主要包括以下几个方面:1. 暂态稳定性分析方法:暂态稳定性分析是通过数学模型和计算方法来模拟电力系统在暂态过程中的电压变化情况。
目前常用的暂态稳定性分析方法包括:暂态稳定性分析程序(Transient Stability Analysis Program,TSAP)、暂态稳定性蒙特卡洛分析方法(Transient Stability Monte Carlo Simulation,TSMCS)等。
这些方法可以对电力系统在暂态过程中的电压变化进行精确计算,评估电网的暂态稳定性。
2. 暂态过程中的电压暂动:暂态过程中的电压暂动是指电网节点电压在受到扰动后的瞬时变化。
这种暂动可以分为两类:电压暂降和电压暂升。
电压暂降是指电网节点电压在短时间内下降的现象,而电压暂升则是指电网节点电压在短时间内上升的现象。
电压暂动的大小和持续时间直接影响到电力系统的暂态稳定性。
3. 影响电压暂动的因素:电力系统电压暂动的大小和持续时间受到多种因素的影响。
其中包括电力系统的结构、负荷特性、故障类型、电力设备的参数、保护装置的动作特性等。
理解和分析这些因素对电压暂动的影响,是进行电力系统电压暂态稳定性分析的前提。
4. 电压稳定控制策略:为了提高电力系统的电压暂态稳定性,需要采取一系列的措施和控制策略。
常见的电压稳定控制策略包括发电机励磁控制、无功补偿装置的投入、线路电压补偿等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1978年12月19日法国电网大停电; 1983年12月27日瑞典电网事故; 1987年7月23日日本东京大停电; 美国西部1996年7月2日和8月10日连续两次大 停电事故; 因为电压失稳导致大面积,长时间的停电,造 成巨大的经济损失和社会混乱。
早期的静态研究中的机理认识集中在 P Q 曲线 和Q V
曲线分析,潮流多解的稳定性分析和基于灵敏 度系数的物理概念讨论。
动态因素受到重视后,负荷的动态特性,有载 调压变压器(OLTC)的负调压作用受到了普遍关 注。
二.电压稳定性的基本概念及研究内容
目前普遍认为无功功率的平衡,发电机无功出 力的限制,OLTC的动态特性和负荷的动态特性与 Байду номын сангаас压崩溃关系密切。
伴随功角不稳定出现的电压下降,具有伴随电压 不稳定出现的电压崩溃的某些现象。但电压失控 不一定包含大的或越来越大的功角偏离。
二.电压稳定性的基本概念及研究内容
现在普遍被接受的观点是电力系统中静态电压 水平主要由无功功率平衡条件决定。
许多文献把电压崩溃归结为由于系统不能满足 无功需求的增加,在某些不良运行点或当系统受 到较大扰动后,因为发电机励磁系统的强励和负 荷端电压下降,负荷需求减少,系统能保持电压 相对稳定。随后,由于带负荷调压变压器的连续 调节使负荷端电压升高,供电得以恢复,同时带 负荷调压变压器一次侧电压下降,电流上升,发 电机无功越限,其连锁反应使负荷电压下降,电 压稳定破坏。
一.概述
多次大停电事故给人们震动很大,再次向 电力界敲响了警钟。
我国电力工业部也专门组织有关人员进行 研究,讨论我国电网的现状及存在的问题, 使电压稳定问题成为关注的焦点。
一.概述
电压稳定的研究可以追溯到40年代,H.M.马尔 柯维奇提出了第一个电压稳定判据。
但是直到70年代,对电压稳定性的研究一直处于 初级阶段,没有多大进展。人们一直认为电压稳定 问题是局部的,系统末端的小问题。
一.概述
近30年来,电力系统向大机组,大电网, 高电压和远距离输电发展。这对合理利用能 源,提高经济效益和保护环境具有重要的意 义。但也给电力系统的安全运行带来了一些 新问题。其中之一就是电压崩溃恶性事故。 70年代以来,国内外的电网发生了多起以 电压失稳为特征的电网瓦解事故。
一.概述
1972年7月27日我国湖北电网的武汉和黄石地 区的电压崩溃事故,使受端系统全部瓦解;
这一方面的工作还有待进一步地开展。
二.电压稳定性的基本概念及研究内容
关于电压稳定性的定义至今仍存在分歧。 1990年IEEE将电压稳定性定义为“系统维 持电压的能力。当负荷导纳增大时,负荷功 率也随之增大,并且功率和电压都是能控 的。”
电压崩溃是指由于电压不稳定所导致的系 统内大面积,大幅度的电压下降的过程。
1978年法国电网的灾难性电压崩溃事故使电压稳 定问题受到关注。这次典型的电压崩溃事故使法国 电网70%以上的用户停电。
电压稳定问题已经是影响整个电网安全稳定运行 的大问题。
一.概述
70年代末期开始,人们对电压稳定问题进行了 大量的研究工作。
由于有记录的电压崩溃事故离初始故障的时间都 比较长,早期普遍认为电压稳定是一个静态问题, 研究的重点集中在静态机理探讨和基于潮流方程 的极限运行状态的求取。
但目前对电压崩溃机理认识还不一致,不同研 究人员所采用的系统模型也有很大差别,因此迫 切需要全面深入地开展电压失稳机理的探讨。
负荷动态特性是探讨电压失稳机理的关键,建 立适合于电压稳定研究的负荷模型已受到重视。
二.电压稳定性的基本概念及研究内容
电压稳定与同步稳定研究一样,求解稳定 裕度是十分关键的工作。据此我们可以分析 系统的状况,采取控制措施,保证系统安全 运行。
电压稳定安全指标计算包括两个方面:寻 找恰当的安全指标和快速又有足够灵敏度的 计算方法。
已提出的安全指标主要有:各类灵敏度指 标,潮流雅可比矩阵奇异值指标,临界电压 指标和裕度指标 DP, DQ, DV 。
二.电压稳定性的基本概念及研究内容
裕度指标的线性很好,但涉及临界点的求取,因 为潮流雅可比矩阵奇异给计算带来困难。目前已经 在这方面做了许多工作。
CIGRE于1993年把电压稳定研究分为静 态电压稳定和动态电压稳定,又进一步将动 态电压稳定分为小扰动电压稳定,暂态电压 稳定和动态电压稳定。
二.电压稳定性的基本概念及研究内容
电压稳定性和功角稳定性的研究侧重点不同, 如何认识二者的联系迄今仍无定论。两种极端的 情况是: ⑴一台同步发电机经一个电抗接于无穷大母线(纯 “功角稳定性”); ⑵一台同步发电机经一个电抗接于“静态”负荷 (纯“电压稳定性”)。
随后遇到的困难使人们认识到电压稳定问题的复 杂性和动态研究的必要性,研究人员反过来重视 了对电压崩溃现象的物理本质的探讨,动态机理 分析和建模等方面的研究。
一.概述
到目前为止,电压稳定性研究已取得了很 大的进展,但离实际要求还差得很远。
电压稳定性的理论体系还未建立,甚至对 于电压稳定破坏的机理尚有许多不同的观点。
动态电力系统分析与 控制
目录
一.电力系统数学模型及参数 二.电力系统小干扰稳定性分析 三.电力系统次同步谐振分析 四.电力系统暂态稳定性分析 五.直接法在暂态稳定分析中的应用 六.电力系统电压稳定性分析 七.线性最优控制系统 八.非线性控制系统 九.电力系统控制
第六章电力系统电压稳定性分析目录
一.概述 二.电压稳定性的基本概念及研究内容 三.电压稳定性的研究 四.简单系统电压静态稳定性分析 五.改善系统电压稳定性的技术
二.电压稳定性的基本概念及研究内容
电力系统有功功率和无功功率不能截然分 开进行分析,电压崩溃既于无功功率相关, 也于有功功率相关。
电压稳定的研究工作按照其目的不同目前 分为三大类:电压崩溃的机理探讨,电压稳 定安全计算和预防措施研究。
二.电压稳定性的基本概念及研究内容
电压崩溃机理探讨的目的是要弄清楚主导电压 崩溃发生发展的本质因素,电压稳定问题和电力 系统其它问题的相互关系,以及电力系统中各种 元件对电压稳定性的影响,并建立分析电压稳定 问题的适当的系统模型。