电力系统电压稳定问题的初步研究
电力系统中的电压稳定控制研究

电力系统中的电压稳定控制研究一、引言电力系统是现代社会不可或缺的基础设施,而电压稳定是电力系统运行的核心要素之一。
随着电力负荷的增加以及电能消耗的快速增长,电力系统中的电压稳定问题愈发凸显。
为了确保电力系统的可靠运行,研究电压稳定控制成为现代电力工程领域中不可忽视的课题。
二、电压稳定性的概念电压稳定性是指电力系统中各节点的电压维持在合理范围内的能力。
稳定电压对于维持电力系统的正常运行,提高电能传输和供电质量至关重要。
电压稳定控制的核心目标是维持电力系统中节点的电压值在规定的范围内。
三、电压稳定控制的方法1. 功率-电压稳定控制(P-V控制)P-V控制是一种通过调整有功功率和电压之间的关系来控制电压稳定性的方法。
通过调节电力系统中的发电机输出功率和负荷的调整,可以对电压进行稳定控制。
2. 无功-电压稳定控制(Q-V控制)Q-V控制通过调整无功功率和电压之间的关系来调节电压稳定性。
该方法可以通过调整发电机励磁电流或者连接到网络中的无功设备(如容抗器)的响应来实现。
3. 电力系统稳定控制器(PSS)电力系统稳定控制器(Power System Stabilizers,简称PSS)是一种通过控制发电机的励磁电流或转速来改善电力系统的稳定性的装置。
四、电压稳定控制的关键技术1. 预测电力负荷预测电力负荷是电压稳定控制的基础。
准确预测电力负荷对于调整发电机输出功率、负荷调整以及实施电压稳定控制非常重要。
2. 稳压装置和设备稳压装置和设备能够通过调整电压的分布和补偿来实现电压稳定控制。
常见的稳压装置包括无功补偿器、独立变压器和调压器等。
3. 电力系统调度与运行优化通过合理调度电力系统中各个节点的负荷和发电机的输出功率,可以最大程度地提高电网的稳定性和电压的控制能力。
五、电压稳定控制的挑战与展望1. 大规模可再生能源接入随着可再生能源的大规模接入电力系统,电力系统的复杂性和不确定性将进一步增加,给电压稳定控制带来诸多挑战。
电力系统中电压稳定性的研究

电力系统中电压稳定性的研究在当今高度依赖电力的社会中,电力系统的稳定运行至关重要。
其中,电压稳定性是电力系统安全稳定运行的一个关键方面。
理解和研究电压稳定性对于保障电力供应的可靠性、质量以及避免电力系统故障和停电具有极其重要的意义。
首先,我们来谈谈什么是电压稳定性。
简单来说,电压稳定性指的是电力系统在给定的初始运行状态下,遭受一定的扰动后,系统中所有母线的电压能够保持在可接受的范围内,从而使得电力系统能够持续稳定运行的能力。
当电力系统中的电压失去稳定性时,可能会导致电压崩溃,进而引发大面积停电,给社会经济和人们的生活带来巨大的影响。
那么,影响电力系统电压稳定性的因素有哪些呢?负荷特性是其中一个重要因素。
不同类型的负荷对电压的变化有着不同的响应。
例如,恒功率负荷在电压降低时会吸收更多的电流,从而进一步加重电压的下降;而恒电流负荷则相对对电压变化不太敏感。
电力系统的结构和参数也起着关键作用。
电网的拓扑结构、线路的阻抗、变压器的容量和变比等都会影响电压的分布和稳定性。
另外,无功功率的平衡也是至关重要的。
无功功率不足会导致电压下降,而无功功率过剩则可能引起电压升高。
为了研究电力系统的电压稳定性,我们需要一些有效的分析方法和工具。
静态分析方法是常用的手段之一,其中包括潮流计算和灵敏度分析。
潮流计算可以帮助我们了解电力系统在给定运行条件下的电压和功率分布情况。
通过对潮流计算结果的分析,我们可以判断系统是否处于稳定状态。
灵敏度分析则用于研究系统参数变化对电压稳定性的影响,从而帮助我们找到影响电压稳定性的关键因素。
动态分析方法则更加关注系统在受到扰动后的动态过程。
例如,时域仿真可以模拟系统在各种故障情况下的电压和功率变化过程,从而直观地展示系统的稳定性。
小干扰稳定分析则用于研究系统在受到小扰动后的稳定性,通过分析系统的特征值和特征向量来判断系统是否稳定。
在实际的电力系统运行中,为了提高电压稳定性,采取了一系列的措施。
电力系统中的电压稳定控制技术研究

电力系统中的电压稳定控制技术研究电力系统是现代社会不可或缺的基础设施之一,其稳定运行对于维持社会经济正常运转至关重要。
其中,电压稳定控制技术是电力系统运行中的关键环节,它的研究和应用对系统的稳定性和可靠性具有重要影响。
本文将对电力系统中的电压稳定控制技术进行深入研究和讨论。
一、电力系统中电压的稳定性问题电压稳定性是指电力系统的供电电压在运行过程中能够维持在合理范围内,不受外界干扰和内部因素的影响,确保稳定可靠地供电。
电力系统中电压稳定性受到很多因素的影响,比如负荷变化、电力负荷的不平衡、发电机失速、电源故障等。
如果电压稳定性不能得到有效的控制和管理,将会引发各种问题,如电力设备损坏、供电中断、电力质量不合格等。
二、电压稳定控制技术的分类为了提高电力系统中的电压稳定性,研究人员和工程师们提出了多种电压稳定控制技术。
根据控制策略的不同,可以将电压稳定控制技术分为传统控制技术和先进控制技术。
1. 传统控制技术传统控制技术主要包括发电机励磁控制、变压器无功补偿、发电机自动电压调节器和电力系统的无功补偿等。
这些技术主要通过调节设备参数或者引入无功功率来控制电压。
传统控制技术在电力系统中得到广泛应用,并且经过多年的实践验证,在一定程度上为电压稳定性提供了较好的控制效果。
2. 先进控制技术随着电力系统的规模和复杂程度不断增长,传统控制技术已经不能完全满足电压稳定性的要求。
因此,研究人员开始着重研究先进控制技术,如模糊控制、神经网络控制、遗传算法等。
这些技术利用先进的数学建模方法和智能算法,能够对电力系统中的电压进行更准确、更高效的控制。
三、电压稳定控制技术的研究进展随着电力系统设备的不断升级和电力市场的变革,电压稳定控制技术也在持续发展和创新。
以下是一些电压稳定控制技术的研究进展:1. 基于智能算法的电压控制智能算法在电力系统的电压稳定控制中得到了广泛应用。
例如,基于遗传算法和模糊控制的电压控制方法能够对电力系统中的电压进行优化控制,提高系统的稳定性和可靠性。
电力系统电压稳定性优化与控制研究

电力系统电压稳定性优化与控制研究摘要:电力系统的电压稳定性是保持系统运行可靠性的重要因素之一。
本文旨在研究电力系统中电压稳定性的优化与控制策略,并分析现有的研究成果和方法。
通过对电力系统中电压稳定性问题的分析,本文提出一种基于传统控制方法和智能优化算法相结合的电压稳定性优化与控制方法,以提高电力系统的稳定性和可靠性。
1. 引言电力系统是现代社会不可或缺的基础设施,其稳定运行对能源供应和社会经济发展至关重要。
而电压稳定性是电力系统可靠运行的基石之一。
电力系统的电压稳定性主要指系统各节点的电压值在合理范围内保持稳定,防止出现过高或过低的电压,从而保证供电质量和设备的正常运行。
因此,电力系统电压稳定性的优化与控制成为了当前研究的热点和难点问题。
2. 电力系统电压稳定性问题及分析电力系统的电压稳定性问题常常由于负荷变化、电源故障、输电线路阻抗等原因引起。
这些因素可能导致系统电压失稳、过大或过小,进而对电力设备的安全运行产生不利影响。
因此,对电力系统电压稳定性进行综合分析和研究,是解决这一问题的前提。
3. 电力系统电压稳定性优化与控制方法研究3.1 传统控制方法传统控制方法是对电力系统电压稳定性优化与控制的一种常用方法。
其中,PID控制器具有简单、易实现的特点,并在电力系统中得到广泛应用。
PID控制器通过调整系统中的比例、积分和微分参数,使系统的电压保持在稳定范围内。
另外,频率响应法、根数法等传统控制方法也常被用于电压稳定性的优化与控制。
3.2 智能优化算法随着人工智能技术的发展,智能优化算法在电力系统电压稳定性优化与控制中得到了广泛应用。
例如,遗传算法、模拟退火算法、粒子群优化算法等,能够通过搜索和优化电力系统参数,提高电压的稳定性和可靠性。
同时,人工神经网络、模糊控制等智能技术也可以用于电压稳定性的优化与控制,通过建立系统间的关联关系和规则,实现电压优化控制。
4. 电力系统电压稳定性优化与控制方法综合应用为了提高电力系统的电压稳定性和可靠性,可以将传统控制方法和智能优化算法相结合,形成综合的优化与控制策略。
电力系统电压稳定性分析

电力系统电压稳定性分析一、引言电力系统是现代社会不可或缺的基础设施,而电压稳定性是电力系统运行的关键指标之一。
为了保障电网的可靠运行,确保电力供应的稳定性,电力系统的电压稳定性分析变得至关重要。
本文将对电力系统的电压稳定性进行深入探讨。
二、电力系统电压稳定性概述电力系统的电压稳定性是指电力系统在外部干扰、内部故障或负荷变化等不确定因素引起的扰动下,电压能不断恢复并维持在额定值范围内的能力。
电压稳定性的好坏直接影响着电网的运行安全和供电质量。
电力系统的电压稳定性主要与发电机、输电线路、变电站和负荷之间的相互作用有关。
当系统负荷增加或线路传输能力减弱时,电压稳定性可能会受到影响,甚至出现电压崩溃的情况。
因此,进行电力系统电压稳定性分析并采取相应的措施是确保电网可靠运行的重要手段之一。
三、电力系统电压稳定性分析方法1. 静态分析法静态分析法是电力系统电压稳定性分析的基本方法之一。
它将电力系统的各个部件抽象为特定的等值模型,通过对潮流计算和电压裕度分析,来评估电压稳定性。
静态分析法可以提前发现系统中可能存在的电压稳定性问题,为发电机和负荷之间的功率调节提供参考。
2. 动态分析法动态分析法是指对电力系统在瞬态或暂态过程中电压和电流的变化进行分析,以判断系统的动态稳定性。
它主要包括对系统阻尼和系统振荡特性的研究。
动态分析法可以帮助我们了解电力系统在故障或切换等突发事件下的动态响应情况,对于运行人员及时采取措施具有重要意义。
3. 灵敏度分析法灵敏度分析法是一种通过计算不同因素对电力系统电压稳定性的影响程度的方法。
通过调整各个敏感变量,如负荷、传输功率等,以评估其对电压稳定性的影响。
灵敏度分析法可以帮助我们找到影响电压稳定性的主要因素,并制定相应的调控策略。
四、电力系统电压稳定性分析工具随着计算机技术的发展,电力系统电压稳定性分析的工具得到了很大的提升。
目前,常用的电压稳定性分析工具包括:PSASP、PSS/E、PSCAD等。
电力系统中的电压暂态稳定分析与控制研究

电力系统中的电压暂态稳定分析与控制研究电力系统的稳定运行是现代社会正常供电的基础,而电压暂态稳定性是电力系统稳定分析与控制中的重要方面。
本文将从电压暂态稳定性的定义、原因以及分析与控制方法等方面展开论述,以期对电力系统中的电压暂态稳定性研究有更深入的了解。
首先,电压暂态稳定性是指系统在发生外部或内部干扰时,电压快速恢复到稳定状态的能力。
这种暂态稳定性的保持对于系统的正常运行至关重要。
电压暂态失稳可能导致电力系统的电压波动、频率偏移甚至系统崩溃,给供电可靠性和电力质量带来风险。
电压暂态失稳的原因多种多样。
外部干扰包括突然的负荷变化、故障电流的突变、冲击负载和电路的短路等。
内部干扰主要来自于电力系统内部元件的失效以及控制系统的误动作。
这些因素会造成电压波动、电压降低和电力系统频率偏移等问题,危及电网稳定运行。
为了确保电压暂态稳定性,研究人员开展了大量的研究工作,提出了多种分析和控制方法。
一种常用的方法是使用传统的电力系统稳定分析工具,如暂态稳定分析软件、模拟器等,来评估系统的暂态稳定性能。
这些工具可以模拟系统在不同工况下的运行情况,帮助工程师预测系统的响应和改进系统设计。
另一种方法是使用现代控制理论和技术来开展电压暂态稳定性的研究。
例如,基于先进控制理论的方法,如模型预测控制、自适应控制等,可以提高电力系统的暂态稳定性。
这些方法利用系统模型和状态变量的测量信息,在实时调节控制器输出,控制系统的响应。
通过优化控制策略和参数,可以提高电力系统的恢复能力和稳定性。
此外,还有一些新兴的研究方向,如智能算法和人工智能技术在电压暂态稳定性研究中的应用。
这些方法利用大数据和机器学习等技术,对电力系统进行智能化、自适应的控制和管理,以提高电压暂态稳定性。
例如,神经网络和遗传算法可以用于优化电力系统的控制策略和参数,从而实现快速稳定性的恢复。
需要注意的是,在电力系统中,电压暂态稳定性的研究不仅仅是技术层面上的问题,还涉及到经济和环境因素。
电力系统中的电压稳定性分析与控制策略研究

电力系统中的电压稳定性分析与控制策略研究一、引言随着电力系统规模的不断扩大和电力负荷的增加,电力系统的电压稳定性变得越来越重要。
电力系统的电压稳定性是指电力系统中的电压在正常运行条件下能够维持在合理范围内。
电压稳定性的研究对于保障电力系统的安全稳定运行具有重要意义。
本文将从电压稳定性的分析和控制策略两个方面进行研究和探讨。
二、电压稳定性分析1. 电压稳定性问题的提出电压稳定性问题是由于电力系统的负荷波动、供电系统的故障和电力系统的控制等原因引起的。
因此,电压稳定性分析的目的是为了找出影响电力系统电压稳定性的因素,形成稳定的电压控制策略。
2. 电压稳定性指标电压稳定性指标是评价电压稳定性的重要参数。
常见的电压稳定性指标包括电压偏差、电压波动和电压脉动等。
通过对这些指标的定量分析,可以较准确地评判电力系统的电压稳定性。
3. 电压稳定性分析方法电压稳定性分析的方法主要包括潮流灵敏度分析、暂态稳定分析和小扰动稳定分析等。
这些分析方法通过建立合适的数学模型和计算方法,可以对电力系统的电压稳定性进行定量分析和预测。
三、电压稳定性控制策略1. 传统控制策略传统的电压稳定性控制策略主要包括无功补偿和电压调节等控制手段。
通过无功补偿可以消除电力系统中的无功功率不平衡,从而提高电压的稳定性。
而通过电压调节可以根据实际需求调整电压的大小,保持电力系统的稳定运行。
2. 新型控制策略随着电力系统技术的不断发展和创新,新型的电压稳定性控制策略也得到了广泛应用。
这些新型控制策略包括基于智能算法的电压稳定性控制、基于模糊控制的电压稳定性控制和基于神经网络的电压稳定性控制等。
这些控制策略结合了先进的信息技术和控制算法,能够更加精确地控制电压的稳定性。
四、电压稳定性研究进展1. 国内研究进展在国内,电压稳定性的研究取得了一定的成果。
相关研究机构在电压稳定性分析和控制策略上进行了大量的实践和探索,形成了一些具有中国特色的电压稳定性控制方法。
电力系统中电压稳定性分析

电力系统中电压稳定性分析在现代社会,电力系统的稳定运行对于各个领域的正常运转至关重要。
而电压稳定性作为电力系统稳定性的一个关键方面,直接影响着电能的质量和电力设备的安全可靠运行。
首先,我们来了解一下什么是电压稳定性。
简单来说,电压稳定性指的是电力系统在给定的运行条件下,维持负荷节点电压在允许范围内的能力。
当电力系统受到各种扰动,如负荷增加、线路故障等,如果系统能够通过自身的调节和控制机制,保持电压在可接受的水平,那么就认为系统具有良好的电压稳定性;反之,如果电压出现大幅度下降或者波动,甚至导致部分负荷失去供电,那就表明系统的电压稳定性出现了问题。
那么,影响电压稳定性的因素都有哪些呢?负荷特性是其中一个重要因素。
不同类型的负荷,比如恒功率负荷、恒电流负荷和恒阻抗负荷,对电压变化的响应各不相同。
恒功率负荷在电压下降时会要求更大的电流,从而进一步加重系统的负担,可能导致电压崩溃。
电力系统的网络结构也起着关键作用。
线路的阻抗、变压器的参数等都会影响电压的分布和传输。
较长的输电线路往往具有较大的阻抗,会导致电压在传输过程中的损耗增加,从而影响末端电压的稳定性。
无功功率的平衡也是至关重要的。
无功功率不足会导致系统电压下降,而无功功率过剩则可能引起电压过高。
电力系统中的无功电源包括发电机、电容器和电抗器等,它们的合理配置和运行对于维持电压稳定至关重要。
电力系统的运行方式同样会影响电压稳定性。
例如,高峰负荷时段和低谷负荷时段的系统运行状态差异较大,对电压稳定性的要求也不同。
接下来,我们探讨一下电压稳定性的分析方法。
静态电压稳定性分析方法中,常用的有潮流计算法。
通过对给定运行方式下的电力系统进行潮流计算,可以得到各节点的电压和功率分布,从而判断系统是否处于电压稳定的边界。
动态电压稳定性分析则需要考虑系统中各种动态元件的特性,如发电机的励磁调节系统、负荷的动态特性等。
这种方法通常采用时域仿真来研究系统在受到扰动后的电压动态变化过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论电力系统是由电能生产、传输、使用的能量变换、传输系统和信息采集、加工、传输、使用的信息系统组成的。
电力系统稳定性问题可以分为角度稳定、电压稳定和频率稳定三个方面。
电压稳定性问题与发电系统,传输系统和负荷系统都有关系。
电压稳定性是指电力系统在正常运行或经受扰动后维持所有节点,电压为可接受值的能力引起电压不稳定的主要因素是电力系统没有能力维持无功功率的动态平衡和系统中缺乏合适的电压支持;电压不稳定性受负荷特性影响很大。
电压崩溃通常是由以下几种情况引发的:①负荷的快速持续增长;②局部无功不足;③传输线发生故障或保护误动;④不利的OLTC的动态调节;⑤电压控制设备限制器(如发电机励磁限制)动作。
这些情况往往是互相关联的,持续恶化的相互作用将最终导致电压崩溃的发生。
电压安全是指电力系统的一种能力,即不仅在当前运行条件下电压稳定,而且在可能发生的预想事故或负荷增加情况下仍能保持电压稳定。
它意味着相对可信的预想事故集合,电力系统当前运行点距离电压失稳点具有足够的安全裕度。
为了防止电压失稳/崩溃事故,最为关心的问题是,当前电力系统运行状态是不是电压稳定的,系统离电压崩溃点还有多远或稳定裕度有多大。
因此必须制定一个确定电压稳定程度的指标,以便运行人员做出正确的判断和相应的对策电压稳定性研究的方法:非线性动力学方法、概率分析方法、静态分析方法和动态分析方法。
电力系统是非线性动力系统,稳定本身属于动态范畴,电压失稳或电压崩溃本质是一个动态过程。
当我们深入研究电压不稳定发生的原因、机理及其变化过程时,特别是要研究因电压过低而导致系统的动态稳定破坏时,静态分析方法难以完整计及系统动态元件的影响,因此无法深入研究电压失稳的机理及其演变过程。
必须在计及元件动态作用的前提下,建立恰当的数学模型,采用合适的动态方法进行研究才能真正揭示电压失稳的发展机制。
负荷特性在电压稳定研究中起着重要作用,它直接影响分析的结果,但由于负荷的随机性、分散性及多样性,严格统一负荷特性尚无法确立,这使得负荷特性成为电压稳定研页脚内容1究的一个瓶颈,所以要深入这方面的研究。
第1章电力系统的结构1.1电力系统的定义现代电力系统是由电能生产、传输、使用的能量变换、传输系统和信息的采集、加工、传输、使用的信息系统组成的,是一个复杂的非线性动力系统,它的安全、稳定运行是电力系统的基本要求。
1.2电力系统的结构电力系统的基本特性:(1)由运行电压基本恒定的三相交流系统组成,发电和输电设施采用三相装置,工业负荷总是三相;单相家用和商用负荷在各相之间等量分配,以便有效地形成平衡的三相系统。
(2)采用同步发电机发电。
原动机将一次能源(化石燃料、核能和水能)转换为机械能,然后由同步发电机将它转换为电能。
(3)将电力远距离输送到广大区域的电力用户,需经由运行于不同电压水平的子系统组成的输电系统。
电力系统的特点是与电能的特点相联系的。
电能生产、传输和使用从诞生之日起就具有鲜明的系统性,这是由电能系统的本质决定的。
电能以光速传播,迄今为止未能实现工业规模、大容量的电能存储,因此电能的生产与消费几乎是在同一瞬间内完成的,发电、输电、变电、配电、用户组成了始终处于连续工作和动态平衡的不可分割的整体;电能供应系统和用户处于相互影响、相互制约之中,电能供应系统要适应用户对电能需页脚内容2求的随机变化,向用户连续不断地提供质量合格、价格便宜的电能。
用户(负荷)的特性和随机变化又反过来影响和冲击着电能供应系统;电能和社会的生产、人民的生活、国家的国名经济紧密相关,它既能够创造巨大的物质财富和现代文明,也可能在瞬间造成重大的灾难,使现代社会陷入混乱。
因此在各个环节和不同层次一定要具有相应的信息与控制系统,对电能的生产、传输、使用的过程进行测量、调节、控制、保护和协调调度,以保证电力系统的正常运行,使用户获得安全可靠、优质、廉价的电能。
作为现代社会的一个关键部门,电力系统在工农业生产、交通运输、商业和人民生活的各个方面起着重要的作用。
每个现代国家的发展都与电能的利用水平密切相关。
第2章电力系统稳定性的定义及其分类电力系统稳定即电力系统能够运行于正常运行条件下的平衡状态,在遭受干扰后能够恢复到可容许的平衡状态。
根据系统结构和运行模式的不同,电力系统不稳定可以通过不同的方式变现出来。
传统上,稳定是一个维持同步运行的问题。
由于电力系统依靠同步电机发电,因而良好的系统运行的必要条件是所有电机保持同期,即同步。
这一稳定的状况受发电机转子角的动态和功角关系的影响。
不失去同步也可能产生不稳定。
例如,有一台同步发电机向一台感应电动机负荷通过一条输电线供电的系统,可因负荷电压崩溃而变得不稳定。
这种情况下保持同步不成为问题,所关心的问题是电压的稳定和控制,这种形式的不稳定也可能在大系统向广大区域负荷供电的情况下发生。
电力系统的稳定性所关心的问题是电力系统遭受暂态扰动后的行为。
扰动可小可大。
小扰动随负荷的变化而连续发生,系统本身必须不断调整以适应变化的条件。
系统必须有能力在这些条件下令人满意地运行,在出现最大负荷时能成功地供电。
系统还必须有能力在多种严重的扰动下保持运行,这些扰动包括输电线上短路,失去一台大发电机或负荷,或者失去两个子系统间的联络线。
电力系统频率都有其允许极限值、运行频率在极限值以内是频率稳定的。
如果电力系统或被解列出后的局部系统出现较大有功功率缺额时,频率会大幅度下降,如不能采取紧急措施,则可能导致频率崩溃。
电力系统稳定分类通常基于产生不稳定的物理特性,需要考虑的扰动大小,为确定稳定页脚内容3页脚内容4性必须考虑的设备、过程和时间跨度,以及计算和预测稳定性的合适方法等。
电力系统稳定性问题可以分为角度稳定、电压稳定和频率稳定三个方面。
关注的重点为系统的角度稳定性,尤其是集中在系统受到大的扰动或故障冲击后其暂态行为特征方面。
2.1角度稳定性及其分类电力系统角度稳定性是指电力系统中同步运行的发电机在受到扰动后,发电机组的机械输入和电功率输出之间产生短时不同程度的不平衡,使并列运行的各发电机组转速发生相应的不同变化,电力系统因而出现发电机转子间角度的相互摆动,以及电压、电流、功率等电气量的周期性变化。
转子角度稳定性是电力系统中互联的同步发电机维持同步的能力。
在交流输电系统中,所有连接在系统中的发电机都要保持同步运行。
由于交流输电具有电抗、输送的功率有一定的极限。
交流输电的基本功角特性为:P =12U U Xsin 12θ(2-1) 式中:1U 、2U 为送端和受端发电机电动势12θ为两电动势的相角差;X 为线路、发电机和变压器的电抗。
静态稳定极限功率为:页脚内容512U U P X(2-2) 当系统受到扰动后,就可能使线路上输送的功率超过它的极限,使送端发电机与系统失去同步,造成发电机与系统解列或系统瓦解。
这种系统失去同步的不稳定也称作系统角度不稳定问题。
这种角度不稳定分为两种:一种是由于缺少同步转矩导致发电机转子角度逐步增大,一种是由于缺少有效阻尼转矩导致转子角增幅振荡。
角度稳定性分为静态稳定和动态稳定静态稳定性主要指系统受到小干扰后保持所有运行参数接近于正常值的能力。
动态稳定性主要指系统受到大干扰后。
系统的运行参数恢复到接近正常值的能力。
所谓干扰是指电力系统的一个或多个参数,或运行状态量突然的或是连续的改变。
(1)小干扰:系统分析时,可以将描述电力系统动态过程加以线性化的干扰。
(2) 大干扰:系统分析时,不可以将描述电力系统动态过程加以线性化的干扰。
2.2频率稳定性电力系统的频率是电能质量的指标之一。
发电出力和用电负荷的变化都会引起频率的偏移,所以要根据频率偏差随时进行调整。
整个电力系统的频率特性是发电频率特性、负荷频率特性及电压影响的综合结果,它表示电力系统功率不平衡时平衡频率变化的特性。
系统频率变化时,引起发电机输出功率变化,这是发电系统的频率特性或称之为发电频率调节效应。
系统频率变化时,引起负荷消耗的功率变化,这是负荷系统的频率特性或称之为负荷频率调节效应。
系统频率变化时,还会引起电网电压的变化,而电压变化又将引起发电功率和负荷功率的变化。
图2-1电力系统稳定类型2.3电压稳定性电力系统在给定的稳态运行点遭受一定的扰动后,如果负荷节点的电压能够达到扰动后平衡点的电压值,则称系统为电压稳定。
电压失稳或电压崩溃是一个动态过程,“稳定”一词本身意味着是一个动态系统,而电力系统正是一个动态系统,相对于功角(同步)稳定,系统电压稳定的动态特性主要决定于负荷与电压控制措施,电压稳定则被称为负荷稳定。
电压稳定的准则就是对系统中每一母线,在给定的运行条件下,当注入母线的无功功率增加时,其母线电压幅值也同时增加。
如果系统中至少有一个母线的电压幅值随注入该母线的无功功率的增加而减小,则该系统是电压不稳定的。
第3章研究电压稳定的意义3.1电力系统电压不稳定特征当一个系统在紧急事故之后经受突然无功需求增加时,增加的无功需求时由发电机和无功补偿设备的无功储备来平衡的。
在系统有充足的无功储备时,系统电压可调整到稳定的电压水平。
而在系统无功储备短缺时,附加无功需求增加时可能导致电压崩溃,引起系统部分或全部停电。
电力崩溃的过程一般的情景是:电力系统经受非正常运行工况,接近负荷中心的大发电机退出运行。
结果,某些高压传输线路负荷加重,网络损耗增加,使无功备用资源处于最小。
继电保护动作,跳开重负荷线路,负荷转移到其余邻近的线路。
在该线路中的无功损耗急速增加,电压降低,引起线路级联跳闸。
页脚内容6在失去高压传输线路之后,特别大的无功需求引起邻近负荷中心电压的很大的降低,这将引起负荷的减小。
然而发电机将通过增加励磁快速恢复其端电压,综合结果引起无功潮流在变压器和线路这些元件两端的电压降落。
在负荷中心超高压和高压网电压的降低将反过来会影响配电系统,使其二次侧电压降低。
这时,变电所的变压器将例如恢复配电电压。
从而在几分钟内使负荷达到故障前的水平。
变压器分接头每一次动作,都使得高压侧线路上的负荷增加,同时增加线路损耗,它反过来又引起高压侧线路电压进一步下降。
如果高压线路负荷超过波阻抗负荷,则线路中每增加1MVA负荷将引起几Mvars的线路损失。
随着每一分接头的动作,整个系统中发电机的无功输出将增加。
慢慢地发电机就一台接一台的达到它的无功容量极限。
当第一台发电机达到它的磁场电流极限时,它的电压就要降落。
因为发电机固定有功输出,因此电压降低必导致电枢电流增加。
要保持电枢电流在允许的限制内,就要进一步减小无功的输出。
该发电机分担的无功就转移到其他发电机,导致越来越多的发电机过负荷和更多的发电机失去电压控制,从而系统遭受电压不稳定,最终将导致电压崩溃或雪崩,还可能导致发电机失去同步和大面积停电。