高中数学解三角形解答题专题训练含答案
2021年高考数学解答题专项练习《解三角形》(含答案)

2021年高考数学解答题专项练习《解三角形》(含答案)1.已知△ABC中,b=3,c=4,C=2B,求cosB的值。
2.已知△ABC中,b=2,求角B的值;若△ABC的面积为S,求S。
3.已知a,b,c分别是△ABC三个内角A,B,C的对边,acosC+csinA=b+c,求A;若a=2,b+c=3,求b,c。
4.已知△ABC中,B=150°,a=c=2,求△ABC的面积;若sinA+sinC=1,求C。
5.已知△ABC中,b=3,c=4,求角A;若a=5,求△ABC的面积。
6.已知△ABC中,ab+a^2=c^2,证明:△ABC是直角三角形;若△ABC的面积为S,求角C的大小。
7.已知锐角△ABC中,b=2,c=3,求角C的大小;若a=4,求△ABC的面积。
8.已知△ABC中,b+c=5,且△ABC的面积为S,求角A的大小;若a=3,求S;若a=4,求角B的大小。
9.已知△ABC中,sinA=3/5,求∠B的大小;若a=4,求b+c的范围;若S=6,求a的值。
10.已知△ABC中,cosB=1/2,求角B的大小;求cosA+cosB+cosC的取值范围。
11.已知△ABC中,sin2A-sin2B-sin2C=sinBsinC,求A;若BC=3,求△XXX周长的最大值。
12.已知△ABC中,c=2,ccosAcosB=asinCcosB-ccosC,求角B的大小;若S=16,求△ABC的周长的取值范围。
13.已知△ABC中,a=3,b=4,满足cosAcosB=1/4,求角A 的值;若S=5,求c的值。
14.已知△ABC中,a=8,ccosAcosB=2asinCcosB-ccosC,求tanB的值;若S=16,求b的值。
已知三角形ABC的内角A,B,C的对边分别为a,b,c,且3(acos C-b)=asin C,求角A。
解:(1)根据正弦定理和已知条件,可得sin A = sin (π - B - C) = sin (B + C) = sin B cos C + cos B sin C = sin B cos C + √(1 - sin^2 B) sin C将sin B = a/2c代入上式,得sin A = a/2c cos C + √(1 - a^2/4c^2) sin C又因为3(acos C - b) = asin C,可得3a/2c cos C - 3b = √(1 - a^2/4c^2) a将a/b = cosp,代入上式,得3p cos C - 3 = √(1 - p^2) 2sin C将sin C = √(1 - cos^2 C)代入上式,整理可得9p^2 - 4) cos^2 C - 18p cos C + 9 = 0解得cos C = 3/2p或cos C = 1/3.因为b ≥ a,所以p ≤ 1/2,故cos C = 3/2p。
高中数学解三角形(有答案)

解三角形之老阳三干创作创作时间:贰零贰壹年柒月贰叁拾日一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18 B.19 C.16 D.17 2.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.18 3.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B的大小()A.30°B.60°C.120°D.150°4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1 B..C..D..2 7.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.7 9.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A 的取值范围是()A.B.C.D.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC 的面积为,则边a的值为()A.B.C.D.3 20.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B()A.B.C.D.二.解答题(共10小题)21.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.23.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.25.(2014•兴安盟一模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.参考答案与试题解析一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18 B.19 C.16 D.17考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,把a,c,cosB的值代入求出b的值,即可确定出三角形ABC周长.解答:解:∵△ABC中,a=3,c=8,B=60°,∴b2=a2+c2﹣2accosB=9+64﹣24=49,即b=7,则△ABC周长为3+8+7=18,故选:A.点评:此题考查了余弦定理,熟练掌握余弦定理是解本题的关键.2.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.18考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,将a,b及cosB的值代入,得到关于c的方程,求出方程的解即可得到c的值.解答:解:∵a=3,c=9,B=60°,∴由余弦定理b2=a2+c2﹣2accosB,即:b2=9+64﹣24,即b=7,则a+b+c=18故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.3.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B的大小()A.30°B.60°C.120°D.150°考点:余弦定理.专题:解三角形.分析:利用余弦定理暗示出cosB,把已知等式变形后代入计算求出cosB的值,即可确定出B的度数.解答:解:∵在△ABC中,b2﹣a2﹣c2=ac,即a2+c2﹣b2=﹣ac,∴cosB==﹣,则∠B=150°,故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得 sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A=,由此可得△ABC的形状.解答:解:△ABC的内角A,B,C所对的边分别为a,b,c,∵bcosC+ccosB=asinA,则由正弦定理可得 sinBcosC+sinCcosB=sinAsinA,即 sin(B+C)=sinAsinA,可得sinA=1,故A=,故三角形为直角三角形,故选B.点评:本题主要考查正弦定理以及两角和的正弦公式、诱导公式的应用,根据三角函数的值求角,属于中档题.5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.考点:正弦定理.专题:计算题;解三角形.分析:利用正弦定理可求得sinA,结合题意可求得角A.解答:解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选D.本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.点评:6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为创作时间:贰零贰壹年柒月贰叁拾日。
数学-解三角形大题解析版

解三角形大题(1)证明:sinsin BD ABDC ACαβ⋅=⋅;(2)若D为靠近B的三等分点,在ABC 中,由余弦定理得:2222b a c =+-a b c h AE +=+≥ ,即(c h +41123h c ∴<+≤1413tan2C ∴<≤,3tan 42C ∴≤222sincos 2tan22sin sin cos 1tan 22C C C C C ==++设tan2C t =,3,14t ⎡⎫∈⎪⎢⎣⎭,1t t +1252,12t t ⎛⎤∴+∈ ⎥⎝⎦,即1tan tan 2C +24sin 125C ∴≤<9.在ABC 中,3,AB AC ==(1)若3BC =,求CD 与AD ;因为AD 平分BAC ∠,所以因此32BD CD =,又3BC =,所以在ABC 中,3,AB BC AC ==在ACD 中,由余弦定理可得(2)如下图所示:因为AD 平分BAC ∠,DAC ∠所以60,120B C θθ=︒-=︒-()()sin 120sin 60AB ACθθ=︒-︒-展开并整理得333cos sin 22θ-10.ABC 中,,D E 是边BC (1)若3BC =,求ABC 面积的最大值;则()()0,0,3,0B C ,设(),A x y ,则2222(3)3x y x y -+=⨯+,整理得到:即点A 的轨迹是以3,02⎛⎫- ⎪⎝⎭圆心,故ABC 的BC 边上的高的最大值为在APC △中,由正弦定理可得故133cos 22α⎛- ⎝因为α为锐角,故故P 存在且sin ABP ∠法二:如图,设∠同理30PCA ∠=︒-而3sin sin CPAPC α=∠在PBC 中,由余弦定理可得:整理得到:4cos =所以24cos 4sin α+整理得到:38tan =但α为锐角,故tan 故P 存在且sin ABP ∠11.在ABC 中,内角(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠【答案】(1)5sin 5C =;(2)tan DAC ∠【分析】(1)方法一:利用余弦定理求得(2)[方法一]:两角和的正弦公式法由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以所以()sin sin DAC DAC π∠=-∠(sin ADC =∠在(1)的方法二中可得1,2,AE CE AC ==由4cos 5ADC ∠=-,可得4cos ,sin 5ADE ∠=∠在Rt ADE △中,5,sin 3AE AD DE ADE ===∠由(1)知5sin 5C =,所以在Rt CDG △中,11515AG AC CG =-=.[方法4]:坐标法以D 为坐标原点,DC 为设BDC α∠=,则(5cos B 从而2(05cos )AB α=-+cos sin 1cos ADB α∠==-(2)[方法1]:【通性通法】余弦定理在BCD △,由(1)得,225(22)2522=+-⨯⨯[方法2]:【最优解】利用平面几何知识作BF DC ⊥,垂足为F ,易求,【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法;方法三:根据题意利用几何知识,解直角三角形,简单易算.方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现.(2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法.方法二:利用几何知识,解直角三角形,简单易算.19.在锐角△ABC 中,角(I )求角B 的大小;(II )求cos A +cos B +cos C 【答案】(I )3B π=;(II )【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角(1)求cos C及线段BC的长;(2)求ADEV的面积.【答案】(1)1cos4C=,BC(2)3158【分析】(1)利用二倍角正弦公式结合正弦定理推出(2)求出15sin4C=,即可求出【详解】(1)由题意在ABC【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法;方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值;方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小(2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用25.ABC中,sin2A-sin(1)求A;(2)若BC=3,求ABC【答案】(1)23π;(2)3【分析】(1)利用正弦定理角化边,配凑出(2)方法一:利用余弦定理可得到而2b ac =,即sin sin ADB ∠=故有ADB ABC ∠=∠,从而∠由2b ac =,即b c a b =,即CA CB 故AD AB AB AC =,即23b c c b=,又2b ac =,所以23c a =,则2227cos c a b ABC +-==∠由2AD DC =,得,3c DE EC =在BED 中,2(3cos BED =∠在ABC 中2cos 2a BC c A +=∠因为cos cos ABC BED ∠=-∠所以22222()(332223a c a c b a ac ++-=-⋅由(1)知,3BD b AC ===设()(),33B x y x -<<,则2x 由2b ac =知,BA BC AC ⋅=即222(2)(1)x y x y ++⋅-+联立⑤⑥解得74x =-或72x =代入⑥式得36||,2a BC c ==由余弦定理得cos a ABC ∠=则11sin 122ADC S AD DC ADC =⋅∠=⨯ 在ABD △中,2π3ADB ∠=,由余弦定理得35.记ABC 的内角,,A B C (1)求bc ;(2)若cos cos 1cos cos a B b A b a B b A c--=+,求【答案】(1)1(2)34【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出【详解】(1)因为22a b =+37.如图,在锐角ABC 中,角(1)求ABC 面积的最大值;(2)若AB 边上的点D 满足2AD DB =,求线段【答案】(1)934(2)3+1【分析】(1)利用余弦定理结合基本不等式求出(2)根据2AD DB =得到13CD CA = 求出222222442||1⎛⎫+ ⎪++⎝⎭==+-⎛⎫+ ⎪⎝⎭b a b ab a CD a b ab b a 角形,得到311,32⎛⎫=+=+∈ ⎪⎝⎭b m t a ,从而利用基本不等式,求出线段【详解】(1)由余弦定理得:cos 60︒所以222212992+-⋅=⇒=+a b ab a b ∴9ab ≤,当且仅当3a b ==时取“=”∴1393sin 244==≤△ABC S ab C ab ,∴ABC 面积的最大值为934.(2)由2AD DB =,可得:23AD AB =(1)求角A ;(2)若D 为线段BC 延长线上一点,且∠【答案】(1)3A π=(2)963--【分析】(1)运用正弦定理以及诱导公式求解;(2)根据条件运用正弦定理求解.【详解】(1)由条件及正弦定理可得:()sin sin cos sin cos sin cos B C A A B A C +--即sin cos cos sin sin cos cos B A B A C A -+-故()()sin sin 0B A C A -+-=,则有sin 又()(),,,B A C A ππππ-∈--∈-,故有。
高考数学解三角形专题复习100题(含答案详解)

⾼考数学解三⾓形专题复习100题(含答案详解)2018年⾼考数学解三⾓形专题复习100题1.如图在△ABC中,D是边AC上的点,且AB=AD,,BC=2BD.(1)求的值;(2)求sinC的值.2.△ABC中,⾓A,B,C所对的边分别为a,b,c.已知 .求sinA和c的值.3.△ABC的内⾓A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上⼀点,且AD AC,求△ABD的⾯积.4.在中,内⾓A,B,C所对的边分别为a,b,c,.(1)若,求c的值;(2)若,求的⾯积.5.的内⾓A,B,C的对边分别为a,b,c,已知,,.(1)求c;(2)设为边上⼀点,且,求的⾯积.6.在△ABC中, =60°,c= a.(Ⅰ)求sinC的值;(Ⅱ)若a=7,求△ABC的⾯积.7.△ABC的三个内⾓A,B,C所对的边分别为a,b,c,asin Asin B+bcos2A= a.(1)求;2228.△ABC的内⾓A,B,C的对边分别为、、,且.(1)若,求的值;(2)若,求的值.9.的内⾓A,B,C的对边分别为a,b,c,其中,且,延长线段到点,使得.(Ⅰ)求证:是直⾓;(Ⅱ)求的值.10.在△ABC中,内⾓A,B,C的对边分别为a,b,c,且.(1)求⾓A的值;(2)若的⾯积为,△ABC的周长为,求边长a.11.为绘制海底地貌图,测量海底两点C,D间的距离,海底探测仪沿⽔平⽅向在A,B两点进⾏测量,A,B,C,D在同⼀个铅垂平⾯内. 海底探测仪测得同时测得海⾥。
(1)求AD的长度;(2)求C,D之间的距离.12.在中,⾓A,B,C对边分别为a,b,c,⾓,且.(1)证明:;(2)若⾯积为1,求边c的长.(Ⅰ)求B0的值;(Ⅱ)当B=B0,a=1,c=3,D为AC的中点时,求BD的长.14.△ABC的内⾓A,B,C的对边分别为a,b,c,已知.(Ⅰ)求⾓C;(Ⅱ)若c=,△ABC的⾯积为,求△ABC的周长.15.在中,⾓,,的对边分别是,,,已知,.(Ⅰ)求的值;(Ⅱ) 若⾓为锐⾓,求的值及的⾯积.16.在△ABC中,已知.(1)求的长;(2)求的值.17.△ABC的内⾓A,B,C所对的边分别为a,b,c,向量与平⾏.(I)求A;(II)若,求△ABC的⾯积.18.的内⾓A,B,C的对边分别为a,b,c,已知的⾯积为.(1)求;(2)若,,求的周长.20.在△ABC中,⾓的对边分别为a,b,c, ,c=,⼜△ABC的⾯积为,求:(1)⾓的⼤⼩;(2)的值.21.在△ABC中,⾓A,B,C所对的边分别为a,b,c,且cos2﹣sinB?sinC=.(1)求A;(2)若a=4,求△ABC⾯积的最⼤值.22.在△ABC中,已知⾓A,B,C的对边分别是a,b,c,且.(I)求⾓C的⼤⼩;(II)如果,,求实数m的取值范围.23.已知向量=(2cosx,sinx),=(cosx,2cosx),函数f(x)=?﹣1.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在锐⾓△ABC中,内⾓A.B、C的对边分别为a,b,c,tanB=,对任意满⾜条件的A,求fA.的取值范围.24.设△ABC的内⾓A,B,C的对边分别为,且.(Ⅰ)求B;(Ⅱ)若,求C.25.在△ABC中,a、b、c分别为内⾓A.B、C的对边,且2sinAcosC=2sinB﹣sinC.(1)求∠A的⼤⼩;(2)在锐⾓△ABC中,a=,求c+b的取值范围.26.在ABC中,(I)求的⼤⼩(II)求的最⼤值27.设函数,其中向量,,.(Ⅰ)求的最⼩正周期与单调递减区间;(Ⅱ)在△ABC中,a、b、c分别是⾓A.B、C的对边,已知fA.=2,b=1,△ABC的⾯积为,求的值.28.△ABC中,⾓A,B,C的对边分别是a,b,c,已知(2a+b)sinA+(2b+a)sinB=2csinC.(Ⅰ)求C的⼤⼩;(Ⅱ)若,求△ABC周长的最⼤值.29.已知A .B 、C 是△ABC 的三内⾓,向量m=(-1,3),n=(cosA ,sinA),且m ·n=1.(1)求⾓A ;(2)若3)4tan(-=+B π,求tanC.30.在△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且C=(Ⅱ)若△ABC 的⾯积为3,求c 的值.31.在△ABC 中,a,b,c 分别为内⾓A,B,C 的对边,且(Ⅰ)求A 的⼤⼩;(Ⅱ)求的最⼤值.32.△ABC 的内⾓A ,B ,C 的对边分别为a ,b ,c ,已知2cosC (acosB+bcosA )=c .(Ⅰ)求C ;(Ⅱ)若c=,△ABC 的⾯积为,求△ABC 的周长.33.在△ABC 中,⾓A ,B ,C 所对的边分别是a ,b ,c ,且。
2022年高考数学解三角形知识点专项练习含答案

专题19 解三角形一、单选题(本大题共10小题,共50分)1.在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosC=b,则△ABC的形状是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形2.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5√3,CD=5,BD=2AD,则AD的长为()A. 4B. 5C. 6D. 73.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A. 10√3海里B. 10√63海里 C. 5√2海里 D. 5√6海里4.在△ABC中,内角A、B、C所对的边分别为a、b、c,若角A、C、B成等差数列,角C的角平分线交AB于点D,且CD=√3,a=3b,则c的值为()A. 3B. 72C. 4√73D. 2√35.如图,要测量电视塔AB的高度,在C点测得塔顶A的仰角是π4,在D点测得塔顶A的仰角是π6,水平面上的,则电视塔AB的高度为()mA. 20B. 30C. 40D. 506.为测出小区的面积,进行了一些测量工作,所得数据如图所示,则小区的面积为( )A.B. 3−√64km2C.D. 6−√34km27.已知直三棱柱ABC−A1B1C1的底面是正三角形,AB=2√3,D是侧面BCC1B1的中心,球O与该三棱柱的所有面均相切,则直线AD被球O截得的弦长为()A. √1010B. √105C. 3√1010D. 3√1058.在△ABC中,角A,B,C所对的边分别为a,b,c,若直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰或者直角三角形9.海伦不仅是古希腊的数学家,还是一位优秀的测绘工程师.在他的著作《测地术》中最早出现了已知三边求三角形面积的公式,即著名的海伦公式S=√p(p−a)(p−b)(p−c),这里p=12(a+b+c),a,b,c分别为▵ABC的三个角A,B,C所对的边,该公式具有轮换对称的特点,形式很美.已知▵ABC中,p=12,c=9,cosA=23,则该三角形内切圆半径()A. √2B. √3C. √10D. √510.在ΔABC中,若1sinA +1sinB=2(1tanA+1tanB),则()A. C的最大值为π3B. C的最大值为2π3C. C的最小值为π3D. C的最小值为π6二、单空题(本大题共4小题,共20分)11.如图,在离地面高200m的热气球上,观测到山顶C处的仰角为15∘、山脚A处的俯角为45∘,已知∠BAC=60∘,则山的高度BC为______m.12. 在四边形ABCD 中,AB =6,BC =CD =4,DA =2,则四边形ABCD 的面积的最大值是______.13. 海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B 两点间的距离,现在珊瑚群岛上取两点C,D ,测得CD =45m ,∠ADB =135∘,∠BDC =∠DCA =15∘,∠ACB =120∘,则AB 两点的距离为______.14. 如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,若测得CD =4 km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离是_______km .三、解答题(本大题共4小题,共30分)15. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且ccosB +bcosC =3acosB .(1)求cos B 的值;(2)若|CA ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=2,△ABC 的面积为2√2,求边b .16. 在①2acosC +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sinB +sinC)2=sin 2A +3sinBsinC 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 . (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.17. 设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m⃗⃗⃗ =(cos C2,sin C2),n ⃗ =(cos C2,−sin C2),m ⃗⃗⃗ 与n ⃗ 的夹角为π3. (1)求角C 的大小;(2)已知c =72,△ABC 的面积S =3√32,求a +b 的值.18. 某农场有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,为迎接“五一”观光游,欲在边界BC 上选择一点P ,修建观赏小径PM 、PN ,其中M 、N 分别在边界AB 、AC 上,小径PM 、PN 与边界BC 的夹角都为60°,区域PMB 和区域PNC 内种植郁金香,区域AMPN 内种植月季花.(1)探究:观赏小径PM 与PN 的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区域内修建小径MN,当P点在何处时,三条小径(PM、PN、MN)的长度和最小?专题19 解三角形一、单选题(本大题共10小题,共50分)19.在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosC=b,则△ABC的形状是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形【答案】C解:∵b=2acosC,∴由正弦定理得sinB=2sinAcosC,∵B=π−(A+C),∴sin(A+C)=2sinAcosC,则sinAcosC+cosAsinC=2sinAcosC,sinAcosC−cosAsinC=0,即sin(A−C)=0,∵A、C∈(0,π),∴A−C∈(−π,π),则A−C=0,∴A=C,∴△ABC是等腰三角形.故选:C.20.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5√3,CD=5,BD=2AD,则AD的长为()A. 4B. 5C. 6D. 7【答案】B【解析】解:设AD=t,可得BD=2t,BC=√4t2−25,在直角三角形BCD中,可得cosB=√4t2−252t,在三角形ABC中,可得cosB=222⋅3t⋅√4t2−25,即为√4t2−252t =222⋅3t⋅√4t2−25,即2(4t2−25)=9t2−75,解得t=5,可得AD=5,故选:B.21.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A. 10√3海里B. 10√63海里 C. 5√2海里 D. 5√6海里【答案】D【解析】解:由题意可得,A=60°,B=75°,∠C=180°−60°−75°=45°根据正弦定理可得,BCsin60°=ABsin45°∴BC=10×√32√22=5√6故选D.22.在△ABC中,内角A、B、C所对的边分别为a、b、c,若角A、C、B成等差数列,角C的角平分线交AB于点D,且CD=√3,a=3b,则c的值为()A. 3B. 72C. 4√73D. 2√3【答案】C【解析】解:由题意,得由S△ABC=S△ACD+S△BCD,得,所以ab=a+b,(b=0舍去),所以3b2=4b,解得b=43故a=3b=4,故c=√a2+b2−2ab·cosC=4√73故选C.23.如图,要测量电视塔AB的高度,在C点测得塔顶A的仰角是π,在D点测得塔顶A4的仰角是π,水平面上的,则电视塔AB的高度为6()mA. 20B. 30C. 40D. 50【答案】A【解析】解:由题题意,设AB=x,则BD=√3x,BC=x在△DBC中,∠BCD=60°,CD=40,∴根据余弦定理,得BD2=BC2+CD2−2BC⋅CD⋅cos∠DCB即:(√3x)2=(40)2+x2−2×40⋅x⋅cos60°整理得x2+20x−800=0,解之得x=−40(舍去)或x=20即所求电视塔的高度为20米.故选A.24.为测出小区的面积,进行了一些测量工作,所得数据如图所示,则小区的面积为( )A.B. 3−√6km24C.D. 6−√34km2【答案】D【解析】解:如图连接AC,根据余弦定理可得AC2=AB2+BC2−2AB×BCcosB=3,即AC=√3,由于AC2+BC2=AB2,所以∠ACB=90°,∠BAC=30°,所以∠DAC=45°−30°=15°,∠DCA=105°−90°=15°,所以∠DAC=∠DCA所以△ADC为等腰三角形,设AD=DC=x,∠D=150°,由余弦定理x2+x2+√3x2=3⇒x2=3(2−√3),故所求面积为12×1×√3+12×3(2−√3)×12=6−√34.故选D.25.已知直三棱柱ABC−A1B1C1的底面是正三角形,AB=2√3,D是侧面BCC1B1的中心,球O与该三棱柱的所有面均相切,则直线AD被球O截得的弦长为()A. √1010B. √105C. 3√1010D. 3√105【答案】D【解析】解:因为球O与直三棱柱ABC−A1B1C1的所有面均相切,且直三棱柱ABC−A1B1C1的底面是正三角形,所以球心O为该三棱柱上、下底面三角形重心连线的中点,如图所示,设球O的球心为O,底面三角形ABC的重心为O′,连接OO′,则OO′⊥底面ABC.设BC的中点为E,连接AE,易知点O′在AE上,连接OD、DE,因为D是侧面BB1C1C的中心,所以四边形OO′ED为正方形,设球O的半径为r,则由AB=2√3,可得r=2√3×√32×13=1,易得AD=√3√32)=√10,连接OA,可得OA=√23)=√5,∴cos ∠ADO=DO2+AD2−AO22⋅DO⋅AD =3√1010,故所求弦长为2r⋅cos ∠ADO=3√105.故选D.26.在△ABC中,角A,B,C所对的边分别为a,b,c,若直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰或者直角三角形【答案】C【解析】解:∵直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,∴ba =cosAcosB,解得bcosB=acosA,∴利用余弦定理可得:b×a2+c2−b22ac =a×b2+c2−a22bc,整理可得:c2(b2−a2)=(b2+a2)(b2−a2),∴解得:c2=a2+b2或b=a,而当a=b时,两直线重合,不满足题意;则△ABC是直角三角形.故选C.27.海伦不仅是古希腊的数学家,还是一位优秀的测绘工程师.在他的著作《测地术》中最早出现了已知三边求三角形面积的公式,即著名的海伦公式S=√p(p−a)(p−b)(p−c),这里p=12(a+b+c),a,b,c分别为▵ABC的三个角A,B,C所对的边,该公式具有轮换对称的特点,形式很美.已知▵ABC中,p=12,c=9,cosA=23,则该三角形内切圆半径()A. √2B. √3C. √10D. √5【答案】D【解析】解:因为p=12(a+b+c),所以a+b+c=2p,因为p=12,c=9,所以a+b=15,三角形的内切圆半径r=2Sa+b+c,由余弦定理得cos A=b2+c2−a2 2bc =23,所以(b−a)(b+a)+81=12b,即b−5a=−27,所以a=7,b=8,所以S=√p(p−a)(p−b)(p−c)=√12×(12−7)(12−8)(12−9)=12√5,所以r=√5,故选D28.在ΔABC中,若1sinA +1sinB=2(1tanA+1tanB),则()A. C的最大值为π3B. C的最大值为2π3C. C的最小值为π3D. C的最小值为π6【答案】A【解析】解:因为1sin A +1sin B=2(1tan A+1tan B),所以1sin A +1sin B=2(cosAsinA+cosBsin B),所以sin A+sin Bsin Asin B =2·(sin BcosA+cosBsinA)sin Asin B=2·sin(A+B)sin Asin B =2·sinCsin Asin B,所以sinA+sinB=2sinC,由正弦定理得到:a+b=2c,所以cosC=a2+b2−c22ab =a2+b2−(a+b2)22ab=34a2+34b2−12ab2ab⩾34·2ab−12ab2ab=12,当且仅当a=b时“=”成立,所以,则C的最大值为π3.故选A.二、单空题(本大题共4小题,共20分)29.如图,在离地面高200m的热气球上,观测到山顶C处的仰角为15∘、山脚A处的俯角为45∘,已知∠BAC=60∘,则山的高度BC为______m.【答案】300【解析】解:根据题意,可得Rt△AMD中,∠MAD=45°,MD=200,∴AM=MDsin45°=200√2.∵△MAC中,∠AMC=45°+15°=60°,∠MAC=180°−45°−60°=75°,∴∠MCA=180°−∠AMC−∠MAC=45°,由正弦定理,得AC=MAsin∠AMCsin∠MCA =200√2×√32√22=200√3,在Rt△ABC中,BC=ACsin∠BAC=200√3×√32=300m.故答案为300.30.在四边形ABCD中,AB=6,BC=CD=4,DA=2,则四边形ABCD的面积的最大值是______.【答案】8√3【解析】解:如图所示,AB=6,BC=CD=4,DA=2,设BD=x,在△ABD中,由余弦定理可得x2=22+62−2×2×6cosA=40−24cosA,在△BCD中,由余弦定理可得x2=32−32cosC,联立可得3cosA−4cosC=1,①又四边形ABCD面积S=12×4×4sinC+12×2×6sinA,即4sinC+3sinA=12S,②①2+②2可得9+16+24(sinAsinC−cosAcosC)=1+14S2,化简可得−24cos(A+C)=14S2−24,由于−1≤cos(A+C)≤1,∴−24≤14S2−24≤24,∴0≤S2≤192,解得S≤8√3,当cos(A+C)=−1即A+C=π时取等号,∴S的最大值为8√3.故答案为:8√3.31.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B两点间的距离,现在珊瑚群岛上取两点C,D,测得CD=45m,∠ADB=135∘,∠BDC=∠DCA=15∘,∠ACB=120∘,则AB两点的距离为______.【答案】45√5【解析】解:易知在△ACD中,∠DAC=180°−∠ADB−∠BDC−∠ACD=15°,∴△ACD为等腰三角形,则AD=CD=45,在△BCD中,∠CBD=180°−∠BDC−∠ACD−∠ACB=30°,∠BCD=120°+15°= 135°,所以由正弦定理得,即45sin30°=BDsin135°,得BD=45√2,在△ABD中,由余弦定理得=452+(45√2)2−2×45×45√2×(−√22)=452×5,所以AB=45√5,即A,B两点的距离为45√5,故答案为45√5.32.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D,若测得CD=4km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离是_______km.【答案】2√2【解析】由于CD=4km,∠ADB=∠CDB=30∘,∠ACD=60∘,∠ACB=45∘,所以∠DAC=180°−30°−30°−60°=60°,∠DBC=180°−30°−60°−45°=45°,在三角形ADC 中,由正弦定理得4sin∠DAC =ADsin∠ACD ,所以AD =4sin60°sin60°=4,在三角形BCD 中,由正弦定理得BDsin∠BCD =4sin∠DBC , 所以BD =4×sin(60°+45°)sin45°=2√3+2,在三角形ABD 中由余弦定理得到AB 2=42+(2√3+2)2−2×4×(2√3+2)cos30°=8, 所以AB =2√2, 故答案为2√2.三、解答题(本大题共4小题,共30分)33. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且ccosB +bcosC =3acosB .(1)求cos B 的值;(2)若|CA⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=2,△ABC 的面积为2√2,求边b . 【答案】解:(1)由正弦定理asinA =bsinB =csinC , 即ccosB +bcosC =3acosB ,得sinCcosB +sinBcosC =3sinAcosB ,则有3sinAcosB =sin(B +C)=sin(π−A)=sinA . 又A ∈(0,π),则sinA >0,则.(2)因为B ∈(0,π),则sinB >0,.因为|CA ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=|BA ⃗⃗⃗⃗⃗ |=c =2,所以S =12acsinB =12a ×2×2√23=2√2,得a =3.由余弦定理,则b =3.34. 在①2acosC +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sinB +sinC)2=sin 2A +3sinBsinC 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 . (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值. 【答案】解:(1)选①,由正弦定理得2sin Acos C +sin C =2sin B ,所以2sin Acos C +sin C =2sin (A +C)=2(sin Acos C +cos Asin C),即sin C(2cos A −1)=0,又C ∈(0,π),所以sin C >0,所以cos A =12,又A ∈(0,π),从而得A =π3. 选②,因为cos 2 B−C 2−cosBcosC =1+cos (B−C )2−cosBcosC=1−cosBcosC+sinBsinC2=1−cos(B+C)2=34,所以cos(B +C)=−12,cosA =−cos(B +C)=12,又因为A ∈(0,π),所以A =π3. 选③因为(sinB +sinC)2=sin 2A +3sinBsinC , 所以sin 2B +sin 2C +2sinBsinC =sin 2A +3sinBsinC , 即sin 2B +sin 2C −sin 2A =sinBsinC , 所以由正弦定理得b 2+c 2−a 2=bc ,由余弦定理知cosA =b 2+c 2−a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)得A =π3,又a =2,由余弦定理得a 2=b 2+c 2−2bccos A =b 2+c 2−bc ⩾2bc −bc =bc , 所以bc ⩽4,当且仅当b =c =2时取得等号,,所以△ABC 面积的最大值为√3.35. 设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m ⃗⃗⃗ =(cos C2,sin C2),n ⃗ =(cos C2,−sin C2),m ⃗⃗⃗ 与n ⃗ 的夹角为π3. (1)求角C 的大小;(2)已知c =72,△ABC 的面积S =3√32,求a +b 的值.【答案】解:(1)由已知,得.又∵|m⃗⃗⃗ |=|n ⃗ |=1, .又∵0<C <π,∴C =π3.(2)由面积公式,得由余弦定理,得c 2=a 2+b 2−2abcosC , 即494=a 2+b 2−ab.② ①②联立,解得a +b =112.36. 某农场有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,为迎接“五一”观光游,欲在边界BC 上选择一点P ,修建观赏小径PM 、PN ,其中M 、N 分别在边界AB、AC上,小径PM、PN与边界BC的夹角都为60°,区域PMB和区域PNC内种植郁金香,区域AMPN内种植月季花.(1)探究:观赏小径PM与PN的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区域内修建小径MN,当P点在何处时,三条小径(PM、PN、MN)的长度和最小?【答案】解:(1)在三角形BPM中由正弦定理可得:PM sin45∘=PBsin75∘,化简得PM=(√3−1)PB,同理可得PN=(√3−1)PC,∴PM+PN=(√3−1)(PB+PC)=(√3−1)BC=(√3−1)×400为定值.(2)在三角形PMN中,由余弦定理得MN2=PM2+PN2−2PM⋅PNcos60°=(PM+ PN)2−3PM⋅PN=160000(√3−1)2−3PM⋅PN≥160000(√3−1)2−3×(PM+PN2)2=160000(√3−1)2−3×[400(√3−1)2]2=40000(√3−1)2,∴MN≥200(√3−1),当且仅当PM=PN,即P为BC的中点时,MN取得最小值200(√3−1),∴P为BC的中点时,三条小径(PM、PN、MN)的长度和最小,且最小值为600(√3−1).。
专题解三角形大题(含答案)

解三角形专题1.在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A+a=c.(1)求B的大小;(2)若c=,a+b=2,求△ABC的面积.2.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-a)sin B+a sin A=c sin C,且c=2.(Ⅰ)求角C的度数;(Ⅱ)求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需3.已知在△ABC中,,a=13,c=15.(Ⅰ)求sin C;(Ⅱ)若△ABC是钝角三角形,求△ABC的面积.4.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求角C;(2)若c=2,求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需5.如图,在四边形ABCD中,∠D=2∠B,且AD=2,CD=6,cos B=.(1)求△ACD的面积;(2)若BC=6,求AB的长.6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b sin(A+C)=a sin C,且a=2c.(1)求sin B;(2)若△ABC的面积为4,求△ABC的周长.高三几何每日一题(5 )答案靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需1.【答案】解:(1)∵b cos A+a=c,∴由正弦定理可得sin B cos A+sin A=sin C,又sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin A=sin A cos B,∵sin A ≠0,∴cos B=,∵B∈(0,π),∴B=.(2)∵B=,c=,∴由余弦定理可得cos B==,整理可得a2-b2+3=3a ,又a+b=2,解得a=b=1,∴S△ABC=ac sin B==.2.【答案】解:(Ⅰ)由正弦定理得(b-a)b+a2=c2,即a2+b2-c2=ab由余弦定理得,∵C∈(0,π),∴.(Ⅱ)由面积公式,由a2+b2-c2=ab,得到ab+4=a2+b2,由不等式a2+b2≥2ab,得到ab +4≥2ab,∴ab≤4,从而,当且仅当a =b=2时取等号.所以△ABC面积的最大值为,3.【答案】解:(Ⅰ)在△ABC中根据正弦定理得,即,∴,(Ⅱ)因为a2=b2+c2-2bc cos A,所以.解得b=8或b=7.当b=7时,所以C为钝角,所以△ABC的面积,当b=8时,.此时C为锐角,不满足题意,所以△ABC的面积.4.【答案】解:(1)△ABC中,2cos C(a cos B+b cos A)=c,由正弦定理可得:2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sinC=sin C,又0<C<π,sin C≠0,∴cos C=,求得C=;(2)由c=2,C=,利用余弦定理可得:4=c2=a2+b2-2ab cos C≥2ab-ab=ab,靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
高中数学经典题型--解三角形(含详细答案)

高中数学经典题型解三角形【编著】黄勇权【第1题】在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c , 且sinC bsinBasinA = 3a32 sinB + c求:角C 的大小【第1题】答案:已知:sinCbsinB asinA += 3a 32 sinB + c等号左边:因为分子、分母每一项含有sin ,故用正弦定理,将sin 替换成边即:cb *b a *a += 3a 32 sinB +c 特别提示: 等号右边的sinB 不能换成边b , 这是因为sinB=R 2b ,这样就会多出R 21,等号两边同时乘以ca 2+b 2 = 3ac 32 sinB +c 2将c 2移到等号左边,a 2+b 2- c 2 = 3ac 32 sinB由于等号左边是a 2+b 2-c 2,只能构建cosC ,故等号两边同时除以2ab ,这一步非常重要。
2a b c b a 222-+ = b 3c 3 sinBc osC = b 3c 3 sinB等号右边,左边分子含c ,分母含b ,故用正弦定理把c 、b 换成sinC ,sinB 这一步非常重要,很多同学想不到,因此就解不出来。
c osC = B sin 3sinC 3 sinBc osC =33 sinCtanC= 3 即C=60°经典技巧:对于正弦定理,很多同学都不知道什么时候能用,什么时候不能用,其实,在运用正弦定理将sin与对应边换时,一定要遵循能够消除2R为原则。
例如1:acosB+bcosA=2c 【能用】由正弦定理:a=2RsinA,b=2RsinB,c=2RsinC代入上式,2RsinA*cosB+2RsinB*cosA=2*2RsinC因为每一项都有2R,故能消除2R,化简:sinA*cosB+sinB*cosA=2sinC所以能用正弦定理。
例如2:bcosA+sinB=3c 【不能用】由正弦定理:b=2RsinB,c=2RsinC代入上式,得:2RsinB*cosA+sinB=2RsinC*3因为第二项不含2R,无法消除2R, 所以不能用正弦定理例如3:sin2A+sin2B=2sinBsinC 【能用】a b c(R 2a )2 + (R 2b )2 = 2 *R 2b *R 2c因为每一项都有(R 21)2,故能消除2R ,化简得:a 2 +b 2=2bc 所以能用正弦定理 例如4:acosB+bcosA=4bc 【能用】由正弦定理:a=2RsinA ,b=2RsinB ,c=2RsinC 代入上式,2RsinA*cosB+2RsinB*cosA=4b*2RsinC因为要消除2R ,所以只能代入一项,要么是b 或c 而等号右边化简后sinA*cosB+sinB*cosA=sin (A+B )=sinC所以我们只把c 换为sinC ,而b 不动。
高中数学解三角形精选题目(附答案)

高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形解答题专题训练 2017.121.在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,已知(Ⅰ)求C ;,且sin sin()3sin 2C B A A +-=,求ABC ∆的面积.因为sin 0A ≠,解得(Ⅱ)由sin sin()3sin 2C B A A +-=,得sin()sin()3sin 2B A B A A ++-=, 整理,得sin cos 3sin cos B A A A =. 若cos 0A =,则ABC ∆的面积若cos 0A ≠,则sin 3sin B A =,3b a =.由余弦定理,得2222cos c a b ab C =+-,解得1,3a b ==.ABC ∆的面积 综上,ABC ∆的面积为2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c. 已知a+b=5,(Ⅰ) 求角C 的大小; (Ⅱ)求△ABC 的面积. 解: (Ⅰ)∵A+B+C=180整理,得01cos 4cos 42=+-C C∵ ∴C=60°(Ⅱ)由余弦定理得:c 2=a 2+b 2-2abcosC ,即7=a 2+b 2-ab ∴ 由条件a+b=5得 7=25-3ab , 故所以的面积 3.已知,,a b c 分别为ABC ∆三个内角,,A B C 所对的边长,且cos cos 2cos a B b A c C +=. (1)求角C 的值;(2)若4,7c a b =+=,求ABC S ∆的值. 解:(1得:sin cos sin cos 2sin cos A B B A C C +=, 又sin sin()2sin cos C A B C C =+=, (2)由余弦定理:2222cos c a b ab C =+-,∴11ab =,∴4.在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知(1)求角C 的值;(2)若2=c ,且ABC ∆的面积为,求b a ,. 解:(1︒<<︒1800C ab b a 3)(72-+=ab=6ABC △又∵是三角形的内角,∴又∵C 是三角形的内角,∴(2,∴4=ab ,又∵C ab b a c cos 2222-+=,∴ab ab b a --+=2)(42,∴4=+b a ,或0=-b a , ∴2==b a .5.锐角ABC ∆中,角C B A 、、的对边分别是c b a 、、,已知(Ⅰ)求C sin 的值;(Ⅱ)当2=a ,C A sin sin 2=时,求b 的长及ABC ∆的面积. (Ⅱ)当a 2,2sinA sinC ==时,由正弦定理,解得c 4=. 由余弦定理222c a b 2abcosC =+-,得 6.已知向量(sin m x =,(cos ,n x =-,且()f x m n =⋅.(1)求()f x 的单调递增区间;(2上有零点,求m 的取值范围.解:(1sin m n x =⋅=B则()f x 的递增区间为(2()g x 有零点,即函数与y m =图像有交点,由图象可得,m 的取值范围为7.如图,D 是直角三角形ABC ∆斜边BC 上一点,(Ⅰ)若 30=∠DAC ,求B ∠;(Ⅱ)若DC BD 2=,且,求DC . 解:(Ⅰ)在ABC ∆中,根据正弦定理,有又 6060>+∠=∠+∠=∠B BAD B ADC ,∴ 120=∠ADC , ∴ 3030120180=--=∠C ,∴ 60=∠B . (Ⅱ)设x DC =,则在ABD ∆中,B BD AB BD AB AD cos 2222⋅⋅-+=,,得2=x .故2=DC . 8.在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知(1)求角B 的大小;(2)若a+c=1,求b 的取值范围.又cos 0B ≠,又0B π<<,(2)由余弦定理,有2222cos ba c ac B =+-. 又01a <<,9.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c 且cos2B+3cosB ﹣1=0. (1)求角B 的大小;(2)若a+c=1,求b 的最小值.解:(1)在△ABC 中,∵cos2B+3cosB ﹣1=0, ∴2cos 2B+3cosB ﹣2=0,∴或cosB=﹣2(舍去),∴.(2)∵a+c=1,由余弦定理,得b 2=a 2+c 2﹣2accosB=(a+c )2﹣3ac=1﹣3a (1﹣a )=3a 2﹣3a+1,其中0<a <1, ∵f (a )=3a 2﹣3a+1在上递减,在上递增,∴,又0<b <1,∴.10.已知ABC ∆中,a ,b,c 分别是角A ,B ,C 的对边,且2b ,2c 是关于x 的一元二次方程22()0x a bc x m -++=的两根. (1)求角A 的大小;(2,设=B θ,ABC ∆的周长为y ,求()y f θ=的最大值.解:(1)在中,依题意有:,∴2ABC ∆222b c a bc +=+(0)A π∈,∴2sin 2sin b B θ==,11.已知在△ABC 中,(1)若三边长a ,b ,c 依次成等差数列,sinA :sinB=3:5, 求三个内角中最大角的度数; (2)若()22BA BC b a c ⋅=--,求cosB . 解:(1)在△ABC 中有sinA :sinB=3:5, ∴a :b=3:5,设a=3k ,(k >0)则b=5k , ∵a ,b ,c 成等差数列,∴c=7k ,∴最大角为C ,有cosC=()()()()()2223k 5k 7k 23k 5k +-⋅⋅=﹣,∴C=120° (2)由BA BC ⋅=b 2﹣(a ﹣c )2 得:accosB=b 2﹣(a ﹣c )2,即accosB=a 2+c 2﹣2accosB ﹣(a 2+c 2﹣2ac ),∴3cosB=2,∴cosB=. 12.在ABC ∆中,,,a b c 分别为角,,A B C 所对的三边,22()a b c bc --=, (Ⅰ)求角A ;(Ⅱ),角B 等于x ,周长为y ,求函数)(x f y =的取值范围. 解:(Ⅰ)由22()a b c bc --=,得222a b c bc --=-,又0A π<< ,(Ⅱ13.在ABC ∆中,(2)cos cos a c B b C -= (1)求角B 的大小;(2)求22cos cos()A A C +-的取值范围. 解:(1)由已知得:(2sin sin )sin cos A C B C -=,即2sin cos sin()A B B C =+∴(2)由(1所以()22cos cos A A C +-的取值范围是(0,2]. 14.在△中,内角C B A 、、的对边分别为c b a 、、,已知.(Ⅰ)求;(Ⅱ)若2=b ,求△面积的最大值.解:(Ⅰ)由已知及正弦定理得B C C B A sin sin cos sin sin += 又)(C B A +-=π,故C B C B C B A sin cos cos sin )sin(sin +=+= 得B B cos sin =,又()π,0∈B ,所以(Ⅱ) ⊿ABC 的面积又ac c a 222≥+.,当且仅当c a =时,等号成立.因此⊿ABC 的面积的最大值为15.如图,在△ABC 中,已知45B ∠=,D 是BC 边上一点,AD=10,AC=14,DC=6,求AB 的长.解:在△ABC 中,∵AD=10,AC=14,DC=6∴120ADC ∠=, ∴60ADB ∠= ∴在△ABD 中,∵45B ∠=, 60sin 45AD=, 16.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c 于任意,()()x f x f A ∈R ≤恒成立. (1)求角A 的大小;(2BC 边上的中线AM 长的取值范围.解:(1)由题意,∵对于任意,()()x f x f A ∈R ≤恒成立, ()f A ,当()f x 取得最大值时,A 是三角形的内角,即0A π<<,∴(2)∵AM 是BC 边上的中线, ∴在△ABM ① 在△ACM ② 又∵AMB AMC π∠=-∠,∴cos cos AMB AMC ∠=-∠,①+②得,∴2236b c <+≤,17.设ABC ∆的内角A ,B ,C ,所对的边长分别为a ,b ,c ,()cos ,cos m A C =,(3n c =-,且m n ⊥.(1)求角A 的大小;(2)若a b =,且BC 边上的中线AM 的长为求边a 的值. 解:(1)∵0m n ⋅=,∴4分6 (2)由(1,又∵b a =,∴ ,在AMC ∆中,由余弦定理得:解得2x =,即2a =.18.在ABC ∆中, )cos ,(),cos ,2(B b n C c a m =-= 且m ∥n (1)求角B 的大小;(2)若1=b ,当ABC ∆面积取最大时,求ABC ∆内切圆的半径.解:(1)因为m ∥n ,所以02=--C b B c a cos cos )(,∴(2sin sin )cos sin cos A C B B C -=, 即2sin cos sin()A B B C =+,(2)由(1)得,又1=b ,ABC ∆中B ac c a b cos 2222-+=得ac c a b -+=222即()2a 31c ac +=+,又因为()ac 4a 2≥+c .得ac ac 431≥+即1≤ac .所以当且仅当1==c a 时ABC S ∆最大值为19.设ABC ∆的内角C B A ,,所对的边分别为,,,a b c 且(Ⅰ)求角B 的大小;(Ⅱ)若1=b ,求ABC ∆的周长l 的取值范围.∴ac a c b a -=-+22222, ∴ac b c a =-+222,∴ac B ac =cos 2,则 ∵),0(π∈B ,∴(Ⅱ)ac c a c a c b a l =-+++=++=1)1(,122知由,∴ac c a 31)(2=-+ ∴4)(2≤+c a .∴2≤+c a .又∵1=>+b c a ,∴△ABC 的周长]3,2(∈++=c b a l . 20.如图,在ABC ∆中,点D 在BC 边上,(1)求sin C ∠的值;(2)若5BD =,求ABD ∆的面积.解:(1(2)在ACD ∆中,由21.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =1,b =2.(1)求∠C 和边c ;(2)若BC BM 4=,且点P 为△BMN值.解:(1所以01cos cos 22=-+C C ,所以1cos -=C 或又因为),0(π∈C ,所以建立坐标系,由(1),由BC BM 4=, ()0,3),4,0(N M ,△BMN 的内切圆方程为:()()11122=-+-y x ,设),(y x P ,则令[)πθθθ2,0,sin 1cos 1∈⎩⎨⎧+=+=y x。