九年级期末圆复习
九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。
初三数学圆的总复习

两个圆有且仅有一个公共点,且该点在两个圆的内部时,称 这两个圆内切。
圆与圆的相交
相交
两个圆有两个不同的公共点时,称这两个圆相交。此时两个公共点连成的线段叫 做两圆的公共弦。
特殊相交
当两个圆的半径相等且相交于两点时,这两点连成的线段既是两圆的公共弦也是 两圆的直径。
05 圆的综合应用
圆的面积与周长计算
01
02
03
圆的面积公式
$S = pi r^{2}$,其中 $r$ 是圆的半径。这个公 式用于计算圆的面积。
圆的周长公式
$C = 2pi r$ 或 $C = pi d$,其中 $r$ 是圆的半径, $d$ 是圆的直径。这两个 公式用于计算圆的周长。
扇形面积公式
$S_{扇形} = frac{npi r^{2}}{360}$,其中 $n$ 是扇形的圆心角,$r$ 是 圆的半径。这个公式用于 计算扇形的面积。
线的性质。
圆的拓展应用问题
圆锥曲线问题
圆锥曲线包括椭圆、双曲线和抛物线。在解决这类问题时,需要掌握圆锥曲线的定义、标 准方程和性质等知识点。
极坐标与参数方程问题
极坐标是一种用距离和角度来描述平面上点的方法,参数方程则是用参数来描述曲线上点 的坐标的方法。在解决这类问题时,需要掌握极坐标与直角坐标的互化以及参数方程与普 通方程的互化等知识点。
通过一般方程,可以计算出圆心坐标$left( frac{D}{2},-frac{E}{2} right)$和半径 $r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
方程变形
通过配方等方法,可以将一般方程转化为标准方 程。
圆的图形与方程的关系
图形与方程对应
01
九年级圆复习教案5篇

九年级圆复习教案5篇教案在书写的时候,我们需要考虑联系实际,制定教案是一件值得深思的事情,我们要保持清晰的思路,下面是作者为您分享的九年级圆复习教案5篇,感谢您的参阅。
九年级圆复习教案篇1第一单元第一课一复习生词二背诵最后一段(共两句,最后是省略号)三课文中作者的感情是自豪、赞美,体现了民族团结的精神。
四、抄写窗外安静的句子。
(读书读得认真)五、字音、字形傣昌戴(戈)舞()六、这是一所什么样的学校?(美丽、团结)第二课一、生词二、课文感情:热爱大自然,大自然给我的们生活带来了乐趣。
三、课文写了哪两件事?(第一件:哥俩在草地上玩耍,互相往对方脸上吹蒲公英的绒毛。
第二件:我发现了草地会变色及其变色的原因)四、草地为什么会变色?(花朵张开时,它是金色的,草地也是金色的;花朵合拢时,金色的花瓣被包住,草地就变成绿色的了。
)五、一本正经:很庄严,很严肃。
引人注目:引起人的注意。
第三课一、读课文,读准字音二、生词三、背诵课文第二自然段,这段写了什么?(天都峰又高又陡)四、老爷爷和我爬上天都峰后,为什么要互相道谢?(能从他人身上汲取力量,善于向他人学习,他们个人的奋斗和努力。
)五、多音字si似乎互相似相shi似的相片园地一、我的发现真假好人发现晃眼朝阳假放假好爱好发头发晃摇晃朝朝向二、背《小儿垂钓》三、记住“读读认认”里的生字四、用下面两个词造句十分:好像:第二单元第五课一、读课文二、写生词三、注意易错的字:步胸或低四、把课文描写灰雀的句子背下来(公园里有一棵高大的……非常惹人喜爱)五、列宁是怎样对待小男孩儿的,小男孩是一个怎样的人?(列宁尊重、爱护小男孩,小男孩是一个诚实天真的人)第六课一、读课文,读准字音二、会写生词三、易听写的词:摆弄清准备胶卷杂志社四、高尔基是一个怎样的人?小男是一个怎样的人?(高尔基关心爱护小男孩,小男孩崇敬、热爱高尔基)五、小男孩摆弄了很久很久,说明什么?(从高尔基和小男孩两个方面去回答)六、高尔基的三步曲:童年在人间我的大学第七课1、熟读课文2、听写词语3、容易错的字:旅考遗4、李四光是怎么提问题的?(这么重的大石头从天上掉下来,力量一定非常大。
九年级数学圆的复习华东师大版

圆的复习第一部分知识及方法一、圆的基本概念1、圆的基本元素圆心:圆的中心。
半径:连接圆心和圆上任一点的线叫半径。
弦:连接圆上任意两点的线段叫弦。
直径:经过圆心的弦叫直径。
弧:圆上任意两点间的部分叫弧。
弧分为半圆、优弧和劣弧。
圆心角:顶点在圆心的角叫圆心角。
注意:直径是圆最长的弦;同圆或等圆的直径是半径的两倍。
2、(1)圆是旋转对称图形,圆心是对称中心。
在一个圆中,相等的圆心角所对的弧相等,所对的弦相等。
在一个圆中,相等的弧所对的圆心角相等,所对的弦相等。
在一个圆中,相等的弦所对的劣弧相等,所对的圆心角相等。
(2)圆是轴对称图形,任一条过圆心的直线都是它的对称轴。
(3)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
提示:1)圆周可以看作360°的弧,圆心角的度数与它所对的弧的度数相等。
2)解决与弦有关的问题时,常常过圆心作弦的垂直线段作为辅助线。
半径、弦的一半、弦心距构成一个直角三角形。
利用勾股定理和三角函数可以解决与半径长、弦长、弦心距的长以及相关角度等有关计算的问题。
3)经过圆内一点,最长的弦是经过这点的直径,最短的弦是与过这点的直径垂直的弦。
4)圆内两条平行弦所夹的弧相等。
3、(1)圆周角的定义:顶点在圆上,两边与圆相交的角叫圆周角。
(2)圆周角定理:半圆或直径所对的圆周角是直角,90°圆周角所对得弦是直径。
在一个圆内,同弧或等弧所对的圆周角相等,都等于该弧所对圆心角的一半;相等的圆周角所对得弧也相等。
圆的内接四边形的对角互补,并且任何一个外角等于它的内对角。
(3)相关:利用“半圆或直径所对圆周角是直角”可以在圆中得到直角三角形,我们可以解决很多与直角三角形有关的问题。
圆周角定理、三角形内角和定理及推论、同角的余(补)角相等、平行线的性质定理等,都是与角度有关的定理,把它们进行综合运用,可以实现角度的灵活转换,从而解决很多与角相关的问题。
(4)注意:a.当给出90°圆周角时,弦AB是直径需要说明。
(完整版)初三圆知识点复习总结

初三数学圆知识点垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1: (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2) 弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧简单记成:一条直线:①过圆心②垂直弦③平分弦 ④平分弦所对的劣弧⑤平分弦所对的优弧弧.......... .一. 一 ____ __ ■_ ___ ______ _____ ___ ______ 0^0 可推出其它3个结论,即:①AB 是直径 ②AB CD ③CE DE ④BC BD ⑤AC任意2个条件推出其他3个结论。
例1.如图,在。
中,弦CD 垂直于直径 AB 于点E,若/ BAD=30。
,且BE=2 ,则CD= .例2 .已知(DO 的直径CD 10cm, AB 是OO 的弦,AB 8cm,且AB CD ,垂足为M ,则AC 的长为(C )A . 2^5cmB . 4扼cm C. 2”5cm 或 4V5cm D . ^3cm 或 4右cm例3、如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点 A 、AB 与车轮内圆相切于点D ,做 CDL AB 交外圆于点C .测得 CD=10cm , AB=60cm 个车轮的外圆半径为. 例4、如图,在5 X 5的正方形网格中,一条圆弧 经过A, B, C 三点,那么这条圆弧所在圆的圆心是 A.点P B .点Q C .点R D .点M 二、圆周角定理1、圆周角定理:在同圆或等圆中,同弧所对的圆周角相等,等于它所对的圆心的角的一半。
即:ACB 是AB 所对的圆心角和圆周角2、圆周角定理的推论:推论1:半圆或直径所对的圆周角是直角; 推论2:圆内接四边形的对角互补; 由对称性还可知:1、在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等;2、 在同圆或等圆中,如果弧相等,那么它们所对的圆心角相等,所对的弦相等;3、 在同圆或等圆中,如果弦相等,那么它们所对的圆心角相等,所对的弧相等; 简记:在同圆或等圆中,①弦②圆心角③弧中只要一个相等,其它两个也相等。
九年级数学专题复习圆综合复习

总复习圆综合复习【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点进阶:圆心确定圆的位置,半径确定圆的大小. 2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦. ②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧. ⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧. ⑦同心圆:圆心相同,半径不相等的圆叫做同心圆. ⑧弓形:由弦及其所对的弧组成的图形叫做弓形. ⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角. 要点进阶:圆周角等于它所对的弧所对的圆心角的一半.圆外角度数等于它所夹弧的度数的差的一半. 圆内角度数等于它所夹弧的度数的和的一半.考点二、圆的有关性质 1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合. 2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点进阶:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点进阶:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点进阶:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r1-r2”时,要特别注意,r1>r2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°.要点进阶:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n nnn n S a r n P r ==.考点五、圆中的计算问题 1.弧长公式:180n Rl π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和. 要点进阶:(1)在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.(2)求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.考点六、四点共圆 1.四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.2.证明四点共圆一些基本方法:1.从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距.2.如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆. (若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)3.把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.4.把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆. 即利用相交弦、切割线、割线定理的逆定理证四点共圆.考点七、与圆有关的比例线段(补充知识)1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.3.割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统一归纳为圆幂定理)定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理【典型例题】类型一、圆的有关概念及性质例1. BC为O的弦,∠BOC=130°,△ABC为O的内接三角形,求∠A的度数.【变式】如图,∠AOB=100°,点C 在⊙O 上,且点C 不与A 、B 重合,则∠ACB 的度数为( )A .50B .80或50C .130D .50 或130类型二、与圆有关的位置关系例2.如图,已知正方形的边长是4cm ,求它的内切圆与外接圆组成的圆环的面积.(答案保留π)例3.如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,10cm OP ,射线PN 与⊙O 相切于点Q .A,B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s . (1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?A BO【变式】已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,2sin3ABC∠=,求BF的长.类型三、与圆有关的计算例4.如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.【变式】有一个亭子,它的地基是半径为8m的正六边形,求地基的周长和面积.(结果保留根号)类型四、与圆有关的综合应用例5.如图,AB是⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过点D作EF∥BC,交AB、AC的延长线于点E、F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.【变式】已知:如图,△ABC中,∠BAC=90°,点D在BC边上,且BD=BA,过点B画AD的垂线交AC于点O,以O为圆心,AO为半径画圆.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为8,tan∠C=,求线段AB的长,sin∠ADB的值.例6.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:;(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC 三者之间有何数量关系,并给予证明.【变式】(1)如图①,M、N分别是⊙O的内接正△ABC的边AB、BC上的点且BM=CN,连接OM、ON,求∠MON的度数;(2)图②、③、…④中,M、N分别是⊙O的内接正方形ABCD、正五边ABCDE、…正n边形ABCDEFG…的边AB、BC上的点,且BM=CN,连接OM、ON,则图②中∠MON的度数是,图③中∠MON的度数是;…由此可猜测在n边形图中∠MON的度数是;(3)若3≤n≤8,各自有一个正多边形,则从中任取2个图形,恰好都是中心对称图形的概率是 .一、选择题1.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d的取值范围是()A.d>8 B.d>2 C.0≤d<2 D.d>8或d<22.如图,等腰梯形ABCD内接于半圆D,且AB=1,BC=2,则OA=( )A.132+B.2 C.323+D.152+3.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是( )A.相离 B.相切 C.相交 D.相切或相交第2题第3题第5题4.已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1=3,则圆O1与圆O2的位置关系是( )A.相交或相切 B.相切或相离 C.相交或内含 D.相切或内含5.如图所示,在圆O内有折线OABC,其中OA=8,AB=2,∠A=∠B=60°,则BC的长为( )A.19 B.16 C.18 D.206.如图,MN是半径为0.5的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN 上一动点,则PA+PB的最小值为( )A.22B.2 C.1 D.27.如图,分别以A,B为圆心,线段AB的长为半径的两个圆相交于C,D两点,则∠CAD的度数为_______.8.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径是50cm.小红同学为了在圣诞节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是________度.第7题第8题第9题9.如图,AB⊥BC,AB=BC=2 cm,OA与OC关于点O中心对称,则AB、BC、CO、OA所围成的面积是________cm2.10.如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点,若两圆的半径分别为3 cm和5 cm,则AB的长为________cm.11.将半径为4 cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是________cm.第10题第11题12.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=n,则S△AEF=mn;④EF是△ABC的中位线.其中正确的结论是.13.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)证明:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离;(3)若,求的值.14.如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若BE是△DEC外接圆的切线,求∠C的大小;(2)当AB=1,BC=2时,求△DEC外接圆的半径.15.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.16. 如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.(1)证明:直线PB是⊙O的切线;(2)探究线段PO与线段BC之间的数量关系,并加以证明;(3)求sin∠OPA的值.。
《圆单元总复习》人教版九年级数学(下册)
的速度沿由A向B的方向移动,那么
秒钟后☉P与直线CD相切.
4或8
C
AP
P1 E o P2
B
D 解析: 根本题应分为两种情况:(1)☉P在直线CD下面与直线CD相切;
(2)☉P在直线CD上面与直线CD相切.
例7 如图,在Rt△ABC中,∠ABC=90°,以AB为直径的☉O交AC 于点D,过点D的切线交BC于E. (1)求证:BC=2DE.
十、弧长及扇形的面积
(1)弧长公式:
l n R
180
(2)扇形面积公式:
S n R2 1 lR
360 2
A
O
S
l
B
考点一 圆的有关概念及性质 例1 如图,在⊙O中,∠ABC=50°,则∠CAO 等于( B) A.30° B.40° C.50° D.60°
例2 在图中,BC是☉O的直径,AD⊥BC,若∠D=36°,则∠BAD的度数
考点五 圆内接正多边形的有关计算
例10 若一个正六边形的周长为24,则该正六边形的面积为______.
24 3
针对训练
10. 如图,正六边形ABCDEF内接于半径为5的⊙O,四边形EFGH是 正方形. ⑴求正方形EFGH的面积;
解:⑴∵正六边形的边长与其半径相等,∴EF=OF=5. ∵四边形EFGH是正方形, ∴FG=EF=5, ∴正方形EFGH的面积是25.
A O
B
C
∠BAC=
1 ∠2BOC
推论:同弧或等弧所对的圆周角相等.
D
E
C ∵∠ADB与∠AEB 、∠ACB 是同弧所对
的圆周角
O
∴∠ADB=∠AEB =∠ACB
A
B
推论:直径所对的圆周角是直角; 90°的圆周角所对的弦是圆的直径.
人教版九年级上册数学教案:第24章《圆的复习》优秀教学案例
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,总结学习方法和学习经验,提高学生的我管理能力。
2.同伴评价:组织学生互相评价,给予同伴肯定和鼓励,培养学生的评价能力和良好的人际关系。
3.探究情境:组织学生进行小组讨论,探讨圆的性质和公式,引导学生主动参与学习,培养学生的发现问题、分析和解决问题的能力。
(二)问题导向
1.设计问题链:围绕圆的知识,设计一系列由浅入深的问题,引导学生层层递进地思考,如“圆是什么形状?”“圆有哪些性质?”“圆的周长和面积如何计算?”等。
2.问题导向教学:在教学过程中,以问题为导向,引导学生自主学习、合作交流,使学生在解决问题的过程中,掌握圆的相关知识。
三、教学策略
(一)情景创设
1.生活情境:以日常生活中常见的圆形物品为例,如硬币、圆桌、车轮等,创设情境,引导学生关注圆的形状和特征,激发学生的学习兴趣。
2.问题情境:设计一些与圆相关的问题,如“圆形草坪的面积是多少?”“自行车轮子的周长是多少?”等,让学生在解决问题的过程中,自然地引入圆的相关知识。
2.问题导向的教学策略:本案例中,教师以问题为导向,设计了一系列由浅入深的问题,引导学生层层递进地思考。这种问题导向的教学策略,不仅有助于激发学生的思维,培养学生的批判性思维和问题解决能力,还能够帮助学生建立起知识之间的联系,形成系统化的知识结构。
3.小组合作的学习方式:通过组织学生进行小组讨论和合作交流,本案例充分调动了学生的学习主动性,培养了学生的合作能力和团队意识。在小组合作的过程中,学生不仅能够互相学习、互相帮助,还能够提高自己的表达能力和沟通技巧,培养良好的人际关系。
初三圆总复习
圆的综合复习(一)一、本章知识框架二、要点详解:1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.7.圆内接四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R -r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.A BC 图3OD EABCDEPO 10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.二、典型例题解析: (一)圆的基本性质: 例1、如图, 已知△ABC ,6==BC AC,︒=∠90C .O 是AB 的中点,⊙O 与AC ,BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连D F 并延长交CB 的延长线于点G . 则CG =.图4巩固练习:1、如图2,⊙O 是正三角形ABC 的外接圆,点P 在劣弧AB 上,ABP ∠=22°,则BCP ∠的度数为_____________.2、如图3,已知⊙O 的直径AB ⊥弦CD 于点E .下列结论中一定..正确的是() A .AE =OE B .CE =DE C .OE =12CE D .∠AOC =60°3、如图4,在ABC ∆中,AB 为O 的直径,60,70B C ∠=∠=,则BOD ∠的度数是_____________度.4、如图,A 、B 、c 是⊙0上的三点,以BC 为一边,作∠CBD=∠ABC,过BC 上一点P ,作PE∥AB 交BD 于点E .若∠AOC=60°,BE=3,则点P 到弦AB 的距离为_______.例2、如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,AE=2,ED=4.(1)求证: A B E ∆~A B D ∆;(2) 求tan A D B ∠的值;(3)延长BC 至F ,连接FD ,使B D F ∆的面积等于83,求ED F ∠的度数.图2FOE ADBC变式训练及拓展:1、已知:如图,AB 与O 相切于点C ,O A O B =,O 的直径为4,8AB =. (1)求OB 的长; (2)求sin A 的值.2.已知如图9所示,△ABC 中∠A =∠B =30°,CD 是△ABC 的角平分线,以C 为圆心,CD 为半径画圆,交CA 所在直线于E 、F 两点,连接DE 、DF 。
(完整版)初三数学圆知识点复习专题经典
A
D
E
O
C
B
线长是这点到割
( 4 )割线定理 :从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等
(如上图) 。
即:在⊙ O 中,∵ PB 、 PE 是割线
∴PC PB PD PE
例 1. 如图 1,正方形 ABCD的边长为 1,以 BC为直径。在正方形内作半圆 于 E,求 DE: AE的值。
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称 1
推 3 定理,即上述四个结论中, 只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ; ③ OC OF ;④ 弧 BA 弧 BD
O A
C
E F D
∴C D
推论 2 :半圆或直径所对的圆周角是直角;圆周角是直角所对的弧
C
是半圆,所对的弦是直径。
即:在⊙ O 中,∵ AB 是直径
或∵ C 90
B
A
O
∴ C 90
∴AB 是直径
推论 3 :若三角形一边上的中线等于这边的一半,那么这个三角形是
C
直角三角形。
即:在△ ABC 中,∵ OC OA OB
B
A
推论 1:( 1 )平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上期末圆复习
1.(2011上海,6,4分)矩形ABCD 中,AB =8,BC =,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ). (A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.
2.(2011宁波市,11,3分)如图,⊙O 1的半径为1,正方形ABCD 的边长为6,点O 2为正
方形ABCD 的中心,O 1O 2垂直AB 与P 点,O 1O 2=8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现
A . 3次
B .5次
C . 6次
D . 7次
3. (2011浙江台州,10,4分)如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是( ) A.
13 B.5 C. 3 D.2
4. (2011山东日照,11,4分)已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为
b
a a
b +的是( )
5. (2011山东烟台,12,4分)如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7……
叫做“正六边形的渐开线”,其中 1F K , 12K K , 23K K , 34K K , 45K K , 56
K K ,……的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为l 1,l 2,l 3,l 4,l 5,l 6,…….当AB =1时,l 2 011等于( ) A.
20112
π B.
20113
π C.
20114
π D.
20116
π
6. (2011山东威海,17,3分)如图①,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称图形,∠ACB =90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,没得CE =5cm ,将量角器沿DC 方向平移2cm ,半圆(量角器)恰与△ABC 的边AC 、BC 相切,如图②,则AB 的长为 cm.(精确到0.1cm )
图① (第17题) 图②
7. (2011福建福州,15,4分)以数轴上的原点O 为圆心,3为半径的扇形中,圆心角
90AOB ∠=
,另一个扇形是以点P 为圆心,5为半径,圆心角60CPD ∠=
,点P 在数轴上表
示实数a ,如图5.如果两个扇形的圆弧部分(AB 和
CD )相交,那么实数a 的取值范围是
图5
(第12题图)
27
8. (2011山东枣庄,17,4分)如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a,
0),半径为5.如果两圆内含,那么a的取值范围是________.
9、如图,在矩形ABCD中,AB=5,BC=4,以BC为直径在矩形内作半圆,自点A作半圆
CBE=____________
的切线AE,则tan∠
9.(2011浙江金华,24,12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径
在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.
(1)当∠AOB=30°时,求弧AB的长;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存
在,请求出此时点E的坐标;若不存在,请说明理由.
10.(2011山东烟台,25,12分)已知:AB 是⊙O 的直径,弦CD ⊥AB 于点G ,E 是直线AB
上一动点(不与点A 、B 、G 重合),直线DE 交⊙O 于点F ,直线CF 交直线AB 于点P .设⊙O 的半径为r .
(1)如图1,当点E 在直径AB 上时,试证明:OE ·OP =r 2
(2)当点E 在AB (或BA )的延长线上时,以如图2点E 的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.
11.(2011广东广州市,25,14分)
如图7,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中 ∠DCE 是直角,点D 在线段AC 上. (1)证明:B 、C 、E 三点共线;
(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN=2OM ;
(3)将△DCE 绕点C 逆时针旋转α(0°<α<90°)后,记为△D 1CE 1(图8),若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若是,请证明;若不是,说明理由.
(图1)
(图2)
12. (2011湖南常德,25,10分)已知 △ABC ,分别以AC 和BC 为直径作半圆1O 、2,O P 是AB 的中点.
(1)如图8,若△ABC 是等腰三角形,且AC =BC ,在
,AC BC
上分别取点E 、F ,使
12,AO E BO F ∠=∠则有结论① 12,PO E FO P ≅ ②四边形12PO C O 是菱形.请给出结
论②的证明;
(2)如图9,若(1)中△ABC 是任意三角形,其它条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;
(3)如图10,若PC 是1O 的切线,求证:2223AB BC AC =+
1
图
8
图7
图8
E
D
13. (2011河北,25,10分)如图14-1至14-4中,两平行线AB,CD 间的距离为6,点M 为AB 上一定点. 思考
如图14-1,圆心为O 的半圆纸片在AB,CD 之间(包括AB,CD ),其直径MN 在AB 上,MN=8,点P 为半圆上一点,设∠MOP=α.
当α= 度时,点P 到CD 的距离最小,最小值为 。
探究一
在图14-1的基础上,以点M 为旋转中心,在AB,CD 之间顺时针旋转该半圆纸片,直到不能再转动为止,如图14-2,得到最大旋转角∠BMO= 度,此时点N 到CD 的距离是 探究二
将图14-1中的扇形纸片NOP 按下面对α要求剪掉,使扇形纸片MOP 绕点M 在AB,CD 之间顺时针旋转。
(1)如图14-3,当α=60°时,球在旋转过程中,点p 到CD 的最小距离,并请指出旋转角∠BMO 的最大值;
(2)如图14-4,在扇形纸片MOP 旋转过程中,要保证点P 能落在直线CD 上,请确定α的取值范围. (参考数据:sin49°=
4
3,cos41°=
4
3,tan37°=
4
3 )
图14-4
图14-3
图14-2
图14-1
D C
P
14.(2011浙江省,22,12分)如图,已知⊙O 的弦AB 垂直于直径CD ,垂足为F ,点E 在AB 上,且EA=EC ,延长EC 到P ,连结PB ,使PB=PE .
(1) 在以下5个结论中:一定成立的是 (只需将结论的代号填入题中的横线上)①弧AC=弧BC ;②OF=CF ;③BF=AF ;④AC 2=AE•AB ;⑤PB 是⊙O 的切线.
(2) 若⊙O 的半径为8cm ,AE:EF=2:1,求弓形ACB 的面积.
15. (2011江苏南京,26,8分)如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P
为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.
(第26题)。