吉林省长春150中学2014-2015学年高二(上)期中化学试卷

合集下载

2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题(含答案)

2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题(含答案)

2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.(8+i)(1−i)=( )A. 7−9iB. 9−9iC. 7−7iD. 9−7i2.已知角α的终边不在坐标轴上,且2sin 2α=sin α,则cos 2α=( )A. −78B. 78C. −78或1D. −15163.一艘轮船北偏西65∘方向上有一灯塔,此时二者之间的距离为16海里,该轮船以20海里/时的速度沿南偏西55∘的方向直线航行,行驶半小时后,轮船与灯塔之间的距离为( )A. 18海里B. 16海里C. 14海里D. 12海里4.已知某圆台的上、下底面半径分别为2和5,母线长为5,则该圆台的体积为( )A. 63πB. 39πC. 52πD. 42π5.设函数f(x)={ax−2,x⩽1ln x,x >1.若f(x)在R 上单调递增,则a 的取值范围为( )A. (0,+∞)B. (0,2]C. (−∞,2]D. (0,3]6.已知点P(2,1),Q(1,0),H 在直线x−y +1=0上,则|HP|+|HQ|的最小值为( )A. 2 3B. 11C. 10D. 37.金秋十月,某校举行运动会,甲、乙两名同学均从跳高、跳远、100米跑和200米跑这四个项目中选择两个项目参加.设事件A =“甲、乙两人所选项目恰有一个相同”,事件B =“甲、乙两人所选项目完全不同”,事件C =“甲、乙两人所选项目完全相同”,事件D =“甲、乙两人均未选择100米跑项目”,则( )A. A 与C 是对立事件B. C 与D 相互独立C. A 与D 相互独立D. B 与D 不互斥8.已知A(2,0),B(10,0),若直线tx−4y +2=0上存在点P ,使得PA ⋅PB =0,则t 的取值范围为( )A. [−3,215]B. [−215.3]C. (−∞,−215]∪[3,+∞) D. (−∞,−7]∪[95,+∞)二、多选题:本题共3小题,共18分。

湖北省武汉市部分重点中学2024-2025学年高二上学期期中联考数学试题(含答案)

湖北省武汉市部分重点中学2024-2025学年高二上学期期中联考数学试题(含答案)

武汉市部分重点中学2024-2025学年度上学期期中联考高二数学试卷本试卷共4页,19题.满分150分.考试用时120分钟.考试时间:2024年11月12日下午14:00—16:00祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2,选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.直线在轴上的截距为( )A .B .2C .D .2.已知直线绕点逆时针旋转,得到直线,则不过第__________象限.A .四B .三C .二D .一3.已知某种设备在一年内需要维修的概率为0.2.用计算器进行模拟实验产生1~5之间的随机数,当出现随机数1时,表示一年内需要维修,其概率为0.2,由于有3台设备,所以每3个随机数为一组,代表3台设备一年内需要维修的情况,现产生20组随机数如下:412451312531224344151254424142435414135432123233314232353442据此估计一年内这3台设备都不需要维修的概率为( )A .0.4B .0.45C .0.5D .0.554.已知事件A ,B 互斥,它们都不发生的概率为,且,则( )A .B .C .D .5.现有一段底面周长为厘米和高为15厘米的圆柱形水管,AB 是圆柱的母线,两只蚂蚁分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行厘米后再向下爬行5厘米到达P 点,另一只从B320x y --=y 2-2323-1:1l y x =-(0,1)-512π2l 2l 13()3()P A P B =()P B =1613235612π2π沿下底部圆弧逆时针方向爬行厘米后再向上爬行4厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为( )A .B .12C .D .6.概率论起源于博弈游戏17世纪,曾有一个“赌金分配”的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定:各出赌金210枚金币,先赢3局者可获得全部赎金.但比赛中途因故终止了,此时甲赢了2局,乙赢了1局,问这420枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率”的知识,合理地给出了赌金分配方案.该分配方案是( )A .甲315枚,乙105枚B .甲280枚,乙140枚C .甲210枚,乙210枚D .甲336枚,乙84枚7.在平面直角坐标系中,点的坐标为,圆,点为轴上一动点.现由点向点发射一道粗细不计的光线,光线经轴反射后与圆有交点,则的取值范围为( )A .B .C .D .8.如图所示,四面体的体积为V ,点M 为棱BC 的中点,点E ,F 分别为线段DM 的三等分点,点N 为线段AF 的中点,过点N 的平面与棱AB ,AC ,AD 分别交于O ,P ,Q ,设四面体的体积为,则的最小值为( )A .B .C .D .二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错的得0分)9.给出下列命题,其中是真命题的是( )2πP 50,2⎛⎫ ⎪⎝⎭22121:10504C x x y y -+-+=(,0)T t x P T x C t 1527,88⎡⎤⎢⎥⎣⎦710,43⎡⎤⎢⎥⎣⎦727,48⎡⎤⎢⎥⎣⎦1510,83⎡⎤⎢⎥⎣⎦ABCD αAOPQ V 'V V'1418116127A .已知是空间的一个基底,若,则也是空间的一个基底B .平面经过三点,,,向量是平面的法向量,则C .若,则是锐角D .若对空间中任意一点,有,则M ,A ,B ,C 四点不共面10.下列命题正确的是( )A .设A ,B 是两个随机事件,且,,若,则A ,B 是相互独立事件B .若,,则事件A ,B 相互独立与A ,B 互斥有可能同时成立C .若三个事件A ,B ,C 两两相互独立,则满足D .若事件A ,B 相互独立,,,则11.平面内到两个定点A ,B 的距离比值为一定值的点的轨迹是一个圆,此圆被称为阿波罗尼斯圆,俗称“阿氏圆”.已知平面内点,,动点满足,记点的轨迹为,则下列命题正确的是( )A .点的轨迹的方程是B .过点的直线被点的轨迹所截得的弦的长度的最小值是1C .直线与点的轨迹相离D .已知点,点是直线上的动点,过点作点的轨迹的两条切线,切点为C ,D ,则四边形面积的最小值是3三、填空题(本大题共3小题,每小题5分,共15分)12.同时扡掷两颗质地均匀的骰子,则两颗骰子出现的点数之和为6的概率为__________.13.已知曲线与直线有两个相异的交点,那么实数的取值范围是__________.14.在空间直角坐标系中,,,,,,P 为所确定的平面内一点,设的最大值是以为自变量的函数,记作.若,则{,,}a b c 23m a c =+ ,,}a b m 〈α(2,1,0)A (1,3,1)B -(2,2,1)C -(1,,)n u t =α2u t +=0a b ⋅> ,a b <>O 111362OM OA OB OC =++1()2P A =1()3P B =1()6P AB =()0P A >()0P B >()()()()P ABC P A P B P C =()0.4P A =()0.2P B =()0.44P AB AB = (1)λλ≠P (2,0)A (6,0)B P ||1||3PA PB =P τP τ2230x y x +-=(1,1)N P τ220x y -+=P τ3,02E ⎛⎫⎪⎝⎭M :270l x -+=M P τECMD 1y =+y x b =+b (0,0,0)O (0,,3)A a (3,0,)B a (,3,0)C a 33,3,2D ⎛⎫ ⎪⎝⎭ABC △||PO PD -a ()f a 03a <<()f a的最小值为__________.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分13分)“体育强则中国强,国运兴则体育兴”.为备战2025年杭州举办的国际射联射击世界杯,某射击训练队制订了如下考核方案:每一次射击中10环、中8环或9环、中6环或7环、其他情况,分别评定为A ,B ,C ,D 四个等级,各等级依次奖励6分、4分、2分、0分.假设评定为等级A ,B ,C的概率分别是,,.(1)若某射击选手射击一次,求其得分低于4分的概率;(2)若某射击选手射击两次,且两次射击互不影响,求这两次射击得分之和为8分的概率.16.(本题满分15分)已知的顶点,边AB 上的中线CD 所在直线方程为,边AC 上的高线BE 所在直线方程为.(1)求边BC 所在直线的方程;(2)求的面积.17.(本题满分15分)如图所示,已知斜三棱柱中,,,,在上和BC 上分别有一点和且,,其中.(1)求证:,,共面;(2)若,且,设为侧棱上靠近点的三等分点,求直线与平面所成角的正弦值.18.(本题满分17分)已知在平面直角坐标系中,,,平面内动点满足.(1)求点的轨迹方程;(2)点轨迹记为曲线,若曲线与轴的交点为M ,N 两点,Q 为直线上的动点,直线121418ABC △(4,2)A 7250x y +-=40x y +-=BCD △111ABC A B C -AB a = AC b = 1AA c =1AC M N AM k AC = BN k BC =01k ≤≤MN a c||||||2a b c ===13AB =160BAC BB C ∠=∠=︒P 1BB 1B 1PC 11ACC A xOy (1,0)A -(7,0)B -P ||2||PB PA =P P C C x :17l x =MQ ,NQ 与曲线C 的另一个交点分别为E ,F ,求|EF|的最小值.19.(本题满分17分)对于三维向量,定义“F 变换”:,其中,,,.记,.(1)若,求及;(2)证明:对于任意,必存在,使得经过次F 变换后,有;(3)已知,,将再经过次F 变换后,最小,求的最小值.武汉市部分重点中学2024-2025学年度上学期期中联考高二数学试卷参考答案与评分细则题号1234567891011答案ADCDBA DCABADACD12.13.1415.解:(1)设事件A ,B ,C ,D 分别表示“被评定为等级A ,B ,C ,D ”.由题意得,事件A ,B ,C ,D 两两互斥,所以.所以.因此其得分低于4分的概率为;(2)设事件,,,表示"第i 次被评定为等级A ,B ,C ,D ,.(2)设事件,,,表示“”第i 次被评定为等级A ,B ,C ,D ,.则“两次射击得分之和为8分”为事件,且事件,,互斥,,,所以两次射击得分之和为8分的概率.()(),,,,N,0,1,2,k k k k k k k a x y z x y z k =∈= ()1F k k a a +=1k k k x x y +=-1k k k y y z +=-1k k k z z x +=-k k k k a x y z = k k k k a x y z =++0(2,3,1)a =2a 2a 0a *k ∈N 0a k 0k a = 1(,2,)()a p q q p =≥ 12024a = 1am m a m 5361)+1111()12488P D =---=111()()()884P C D P C P D =+=+= 14i A i B i C i D i 1,2=i A i B i C i D i 1,2=()()()121221B B AC A C 12B B 12AC21A C ()121114416P B B =⨯=()()12211112816P AC P A C ==⨯=()()()()()()121221*********2161616P P B B AC A C P B B P ACP A C ⎡⎤==++=+⨯=⎣⎦16.解:(1)因为,所以设直线AC 的方程为:,将代入得,所以直线AC 的方程为:,联立AC ,CD 所在直线方程:,解得,设,因为为AB 的中点,所以,因为在直线BE 上,在CD 上,所以,,解得,,所以,,所以BC 所在直线的方程为:,即.(2)由(1)知点到直线BC 的距离为:,又,所以.17.(1)证明:因为,,所以.由共面向量定理可知,,,共面.(2)取BC 的中点为,在中,,由余弦定理可得,所以,依题意,均为正三角形,所以,,又,平面,平面,AC BE ⊥0x y m -+=(4,2)A 2m =-20x y --=207250x y x y --=⎧⎨+-=⎩(1,1)C -()00,B x y D 0042,22x y D ++⎛⎫⎪⎝⎭()00,B x y D 0040x y +-=0042725022x y ++⨯+⨯-=06x =-010y =(6,10)B -10(1)11617BC k --==---111(1)7y x +=--11740x y +-=(1,6)D -d ==||BC ==12722BCD S ==△1AM k AC kb kc ==+()(1)AN AB BN a k BC a k a b k a kb =+=+=+-+=-+(1)(1)MN AN AM k a kb kb kc k a kc =-=-+--=-- MN a cO 1AOB △1AO B O ==13AB =11cos 2AOB ∠==-12π3AOB ∠=ABC △1B BC △BC AO ⊥1BC B O ⊥1B O AO O = 1B O ⊂1B AO AO ⊂1B AO所以平面,因为平面,所以平面平面,所以在平面内作,则平面,以OA ,OC ,Oz 所在直线为轴、轴、轴建立空间直角坐标系如图所示:则,,,,,设是平面的一个法向量,,,则,即,取得,依题意可知,则.设直线与平面所成角为,则.故直线与平面所成角的正弦值为.18.解:(1)设动点坐标,因为动点满足,且,,化简可得,,即,BC ⊥1AOB BC ⊂ABC 1AOB ⊥ABC 1AOB Oz OA ⊥Oz ⊥ABC x y z 132B ⎛⎫ ⎪⎝⎭(0,1,0)B -A (0,1,0)C 132C ⎛⎫⎪⎝⎭132A ⎫⎪⎭(,,)n x y z =11ACC A (AC =132AC ⎛⎫= ⎪⎝⎭ 100n AC n AC ⎧⋅=⎪⎨⋅=⎪⎩ 03202y x y z ⎧+=⎪⎨++=⎪⎩1z =(3,1)n =- 123BP BB =11112323713,,323232C P C B BP C B BB ⎫⎛⎫⎫=+=+=--+⨯=--⎪ ⎪⎪⎭⎝⎭⎭ 1PC 11ACC A θ1119sin cos ,13||n C PC P n n C Pθ⋅====⋅ 1PC 11ACC A 913(,)P x y P ||2||PB PA =(1,0)A -(7,0)B -=222150x y x +--=22(1)16x y -+=所以点的轨迹方程为.(2)曲线中,令,可得,解得或,可知,,当直线EF 为斜率为0时,即为直径,长度为8,当直线EF 为斜率不为0时,设EF 的直线方程为,,,联立消去可得:,化简可得;由韦达定理可得,因为,,,,所以EM ,FN 的斜率为,,又点在曲线上,所以,可得,所以,所以EM ,FN 的方程为,,令可得,化简可得;,又,在直线上,可得,,所以,P 22(1)16x y -+=22:(1)16C x y -+=0y =2(1)16x -=3x =-5x =(3,0)M -(5,0)N ||||EK FK +x ny t =+()11,E x y ()22,F x y 22(1)16x ny t x y =+⎧⎨-+=⎩x 22(1)16ny t y +-+=()2212(1)(3)(5)0n y t ny t t ++-++-=1221222(1)1(3)(5)1t n y y n t t y y n -⎧+=⎪⎪+⎨+-⎪=⎪+⎩()11,E x y ()22,F x y (3,0)M -(5,0)N 113EM y k x =+225FN y k x =-()11,E x y C ()2211116x y -+=()()()22111116135y x x x =--=+-111153EM y x k x y -==+115(3)x y x y -=+22(5)5yy x x =--17x =()1212205125Q x y y y x -==-()()121235550y y x x +--=()11,E x y ()22,F x y x ny t =+11x ny t =+22x ny t =+()()121235550y y ny t ny t ++-+-=化简可得;,又,代入可得,化简可得,,,所以或,当时EF 为,必过,不合题意,当时EF 为,必过,又为圆的弦长,所以当直径MN 时弦长最小,此时半径,圆心到直线EF 的距离为,综上,的最小值.19.解:(1)因为,,,所以,,(2)设假设对,,则,,均不为0;所以,即,因为,,所以,与矛盾,所以假设不正确;综上,对于任意,经过若干次F 变换后,必存在,使得.(3)设,因为,所以有或,当时,可得,三式相加得()()221212535(5)5(5)0n y y n t y y t ++-++-=1221222(1)1(3)(5)1t n y y n t t y y n -⎧+=⎪⎪+⎨+-⎪=⎪+⎩()2222(3)(5)2(1)535(5)5(5)011t t t n n n t t n n +--++-+-=++()()222253(3)(5)10(5)(1)5(5)10n t t n t t t n ++-+--+-+=()222222(5)3951510105525250t t n t n n n t n t t n -++++-++--=(5)(816)0t t --=2t =5t =5t =5x ny =+(5,0)2t =2x ny =+(2,0)||EF EF ⊥||EF 4r =211-=||8EF ===<||EF 0(2,3,1)a = 1(1,2,1)a = 2(1,1,0)a =21100a =⨯⨯= 21102a =++={}max ,,(0,1,2)k k k k M x y z k == N k ∀∈10k a +≠1k x +1k y +1k z +12k k M M ++>123M M M >>> *(1,2)k M k ∈=N 112321121M M M M M M +≥+≥+≥≥++ 121M M +≤-120M M +>0aK N *∈0K a = ()0000,,a x y z = 1(,2,)()a p q q p =≥000x y z ≤≤000x y z ≥≥000x y z ≥≥0000002p x y y z q z x=-⎧⎪=-⎨⎪-=-⎩2q p -=又因为,可得,;当时,也可得,,所以;设的三个分量为这三个数,当时,的三个分量为,2,m 这三个数,所以;当时,的三个分量为2,2,4,则的三个分量为0,2,2,的三个分量为2,0,2,所以;所以,由,可得,;因为,所以任意的三个分量始终为偶数,且都有一个分量等于2,所以的三个分量只能是2,2,4三个数,的三个分量只能是0,2,2三个数,所以当时,;当时,,所以的最小值为505.12024a =1010p =1012q =000x y z ≤≤1010p =1012q =1(1010,2,1012)a =k a()*2,,2m m m +∈N 2m >1k a +2m -14k k a a +=- 2m =k a 1k a + 2k a +124k k a a ++=== 12024a = 5058a = 5064a =1(1010,2,1012)a = k a505a 506a505m <18m a +≥ 505m ≥14m a +=m。

2013-2014学年高二(上)期中化学试卷(理科)含答案

2013-2014学年高二(上)期中化学试卷(理科)含答案

2013-2014学年高二(上)期中化学试卷(理科)一、选择题:(本题包括10小题,每小题2分,共20分,每小题只有一个选项符合题意.)1.(2分)判断一个化学反应的自发性常用焓判据和熵判据,则在下列情况下,可以判定反2.(2分)在一固定容积的密闭容器中进行反应2SO2(g)+O2(g)⇌2SO3(g).已知反应过程中某一时刻SO2、O2、SO3的浓度分别为0.2mol/L、0.1mol/L、0.2mol/L,当反应达到3.(2分)在一定条件下发生反应:2A(g)+2B(g)⇌xC(g)+2D(g),在2L密闭容器中,把4molA和2molB混合,2min后达到平衡时生成1.6molC,又测得反应速率V D=0.2mol/==的转化率为的转化率为.B...5.(2分)在一定温度下,反应A2(g)+B2(g)⇌2AB(g)达到平衡的标志是(N A代表阿伏加8.(2分)将X和Y以1:2的体积比混合后置于密闭容器中,加压到3×107Pa,发生如下反应:X(g)+2Y(g)⇌2Z(g),达到平衡状态时,测得反应物的总物质的量和生成物的总物质的量相等,有关数据如图,则反应对应的温度是()×9.(2分)某温度下,已知反应mX(g)+nY(g)⇌qZ(g)△H=+Q kJ•mol﹣1(Q>0),10.(2分)在一定条件下,可逆反应N2(g)+3H2(g)⇌2NH3(g);△H<0.达到平衡,二、选择题:(本题包括5小题,每小题4分,共20分,每小题有一个或两个选项符合题意,若正确答案只包括一个选项,多选时,该小题0分,若正确答案包括两个选项,只选一个且正确给2分,选两个且都正确的给4分,但只要选错一个该小题就为0分)11.(4分)微型钮扣电池在现代生活中有广泛应用.有一种银锌电池,其电极分别是Ag2O 和Zn,电解质溶液为KOH,电极反应为:Zn+2OH﹣﹣2e=ZnO+H2O;Ag2O+H2O+2e=2Ag+2OH ﹣12.(4分)可逆反应mA(g)+nB(g)⇌pC(g)+qD(g)的v﹣t图象如图甲,如若其它条件不变,只是在反应前加入合适的催化剂,则其v﹣t图象如图乙,以下说法中正确的是()①a1>a2;②a1<a2;③b1>b2;④b1<b2;⑤t1>t2;⑥t1=t2;⑦两图中阴影部分面积相等;⑧图中阴影部分面积更大.13.(4分)在一密闭容器中,反应aA(气)bB(气)达平衡后,保持温度不变,将14.(4分)如图是温度和压强对X+Y⇌2Z 反应影响的示意图.图中横坐标表示温度,纵坐标表示平衡混合气体中Z的体积分数.下列叙述正确的是()15.(4分)分析如图所示的四个装置,结论正确的是()三、解答题(共2小题,满分16分)16.(8分)(2009•广州模拟)某探究小组用KMnO4酸性溶液与H2C2O4溶液反应过程中溶液紫色消失的方法,研究影响反应速率的因素.(1)该反应的离子方程式为(提示:H2C2O4的一级电离常数为5.4×10﹣2)2MnO4﹣+5H2C2O4+6H+=2Mn2++10CO2↑+8H2O.(2)实验条件作如下限定:所用KMnO4酸性溶液的浓度可选择0.01mol•L﹣1、0.001mol•L ﹣1,催化剂的用量可选择0.5g、0g,实验温度可选择298K、323K.每次实验KMnO4酸性溶液的用量均为4mL、H2C2O4溶液(0.1mol•L﹣1)的用量均为2mL.如果要探究反应物浓度、温度、催化剂对反应速率的影响,通过变换这些实验条件,至少需要完成4个实验进行对比即可得出结论.(3)在其它条件相同的情况下,某同学改变KMnO4酸性溶液的浓度,测得以下实验数据44后溶液的体积变化,写出计算过程).②若不经过计算,直接看表中的褪色时间长短来判断浓度大小与反应速率的关系是否可行?不可行.若不可行(若认为可行则不填),请设计可以通过直接观察褪色时间长短来判断的改进方案:取过量的体积相同、浓度不同的草酸溶液分别同时与体积相同、浓度相同的高锰酸钾酸性溶液反应..计算.=t===17.(8分)航天技术上使用的氢﹣氧燃料电池具有高能、轻便和不污染环境等优点.氢﹣氧燃料电池有酸式、碱式和非水种,它们放电时的电池总反应方程式均可表示为:2H2+O2=2H20.(1)酸式氢﹣氧燃料电池中的电解质是酸,其负极反应可表示为:2H2﹣4e﹣=4H+,其正极反应表示为O2+4H++4e﹣=2H2O;(2)碱式氢﹣氧燃料电池中的电解质是碱,其正极反应表示为:O2+2H20+4e﹣=40H﹣,其负极反应可表示为2H2+40H﹣4e﹣=4H2O;(3)非水电解质是掺杂氧化钇(Y2O3)的氧化锆(ZrO2)晶体,在熔融状态下能传导O2﹣,其负极反应可表示为:2H2+2O2﹣﹣4e﹣=2H20,其正极反应表示为O2+4e﹣=2O2﹣.(4)非水电解质是掺杂K2CO3晶体,在熔融状态下能传导CO32,其正极反应可表示为:O2+2CO2+4e﹣=2C032﹣,其负极反应表示为2H2+2CO32﹣﹣4e﹣=2H2O+2CO2.四、(本题包括2小题,共20分)18.(12分)按要求书写热化学方程式(是离子反应的也可用离子方程式表示).(1)表示强酸和强碱中和热的热化学方程式:H+(aq)+OH﹣(aq)=H2O(l)△H=﹣57.3kJ•mol﹣1.(2)火箭推进器常以气态联氨(N2H4)为燃料、液态过氧化氢为助燃剂进行热能提供.反应过程中生成的气体可参与大气循环.测得当反应过程中有1mol水蒸气生成时放出161kJ 的热量.试写出反应过程中的热化学方程式:N2H4(g)+2H2O2(l)=N2(g)+4H2O(g)△H=﹣644kJ•mol﹣1.(3)由氢气和氧气反应生成1mol水蒸气.放热241.8kJ.写出该反应的热化学方程式:H2(g)+1/2O2(g)=H2O(g)△H=﹣241.8kJ•mol﹣1或2H2(g)+O2(g)=2H2O(g)△H=﹣483.6kJ•mol.若1g水蒸气转化成液态水放热2.5kJ,则反应H2(g)+O2(g)=H2O (l)的△H=﹣286.8kJ•mol﹣1,H2的燃烧热为286.8kJ•mol﹣1(4)已知A、B两种气体在一定条件下可发生反应:2A+B═C+3D+4E.现将相对分子质量为M的A气体mg和足量B气体充入一密闭容器中恰好完全反应后,有少量液滴生成.在相同温度下测得反应前后压强分别为6.06×105Pa和1.01×106Pa,又测得反应共放出QkJ热量.试根据上述实验数据写出该反应的热化学方程式2A(g)+B(g)═C(g)+3D(l)+4E(g)△H=﹣kJ/mol.反应时,放热为kJ/molkJ/molkJ/mol请回答下列问题:(1)在一密闭容器中进行反应①,测得CH4的物质的量浓度随反应时间的变化如图1所示.反应进行的前5min内,v(H2)=0.3mol/(L•min);10min时,改变的外界条件可能是升高温度.(2)如图2所示,在甲、乙两容器中分别充入等物质的量的CH4和CO2,使甲、乙两容器初始容积相等.在相同温度下发生反应②,并维持反应过程中温度不变.已知甲容器中CH4的转化率随时间变化的图象如图3所示,请在图3中画出乙容器中CH4的转化率随时间变化的图象.(3)反应③中△H3=﹣41.2kJ/mol.800℃时,反应③的化学平衡常数K=1.0,某时刻测此时反应③中正、逆反应速率的关系式是a(填代号)a.v(正)>v(逆)b.v(正)<v(逆)c.v(正)=v(逆)d.无法判断.=0.1mol/Q=五、(本题包括1小题,共24分)20.(24分)I、恒温下,将a mol N2与b mol H2的混合气体通入一个固体容积的密闭容器中,发生如下反应:N2(g)+3H2(g)⇌2NH3(g)(1)若反应进行到某时刻t时,n t(N2)=13mol,n t(NH3)=6mol,计算a=16.(2)反应达到平衡时,混合气体的体积为716.8L(标况下),其中NH3的含量(体积分数)为25%.计算平衡时NH3的物质的量8mol.(3)原混合气体与平衡混合气体的总物质的量之比(写出最简整数比,下同),n(始):n (平)=5:4.(4)原混合气体中,a:b=2:3.(5)达到平衡时,N2和H2的转化率之比,a(N2):a(H2)=1:2.(6)平衡混合气体中,n(N2):n(H2):n(NH3)=3:3:2.II、若向体积不变的密闭容器中充入2mol N2和6mol H2,一定条件下发生反应:N2(g)+3H2(g)⇌2NH3(g),平衡时混合气共7mol.令a、b、c分别代表N2、H2、NH3起始加入的物质的量,维持温度不变,使达到平衡时各成分的百分含量不变.则:(1)若a=0,b=0,则c=4mol.(2)若a=0.7,b=2.1,则:①c= 2.6.②这时反应向逆反应方向进行,因为:浓度商>平衡常数.③若要维持反应开始向该反应方向进行,c的范围是1<c≤4.(3)欲使起始反应维持向与②相反的方向进行,则b的范围是 4.5<b≤6.=32mol=32mol:五、(本题包括1小题,共20分)21.(20分)I、可逆反应3A(g)⇌3B(g)+C(g)(正反应吸热)达到化学平衡后,升高温度.用“变大”、“变小”、“不变”或“无法确定”填空.(1)若B、C都是气体,气体的平均相对分子质量变小;(2)若B、C都不是气体,气体的平均相对分子质量不变;(3)若B是气体,C不是气体,气体的平均相对分子质量变小;(4)若B不是气体,C是气体.①如果A的摩尔质量大于C的摩尔质量,气体的平均相对分子质量变小;②如果A的摩尔质量小于C的摩尔质量,气体的平均相对分子质量变大.II、又有反应aA(g)⇌bB(g)+cC(g)在一容积固定不变的容器内进行,反应达到平衡后.(以下填“增大”“减小”或“不变”)①若a=b+c,增大A的浓度,A的转化率不变.②若a>b+c,增大A的浓度,A的转化率增大.(2)若将反应改为aA(g)+bB(g)⇌cC(g)+dD(g),容积体积固定不变,且起始时A 与B的物质的量之比为a:b.①平衡时A与B的转化率之比是1:1.②若增大A的浓度,则A的转化率减小.(填“增大”“减小”或“不变”)③若同时同等倍数地增大A、B的浓度,则a+b与c+d满足什么关系时,A与B的转化率同时增大?a+b>c+d.判断混)<)<。

北京市第六十六中学2024-2025学年高二上学期11月期中考试语文试题(含答案)

北京市第六十六中学2024-2025学年高二上学期11月期中考试语文试题(含答案)

不忍见此物,焚之已成灰。黄河捧土尚可塞,北风雨雪恨难裁!
【注】①烛龙:中国古代神话传说中的龙。人面龙身而无足,居住在不见太阳的极北的寒门,睁眼为
昼,闭眼为夜。②虎文金鞞(bǐng chá):绘有虎纹图案的箭袋。
16.下列对本诗的理解与赏析,不正确的一项是( )(3 分)
A.前两句借“烛龙”神话传说起兴,凸显北方极其寒冷。
四、本大题共 3 小题,共 15 分。
阅读下面的作品,完成 20-22 题。(共 15 分) 圣彼得堡的留恋
莫斯科和圣彼得堡之间,我更倾向选择后者。我觉得圣彼得堡更加宁静,更有历史底蕴。傍晚走在最 笔直的涅瓦大街上,那些看上去已经非常老旧的灰色建筑,在灯光下似乎成为一件古老的工艺品。“旧”, 让悠远的彼得堡更加真切,似乎有一种抚摸天鹅绒般的质感。
(取材于孟子《人皆有不忍人之心》)
7.下列句中加点词语解释不正确的一项是( )(3 分)
A.我树之成而实五石
树:种植
B.今一朝而鬻技百金
鬻:卖
C.非所以要誉于乡党朋友也
要:合乎,符合
D.恻隐之心,仁之端也
端:发端
8.下列各组句子中,加点词的意义和用法相同的一组是( )(3 分)
A.魏王贻我大瓠之种
人之有是四端也,犹其有四体也
A.遂受而籍之以归
籍:登记造册
B.太祖典禁旅
典:主管,掌管
C.副帅潘美预以为贺 预:参与,加入
D.仍赐白金万两
仍:于是,又
12.下列各组语句中,加点的词意义和用法都不相同的一项是( )(3 分)
A.以百玩之具罗于席 吴越人以轻舟追遗之
B.观其所取
一无所受
C.汝何故疏我
吾何功劳哉
D.彬之总师也

黑龙江省哈尔滨市第九中学校2024-2025学年高二上学期11月期中考试数学试题(无答案)

黑龙江省哈尔滨市第九中学校2024-2025学年高二上学期11月期中考试数学试题(无答案)

哈尔滨市第九中学校2024—2025学年度上学期期中学业阶段性评价考试高二数学学科考试试卷(考试时间:120分钟,满分150分)第I 卷(选择题共58分)一、单选题(本题共8小题,每小题5分,每小题只有一项是符合题目要求的)1.已知直线过点且与直线平行,则直线的一般式方程为()A.B.C. D.2.“”是“直线与直线垂直”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.已知为椭圆的两个焦点,为椭圆上一点,,则的面积为()A.6 B.8 C.D.4.正方体的棱长为1,则( )A. B. C.0 D.15.已知点分别是椭圆的左焦点、右顶点,满足,则椭圆的离心率等于()6.已知是椭圆上的动点,是线段上的点,且满足,则动点的轨迹方程是( )A. B.C. D.7.已知平面的一个法向量为,点在外,点在内,且,则点到平面的距离( )1l ()2,5A 2:240l x y +-=1l 290x y ++=290x y +-=290x y ++=290x y +-=1a =()110ax a y +--=()110a x ay -+-=12,F F 2211612x y +=P 2135PF PF =12PF F V 1521111ABCD A B C D -()()1AB AD AD AA +⋅+= 2-1-,F A ()222210x y a b a b+=>>()0,B b 0FB AB ⋅= ()4,4,P Q --22216x y +=M PQ 13PM MQ = M 22(3)2(3)1x y -+-=22(3)2(3)1x y +++=22(1)2(1)9x y +++=22(1)2(1)9x y -+-=α()2,2,1n =- M αN α()1,4,3MN =-- M αd =A.1B.2C.3D.48.若圆上恰有2个点到直线的距离为1,则实数的取值范围为()A. B. C.D.二、多选题(共3小题,每小题有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.关于空间向量,以下说法正确的是( )A.若直线的方向向量为,平面的一个法向量为,则B.若空间中任意一点,有,则四点共面C.若空间向量满足,则与夹角为钝角D.若空间向量,则在上的投影向量为10.已知直线和圆,则下列选项正确的是()A.直线恒过点B.圆与圆公共弦所在直线方程为C.直线被圆截得的最短弦长为D.当时,圆上存在无数对关于直线对称的点11.2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”.如图,在平面直角坐标系中半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点,椭圆的短轴与半圆的直径重合,下半圆与轴交于点.若过原点的直线与上半椭圆交于点A ,与下半圆交于点,则下列说法正确的有( )A.椭圆的长轴长为B.线段长度的取值范围是()2221:(1)(2)0C x y rr ++-=>:43100l x y --=r ()3,∞+()5,∞+()3,5[]3,5l ()2,4,2m =- α()1,2,1n =--l α⊥O 111362OP OA OB OC =++ ,,,P A B C ,a b 0a b ⋅< a b ()()1,0,1,0,1,1a b ==- a b 110,,22⎛⎫- ⎪⎝⎭:10l kx y -+=22:(1)(2)4M x y -+-=l ()0,1-M 22:1C x y +=210x y +-=lM 1k =M l ()0,2F y G OBAB 4,2⎡+⎣C.面积的最小值是4D.的周长为第II 卷(非选择题共92分)三、填空题(共3小题,每小题5分,请将答案写在答题纸指定位置上)12.已知椭圆的一个焦点是,则椭圆的长轴长是__________.13.已知点,点是圆上任意一点,则到直线距离的最小值为__________.14.关于有实数解,则实数的取值范围是__________.四、解答题(共5小题,满分77分,解答应写出必要的文字说明、证明过程或演算步骤)15.已知直线和圆.(1)若直线交圆于两点,求弦的长;(2)求过点且与圆相切的直线方程.16.已知椭圆长轴长为4,且椭圆.(1)求椭圆的方程;(2)设斜率为的直线与椭圆交于两点,求的面积.17.如图,在以的圆锥中,底面圆的直径长为是圆所在平面内一点,且是圆的切线,连接交圆于点,连接.(1)求证:平面平面;(2)若是的中点,连接,当时,求平面与平面夹角的余弦值.ABF V AFG V 4+()222104x y a a +=>()()()1,0,0,3A B -P 222(3)5x y -+=P AB x 23kx k =-+k :10l x y -+=22:2440C x y x y +-+-=l C ,A B AB ()4,1-C ()2222:10x y C a b a b +=>>C 12,F F C 2F l C ,P Q 1F PQ V P O AB 2,C O AC O BC O D ,PD PC PAC ⊥PBC E PC ,OE ED 120BOD ∠= PAC DOE18.如图,已知椭圆过点,焦距为,斜率为的直线与椭圆相交于异于点的两点,且直线均不与轴垂直.(1)求椭圆的方程;(2)求中点E 的轨迹方程;(3)记直线的斜率为,直线的斜率为,证明:为定值.19.如图,在四棱锥中,面,且分别为的中点.(1)求证:平面;(2)在线段上是否存在一点,使得直线与平面所成角的正弦值是?若存在,求出的值,若不存在,说明理由:(3)在平面内是否存在点,满足,若不存在,请简单说明理由;若存在,请写出点的轨迹图形形状.()2222:10x y C a b a b+=>>()3,1P 13-l C P ,M N ,PM PN x C MN PM 1k PN 2k 12k k P ABCD -PA ⊥,ABCD AB ∥CD 2,1,1,,,CD AB BC AB BC E F ====⊥,PD BC EF ∥PAB PD M CM PBC 13DM DPPBC H 0HD HA ⋅=H。

江西省新余市分宜县初级中学校联考2024-2025学年九年级上期中化学试卷含答案

江西省新余市分宜县初级中学校联考2024-2025学年九年级上期中化学试卷含答案

2024-2025学年第一学期分宜县初中学校联考九年级化学试题卷说明:1.物理、化学同场分卷考试,考试总时长150分钟。

2.本试题满分70分,考试时间65分钟。

3.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。

一、单项选择题(本大题共10小题,1-5每小题1分,6-10每小题2分,共15分)1.学校开设的劳动课安排的下列活动中,主要发生化学变化....的是 ( )A. 修剪盆栽B. 制作木雕C. 烧制瓷器D. 整理桌椅2.如图所示的实验操作中正确..的是 ( )A. 量取液体B. 加热液体C. 滴加液体D. 点酒精灯3.下列有关实验现象的描述正确..的是 ( )A. 红磷在空气中燃烧产生白雾B. 硫在空气中燃烧发出明亮的蓝紫色火焰C. 木炭在氧气中燃烧,发出红光,有黑色固体生成D. 细铁丝在氧气中燃烧,火星四射,生成黑色固体4.化学概念之间具有并列、包含、交叉等关系,如图所示概念M和M之间的包含关系,如表选项中所列概念之间的关系符合图中所示包含..关系的是 ( )选项M M M MM化学变化氮气稀有气体混合物M物理变化空气氖气纯净物5.下图是表示气体微粒的示意图,图中“○”和“●”分别表示两种不同元素的原子,那么其中表示混合物...的是( ) A. B.C. D.6.关于下列符号或图示的说法正确..的是 ( )①M2 ①MM2+ ①①①①A. ① 表示两个氮原子B. ① 和 ① 均表示阳离子C. ① 和 ①所表示的微粒化学性质相似D. 由 ① 可知锡的相对原子质量为118.77.如图表示两种气体发生的化学反应,其中相同的球代表同种原子.下列说法正确..的是 ( )A. 生成物一定是氧化物B. 该反应既不是化合反应也不是分解反应C. 分子在化学变化中不可分D. 化学反应前后原子的种类不变8.下列对有关事实的微观解释,不合理...的是 ( )A.空气是混合物——含有不同种分子B. 过氧化氢分解成水和氧气——化学反应中分子没有改变C.硫在氧气中燃烧属于化学反应——分子种类发生了改变D. 水与过氧化氢的化学性质不同——构成它们的分子不同9.推理是一种重要的学习方法,下列推理正确..的是 ( )A.单质中只含一种元素,所以只含一种元素的物质一定是单质B.决定元素种类的是质子数,所以质子数相同的粒子一定属于同种元素C.离子是带电的原子或原子团,所以带电的粒子就是离子D.分子、原子都是不带电的微粒,但不带电的微粒不一定都是分子、原子10.下列图像能正确..反映对应变化关系的是 ( )A.用等质量、等浓度的过氧化氢制取氧气B.利用红磷燃烧测定空气中氧气的含量(打开止水夹前)C.将水通电电解一段时间D.向一定量的二氧化锰中加入过氧化氢溶液二、选择填充题(本大题共3小题,每小题2分,选择和填充各1分,共6分)11.下列属于空气污染物的是 ______ ( ) A.氮气 B.二氧化氮 C.二氧化碳 D. ______12.氮化镓是生产5G 芯片的关键材料之一。

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。

每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。

重庆市鲁能巴蜀中学2024-2025学年高二上学期11月月考期中英语试题(含答案)

重庆市鲁能巴蜀中学2024-2025学年高二上学期11月月考(期中)英语试题(本试卷共150分,考试时间120分钟)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

3.考试结束后,请将本试卷和答题卡一并交回。

第一部分听力(共两节,满分30分)注意,听力部分答题时,请先将答案标在试卷上。

听力部分结束前,你将有两分钟的时间将答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一通。

1. When does the woman suggest meeting the manA. Next Monday.B. Next Tuesday.C. Next Thursday.2. Where probably is John nowA. At home.B. At a gym.C. At his office.3. What does the woman think of James’s speechA. It is movingB. It is inspiring.C. It is humorous.4. What is the probable relationship between the speakersA. Boss and secretary.B. Husband and wife.C. Travel agent and customer.5. What are the speakers talking aboutA. The weather.B. The news.C. The woman’s dress.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

辽宁省沈阳市辽宁省实验中学2024-2025学年高二上学期期中考试数学试卷(含解析)

辽宁省实验中学2024-2025学年高二上学期期中阶段测试数学试卷考试时间:120分钟试题满分:150分一.选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.不选、多选、错选均不得分.1.已知正方体的棱长为1,则直线与所成角的正弦值为( )A .0B .CD2.在空间直角坐标系中,已知,若共面,则的值为( )A .B .0C .1D .23的倾斜角为( )A .B .C .D .4.圆和圆的公切线有( )A .1条B .2条C .3条D .4条5.已知且,则的最大值为( )A .1BCD .56.若椭圆( )A .1B .4C .1或4D .以上都不对7.已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于两点,若是正三角形,则这个椭圆的离心率是( )AB CD8.曲线所围成图形的面积为( )A .2B .C .4D.二.选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知且,则的值可能是( )1111ABCD A B C D -1A D AC 12Oxyz (1,1,0),(0,1,1),(2,1,)a b c z === ,,a b cz 1-340y ++=150︒120︒60︒30︒222410x y x y ++-+=224210x y x y +--+=,x y ∈R 221x y +=43x y -2212x y m +=m =12,F F 1F AB 2ABF △21||x y y -=-3π2,,x y z ∈R 2221x y z ++=222(1)(1)(2)x y z -+-+-A .1B .2C .3D .410.在空间直角坐标系Oxyz 中,已知,点,点,且P ,O 不重合,P ,A 不重合,则( )A .若,则x ,y ,z 满足:B .若,则x ,y ,z 满足:C .若,则x ,y ,z 满足:D .若,则x ,y ,z 满足:11.现有圆锥顶点为,底面所在平面为,母线PM 与底面直径MN 的长度都是2.点是PM 的中点,平面经过点与所成二面角(锐角)为.已知平面与该圆锥侧面的交线是某椭圆(或其一部分),则该椭圆长轴的长可能是( )AB .1C .D .2三、填空题:本题共3小题,每小题5分,共15分.12.直线经过点垂直,则直线的方程是 .13.已知点,点B ,C 是直线与圆的交点,则经过点A ,B ,C 的圆的方程是 .14.已知点在椭圆上,点,则的取值范围是 .四.解答题:本题共5小题,共7分.解答应写出文字说明,证明过程或演算步骤.15.已知椭圆的长轴端点是和(1)求椭圆的方程;(2)若点在椭圆上,求点到点的距离的取值范围.16.如图,正四棱锥中,,侧棱与底面所成的角为.(1)求侧面与底面所成的二面角(锐角)的余弦值;(2)在线段上是否存在一点,使得?若存在,确定点的位置;若不存在说明理由.(1,1,1)n =(1,0,0)A (,,)P x y z ||1AP =2221x y z ++=AP n ⊥1x y z ++=//AP n1x y z-==,45OP n ︒〈〉=2224440x y z xy yz zx ++---=P αA βA α30︒β32l P 50y -+=l (5,0)A 1x =225x y +=M 22:1169x y C +=(3,0)(3,0)P Q -、||||MP MQ +C (A -B C P C P (0,1)M P ABCD -AB =PA ABCD 60o PAB ABCD PB E AE PC ⊥E17.如图,在三棱柱中,点是棱AC 的中点.侧面底面ABC ,底面ABC 是等边三角形,.(1)求证:平面ABC ;(2)求平面与平面所成锐二面角平面角的余弦值.18.已知点与点关于直线对称.(1)求点的坐标m ,n (用表示);(2)若点在曲线所在曲线的方程.19.在平面直角坐标系中,已知点,点的轨迹为.(1)求的方程;(2)已知点,设点M ,N 在上,点M ,N 与点不重合,且直线MN 不与轴垂直,记分别为直线AM ,AN 的斜率.(ⅰ)对于给定的数值入(且,若,证明:直线MN 经过定点;(ⅱ)记(ⅰ)中的定点为Q ,求点的轨迹方程.111ABC A B C -O 11AA C C ⊥11,AB AA A B AC =⊥1A O ⊥11AA B B 11CC B B (,)P m n ()00,Q x y :l y =P 00,x y (,)P m n y (,)Q x y 12(1,0),(2,0)F F P P C C (1,1)A C A x 12,k k λR λ∈1)λ≠12k k λ=Q答案1.D解析:在正方体中,可得,,所以四边形是平行四边形,所以,所以是异面直线直线与所成的角,又易得是等边三角形,所以,所以与故选:D.2.A解析:由空间向量共面定理可得存在实数,使得,即,所以,解得.故选:A 3.A得故直线的斜率为,所以倾斜角为.故选:A .4.B1111ABCD A B C D -11A B AB CD ∥∥11A B AB CD ==11A B CD 11A D B C P 1B CA ∠1A D AC 1B CA V 160B CA =∠︒1sin B CA ∠1A D AC ,x y a xb yc =+()()()1,1,00,,2,,x x y y yz =+1210y x y x yz=⎧⎪=+⎨⎪=+⎩12121x y z ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩340y ++=43y =-)0,180︒⎡⎣150︒解析:由题意得,圆,即以为圆心,为半径的圆,圆,即以为圆心,为半径的圆,则故,因此两圆相交,则有2条公切线.故选:B.5.D解析:令,则,其中,因为,则,所以的最大值为.故选:D 6.C解析:当焦点在轴上时,;当焦点在轴上时,.故选:C 7.A解析:是正三角形,,故选:.8.A 解析:()()222222410122x y x y x y ++-+=⇔++-=()11,2C -12r =()()222224210212x y x y x y +--+=⇔-+-=()22,1C =22r =12C C ==12022224C C =-<<+=[]cos ,sin ,0,2x y θθθπ==∈()434sin 3cos 5sin x y θθθϕ-=-=-3tan 4ϕ=()[]sin 1,1θϕ-∈-()[]5sin 5,5θϕ-∈-43x y -5x e =1m =y e ==4m =2ABF V 212|||AF F F ∴==1212||2||,||||2AF AF AF AF a ∴==+==e ∴A由可得,即,所以,又,即,当且时,则方程为,即,所以,当且时,则方程为,即,当时,则,所以方程为,即,画出如图所示图像,其中弓形与弓形相等,由割补法可知,围成图形的面积为.故选:A 9.CD解析:因,则表示以原点为球心,半径为1的球表面上的点.则表示到距离的平方.类比点到圆上距离的范围,可得,,则 ,.故,则只有CD 满足条件.故选:CD 10.BCD解析:A 由题,,因,则A 错误;B 因,则,故B 正确;C 因,则,故C 正确;21x y y -=-10y -≥1y ≤11y -≤≤22221x y y x y y x x =-+≥-+==11x -≤≤[]0,1∈y 20x y -≥21x y y -+=21x =1x =±[]0,1∈y 20x y -<21y x y -+=212x y +=[)1,0y ∈-20x y ->21x y y --=212x y -=AB CD 212⨯=2221x y z ++=(),,x y z 222(1)(1)(2)x y z -+-+-(),,x y z ()1,1,2)2222(1)(1)(2)17x y z -+-+-≤=+)2222(1)(1)(2)17x y z -+-+-≥+=-1.414 1.732≈≈ 2.449≈711.898+≈7 2.102-≈22222(1)(1(1)2)x y z <-+-<-+()1,,AP x y z =- ()2222221112AP x y z x y z x =⇒-++=⇒++= AP n ⊥101AP n x y z x y z ⋅=-++=⇒++= //AP n 11111x y zx y z -==⇒-==D 因,则.即,故D 正确.故选:BCD.11.ABC解析:如上图,做出过点的轴截面,由已知条件可知,平面与轴截面相交得到的线段最短为,最长为,当平面与圆锥面所截得的椭圆的长轴落在平面内时,长轴长或.根据已知的几何关系可以计算出当与圆锥所截得的椭圆的长轴不在图中所作的轴截面内时,长轴长度满足:.对于A对于B,长轴长度可以为;对于C;对于D 选项,.故选:ABC 12.的斜率为所以的方程为:,即.故答案为:13.,45OP n ︒〈〉=()()22221cos ,23x y z OP n x y z ++〈〉==⇒=++ ()()2222222324440x y z x y z x y z xy yz zx ++=++⇒++---=A PMN β1AA AM βPMN 12a AA =2a AM =1AA =AM =βPMN 12AA a AM <<1<<132<322>240x -=50y -+=l l )1y x =-40x -=40x -=2250x y x -=+解析:因点B ,C 是直线与圆的交点,则设过B ,C 的圆的方程为:,代入,则,则过过点A ,B ,C 的圆的方程是:.故答案为:14.解析:由椭圆与椭圆有相同的短轴,由椭圆与椭圆有相同的长轴,又椭圆与椭圆有相同的焦点,即点,由椭圆方程可知椭圆在椭圆上及其内部,椭圆在椭圆上及其内部,当点在上时,因椭圆方程可知椭圆在椭圆上及其内部,所以,当点在短轴的端点时取等号,当点在上时,,因椭圆方程可知椭圆在椭圆上及其内部,所以,当点在长轴的端点时取等号,所以的取值范围是.故答案为:.1x =225x y +=()22510x y x λ+-+-=(5,0)A 255405λλ-+=⇒=-()2222551050x y x x y x +---=⇔+-=2250x y x -=+22:1169x y C +=221:1189x y C +=22:1169x y C +=222:1167x y C +=222:1167x y C +=221:1189x y C +=12(3,0),(3,0)F F -(3,0)(3,0)P Q -、22:1169x y C +=221:1189x y C +=222:1167x y C +=22:1169x y C +=P 221:1189x y C +=12||||2PF PF a +==22:1169x y C +=221:1189x y C +=12||||||||MP MQ PF PF +≤+=P P 222:1167x y C +=12||||28PF PF a +==222:1167x y C +=22:1169x y C +=12||||||||8MP MQ PF PF +≥+=P ||||MP MQ +15.(1)(2)解析:(1)由题意得:,解得:.故椭圆的方程为:(2)设是椭圆上的任意一点,所以,所以..故点到点的距离的取值范围是.16.(2)在线段上存在点,点满足,使得.解析:(1)设为底面的中心,以点为原点,分别为轴,轴,轴正方向,建立空间直角坐标系,如图所示.由题意知,.设,其中,则,向量是平面的法向量.22182x y +=-222a c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩a b ⎧=⎪⎨=⎪⎩C 22182x y +=(,)P x y 2284x y =-PM ==[y ∈1||PM ≤≤P (0,1)M -PB E E 13BE BP =AE PC ⊥O ABCD O ,,OB OC OPx y z (0,1,0),(1,0,0),(0,1,0)A B C -(0,0,)P h 0h >(0,1,)AP h =1(0,0,1)n = ABCD由题意得,,解得设平面的法向量为.因为,,所以,即,令,则,则.则故侧面与底面(2)由(1)知,,设,则.因为,若,则.即,解得,故在线段上存在点,点满足,使得17.(1)证明见解析(2)解析:(1)连结OB .在中,,所以,且.又因为,所以平面.从而.又因为平面平面ABC,A C 是平面与平面ABC 的交线,111cos ,cos30AP n AP n AP n ⋅==⋅h =PAB ()2222,,n x y z =(AP = (1,1,0)AB =2200AP n AB n ⎧⋅=⎪⎨⋅=⎪⎩ 222200y x y ⎧=⎪⎨+=⎪⎩21y =221x z =-⎧⎪⎨=⎪⎩21,1,n ⎛=- ⎝ 12cos n n ⋅==PAB ABCD (1,1,0)AB =(BP =- BE BP λ=(()(1,1,0)1AE AB BE λλ=+=+-=- (0,CP =-AE PC ⊥()(10,0AE CP λ⋅=-⋅-= 130λ-+=13λ=PB E E 13BE BP =.AE PC ⊥35ABC V ,BA BC AO OC ==BO AC ⊥BO AC 1A B AC ⊥AC ⊥1A BO 1AC AO ⊥11AA C C ⊥11AA C C所以平面ABC(2)在中,,所以.设.以点为原点,分别为轴轴轴正方向,建立空间直角坐标系Oxyz ,如图所示.有,,.设平面的法向量为,平面的法向量为.由题意得:.则取平面的法向量为,平面的法向量为.则.故平面与平面所成锐二面角平面角的余弦值是18.(1)(2).1AO ⊥1AA O 1190,2A OA AA AO ︒∠==1A O AC =2AC =O 1,,OB OC OA x y z (0,1,0),(0,1,0)A B C -11,0)A AB CB ==- 11AA BB == 11AA B B ()1111,,n x y z = 11CC B B ()2222,,n x y z = 111112221112220000AA n y BB n y AB n y CB n y ⎧⎧⋅==⋅=+=⎪⎪⎨⎨⋅=+=⋅=-=⎪⎪⎩⎩,11AA B B 1(1,n = 11CC B B 21)n =- 13cos 5n ⋅ 11AA B B 11CC B B 35m n ⎧=⎪⎪⎨⎪=⎪⎩22162x y -=解析:(1)依题意,,解得(2)依题意,整理得:(其中),所以点所在曲线的方程为.19.(1)(2)(ⅰ)证明见解析,(ⅱ)点的轨迹方程为直线(除去点)解析:(1)设,整理得,所以的方程为.(2)设直线MN 的方程为:,其中.点M ,N 满足:所以满足:,即.从而.(ⅰ)证明:因为,所以,整理得,其中(即直线MN 不经过点).所以直线MN 的方程为:,且直线MN 不经过点.所以直线MN 过定点 .000022y n x m y n x m -⎧=⎪-⎪⎨++⎪⎪⎩m n ⎧=⎪⎪⎨⎪=⎪⎩m n n ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩=2200162x y -=000x ≠(,)Q x y 22162x y -=222x y +=Q y x =-(1,1)-(),P x y =222x y +=C 222x y +=y kx m =+1k m +≠222x y y kx m⎧+=⎨=+⎩,M N x x 22()2x kx m ++=()2221220k x kmx m +++-=22222,11M N M N km m x x x x k k -+=-=++()()()()()()()()2222222222222111211111122111111111M N M N M N N M M N M N M N M N m km k km k m m kx m kx m k x x km k x x m m y y k m k k m km x x x x x x x x k m k k -⎛⎫⋅+--+-+ ⎪+-+-+-++-+---+++⎝⎭⋅====-------++++++++11k m k m λ-+-=++1(1)1m k λλ+=+-10k m ++≠(1,1)-111(1)111y kx k k x λλλλλλ+++⎛⎫=++=++ ⎪---⎝⎭(1,1)-11,11λλλλ++⎛⎫- ⎪--⎝⎭(ⅱ)解:由得(其中),所以点的轨迹方程为直线(除去点).1,11.1Q Q x y λλλλ+⎧=-⎪⎪-⎨+⎪=⎪-⎩Q Q y x =-1Q x ≠Q y x =-(1,1)-。

2023-2024学年湖北省部分重点中学高二(上)期中数学试卷【答案版】

2023-2024学年湖北省部分重点中学高二(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两条不同直线l 1,l 2的方向向量分别为m →=(1,1,−2),n →=(2,−2,1),则这两条直线( ) A .相交或异面 B .相交C .异面D .平行2.已知椭圆C :x 2m+1+y 2m=1的离心率为12,则m =( )A .13B .1C .3D .43.一束光线从点A(−√3,3)射出,沿倾斜角为150°的直线射到x 轴上,经x 轴反射后,反射光线所在的直线方程为( ) A .y =√3x −2B .y =−√3x +2C .y =−√33x +2D .y =√33x −24.实数x ,y 满足x 2﹣4x +y 2﹣6y +9=0,则y−1x+1的取值范围是( ) A .[512,+∞)B .[125,+∞)C .[0,125]D .[0,512]5.已知△ABC 的顶点A (﹣2,1),AC 边上的高BE 所在直线方程为x +y ﹣5=0,AC 边上中线BD 所在的直线方程为3x ﹣5y +1=0,则高BE 的长度为( ) A .√22B .√2C .2√2D .3√26.在四面体ABCD 中,已知△ABD 为等边三角形,△ABC 为等腰直角三角形,斜边AB =4,CD =2√7,则二面角C ﹣AB ﹣D 的大小为( ) A .π6B .π3C .2π3D .5π67.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0)(b >c ),上顶点为B ,直线l :3√3x ﹣4y ﹣21=0交椭圆于P ,Q 两点,若F 恰好为△BPQ 的重心,则椭圆的离心率为( ) A .√55B .12C .√22D .√328.已知中心在原点O ,焦点在y 轴上,且离心率为√23的椭圆与经过点C (﹣2,0)的直线l 交于A ,B 两点,若点C 在椭圆内,△OAB 的面积被x 轴分成两部分,且△OAC 与△OBC 的面积之比为3:1,则△OAB 面积的最大值为( ) A .8√73B .4√73C .24√77D .12√77二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点.下列说法中正确的是( ) A .椭圆离心率为√32B .|PF 1|的最小值为1C .|PF 1|+|PF 2|=2D .0≤∠F 1PF 2≤π310.下列说法正确的是( )A .已知点A (2,1),B(−1,2√3),若过P (1,0)的直线l 与线段AB 相交,则直线l 的倾斜角范围为[π4,2π3]B .“a =1”是“直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行”的充要条件C .曲线C 1:x 2+y 2+2x =0与C 2:x 2+y 2﹣4x ﹣8y +m =0恰有四条公切线,则m 的取值范围为4<m <20D .圆x 2+y 2=2上有且仅有2个点到直线l :x ﹣y +1=0的距离都等于√2211.如图,在多面体ABCDEP 中,P A ⊥平面ABCD ,四边形ABCD 是正方形,且DE ∥P A ,P A =AB =2DE =2,M ,N 分别是线段BC ,PB 的中点,Q 是线段DC 上的一个动点(不含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得NQ ⊥PBB .不存在点Q ,使得异面直线NQ 与PE 所成的角为30°C .三棱锥Q ﹣AMN 体积的取值范围为(13,23)D .当点Q 运动到DC 中点时,DC 与平面QMN 所成的余弦值为√6612.椭圆有如下的光学性质,从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在x 轴上,中心在坐标原点,左、右焦点分别为F 1、F 2.一束光线从F 1射出,经椭圆镜面反射至F 2,若两段光线总长度为6,且椭圆的离心率为√53,左顶点和上顶点分别为A ,B .则下列说法正确的是( ) A .椭圆的标准方程为x 29+y 24=1B .若点P 在椭圆上,则sin ∠F 1PF 2的最大值为19C .若点P 在椭圆上,|BP |的最大值为9√55D .过直线y =x +2上一点M 分别作椭圆的切线,交椭圆于P ,Q 两点,则直线PQ 恒过定点(−92,2) 三、填空题:本大题共4题,每小题5分,共计20分.13.圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4的公共弦所在的直线方程为 .14.所有棱长都为1的平行六面体ABCD ﹣A 1B 1C 1D 1中,若M 为A 1C 1与B 1D 1的交点,∠BAD =60°,∠DAA 1=∠BAA 1=30°,则|BM →|的值为 . 15.已知椭圆C :x 2a 2+y 2a 2−1=1(a >1)的左,右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,AF 2、BF 2分别交y 轴于P 、Q 两点,△PQF 2的周长为4.过F 2作∠F 2AF 1外角平分线的垂线与直线BA 交于点N ,则|ON |= .16.已知直线l 与圆O :x 2+y 2=4交于A (x 1,y 1),B (x 2,y 2)两点,且|AB|=2√3,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,已知射线OA :x ﹣y =0(x ≥0),OB :x +2y =0(x ≥0).过点P (3,0)作直线分别交射线OA ,OB 于点A ,B . (1)已知点B (6,﹣3),求点A 的坐标;(2)当线段AB 的中点为P 时,求直线AB 的方程.18.(12分)如图,ABCD 和ABEF 是不在同一平面上的两个矩形,DM →=13DB →,AN →=13AE →,记AB →=a →,AD →=b →,AF →=c →.请用基底{a →,b →,c →},表示下列向量: (1)FC →; (2)MN →.19.(12分)已知圆C ,圆C 1:(x +3)2+y 2=9,圆C 2:(x −1)2+y 2=9,这三个圆有一条公共弦. (1)当圆C 的面积最小时,求圆C 的标准方程; (2)在(1)的条件下,直线l 同时满足以下三个条件:(i )与直线√19x +y −3=0垂直; (ii )与圆C 相切;(iii )在y 轴上的截距大于0,若直线l 与圆C 2交于D ,E 两点,求|DE |.20.(12分)如图,在四棱锥P ﹣ABCD 中,底面是边长为2的菱形,∠ABC =π3,H 为BC 的中点,P A =PB =PH =√2.E 为PD 上的一点,已知PD =4PE . (1)证明:平面P AB ⊥平面ABCD ; (2)求平面EAC 与平面P AB 夹角的余弦值.21.(12分)已知A(−√3,1),B ,M 是椭圆C 上的三点,其中A 、B 两点关于原点O 对称,直线MA 和MB 的斜率满足k MA •k MB =−13. (1)求椭圆C 的标准方程;(2)点Q 是椭圆C 长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若1|PQ|+1|QN|为定值,则称点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有的“稳定点”,并说明理由;若没有,也请说明理由. 22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为4√3,且点P(2,√3)在椭圆E 上.(1)求椭圆E 的方程;(2)若A 、B 、Q 是椭圆E 上的三点,且直线AB 与x 轴不垂直,点O 为坐标原点,OQ →=λOA →+μOB →,则当△AOB 的面积最大时,求λ2+μ2的值.2023-2024学年湖北省部分重点中学高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两条不同直线l 1,l 2的方向向量分别为m →=(1,1,−2),n →=(2,−2,1),则这两条直线( ) A .相交或异面 B .相交C .异面D .平行解:令m →=λn →,即(1,1,﹣2)=λ(2,﹣2,1),则{1=2λ1=−2λ−2=λ,此方程组无解,则直线l 1,l 2不平行,即相交或异面.故选:A . 2.已知椭圆C :x 2m+1+y 2m=1的离心率为12,则m =( )A .13B .1C .3D .4解:椭圆C :x 2m+1+y 2m=1,可得a 2=m +1,b 2=m , 所以该椭圆的离心率e =c a =√1−b 2a2=√1−m m+1=12,则m =3.故选:C .3.一束光线从点A(−√3,3)射出,沿倾斜角为150°的直线射到x 轴上,经x 轴反射后,反射光线所在的直线方程为( ) A .y =√3x −2B .y =−√3x +2C .y =−√33x +2 D .y =√33x −2解:由题意知,入射光线所在直线的斜率为tan150°=−√33, 所以入射光线为y ﹣3=−√33(x +√3),整理得y =−√33x +2,令y =0,得x =2√3,所以入射光线与x 轴的交点为(2√3,0), 由对称性知,反射光线的斜率为√33, 所以反射光线的方程为y ﹣0=√33(x ﹣2√3),即y =√33x ﹣2.故选:D .4.实数x ,y 满足x 2﹣4x +y 2﹣6y +9=0,则y−1x+1的取值范围是( ) A .[512,+∞) B .[125,+∞) C .[0,125] D .[0,512] 解:方程x 2﹣4x +y 2﹣6y +9=0,即(x ﹣2)2+(y ﹣3)2=4,所以(x ,y )是以(2,3)为圆心,半径为2的圆上的点,y−1x+1表示点(x ,y )与点(﹣1,1)连线的斜率,设直线y ﹣1=k (x +1),kx ﹣y +1+k =0与圆(x ﹣2)2+(y ﹣3)2=4相切, (2,3)到直线kx ﹣y +1+k =0的距离√k 2+1=√k 2+1=2,解得k =0或k =125,所以y−1x+1的取值范围是[0,125]. 故选:C .5.已知△ABC 的顶点A (﹣2,1),AC 边上的高BE 所在直线方程为x +y ﹣5=0,AC 边上中线BD 所在的直线方程为3x ﹣5y +1=0,则高BE 的长度为( ) A .√22B .√2C .2√2D .3√2解:根据题意,由{x +y −5=03x −5y +1=0,解得{x =3y =2,可知B (3,2).由直线BE 的方程为x +y ﹣5=0,且AC 、BE 相互垂直,可知k AC =−1kBE=1,结合点A (﹣2,1),得直线AC 的方程为y ﹣1=x +2,即x ﹣y +3=0, 因为点B 到直线AC 的距离d =|3−2+3|1+1=2√2,所以AC 边上的高BE 的长度等于2√2.故选:C .6.在四面体ABCD 中,已知△ABD 为等边三角形,△ABC 为等腰直角三角形,斜边AB =4,CD =2√7,则二面角C ﹣AB ﹣D 的大小为( ) A .π6B .π3C .2π3D .5π6解:如图,取AB 中点M ,连接CM ,DM ,因为△ABD 为等边三角形,△ABC 为等腰直角三角形,所以CM ⊥AB ,DM ⊥AB , 故∠CMD 即为二面角C ﹣AB ﹣D 的平面角. 因为AB =4,所以CM =2,DM =2√3,所以cos ∠CMD =CM 2+DM 2−CD 22⋅CM⋅DM =4+12−282×2×2√3=−√32,所以∠CMD =5π6,即二面角C ﹣AB ﹣D 的大小为5π6.故选:D .7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0)(b >c ),上顶点为B ,直线l :3√3x ﹣4y ﹣21=0交椭圆于P ,Q 两点,若F 恰好为△BPQ 的重心,则椭圆的离心率为( ) A .√55B .12C .√22D .√32解:不妨设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0),因为点F 是△BPQ 的重心,所以BF →=2FM →,即(c ,﹣b )=2(x 0﹣c ,y 0),所以x 0=3c 2,y 0=−b2, 此时x 1+x 2=2x 0=3c ,y 1+y 2=2y 0=﹣b , 因为点M 在直线l 上,所以3√3•3c 2−4•(−b2)﹣21=0,即9√3c +4b ﹣42=0,①因为P ,Q 两点均在椭圆上,所以{ x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1,两式作差得(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0,则直线l 的斜率k =y 2−y 1x 2−x 1=−b 2(x 1+x 2)a 2(y 1+y 2)=−b 2⋅3c a 2⋅(−b)=3√34,即√3a 2=4bc ,②又a 2=b 2+c 2,b >c ③联立①②③,解得a =2c ,b =√3c ,则椭圆的离心率e =c a =12. 故选:B .8.已知中心在原点O ,焦点在y 轴上,且离心率为√23的椭圆与经过点C (﹣2,0)的直线l 交于A ,B 两点,若点C 在椭圆内,△OAB 的面积被x 轴分成两部分,且△OAC 与△OBC 的面积之比为3:1,则△OAB 面积的最大值为( ) A .8√73B .4√73 C .24√77D .12√77解:设椭圆的方程为y 2a 2+x 2b 2=1(a >b >0),设直线l 的方程为x =my ﹣2,A (x 1,y 1),B (x 2,y 2),联立{y 2a 2+x 2b 2=1x =my −2,整理得:(b 2+a 2m 2)y 2﹣4ma 2y +4a 2﹣a 2b 2=0,由椭圆的离心率e =c a =√1−b 2a2=√23,得b 2=79a 2,代入上式并整理得:(7+9m 2)y 2﹣36my +36﹣7a 2=0, 则y 1+y 2=36m 7+9m 2,y 1y 2=36−7a 27+9m 2, 由△OAC 与△OBC 的面积之比为3:1,则y 1=﹣3y 2,则y 2=−18m7+9m 2, 所以△OAB 的面积为S △OAC +S △OBC =12×|OC |×|y 1|+12|OC |×|y 2|=|y 1﹣y 2|=4|y 2| =4×18|m|7+9m 2≤4×18|m|2√7×9m 2=4×18|m|6√7|m|=12√77,当且仅当9m 2=7,即m =±√73时,等号成立, 故△OAB 面积的最大值为12√77.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点.下列说法中正确的是( ) A .椭圆离心率为√32B .|PF 1|的最小值为1C .|PF 1|+|PF 2|=2D .0≤∠F 1PF 2≤π3解:因为椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点,故a =2,b =√3,c =√4−3=1,故椭圆离心率为ca=12,A 不对;|PF 1|的最小值为:a ﹣c =1,B 对; |PF 1|+|PF 2|=2a =4,C 不对;当P 与A 重合,即为短轴端点时,∠F 1PF 2取最大值,此时|AF 1|=|AF 2|=a =|F 2F 1|,故∠F 1PF 2=π3,所以0≤∠F 1PF 2≤π3,故D 正确. 故选:BD .10.下列说法正确的是( )A .已知点A (2,1),B(−1,2√3),若过P (1,0)的直线l 与线段AB 相交,则直线l 的倾斜角范围为[π4,2π3] B .“a =1”是“直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行”的充要条件C .曲线C 1:x 2+y 2+2x =0与C 2:x 2+y 2﹣4x ﹣8y +m =0恰有四条公切线,则m 的取值范围为4<m <20D .圆x 2+y 2=2上有且仅有2个点到直线l :x ﹣y +1=0的距离都等于√22解:A 选项,k P A =1−02−1=1,所以直线P A 的倾斜角为π4, k PB =2√3−0−1−1=−√3,所以直线PB 的倾斜角为2π3, 所以直线l 的倾斜角范围为[π4,2π3],A 选项正确.B 选项,由a ×(﹣a )=(﹣1)×1,解得a =±1, 当a =1时,两直线为x ﹣y +1=0,x ﹣y ﹣2=0,两直线平行;当a =﹣1时,两直线为﹣x ﹣y +1=0.x +y ﹣2=0,即x +y ﹣1=0,x +y ﹣2=0,两直线平行, 所以a =1是直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行的充分不必要条件,所以B 选项错误. C .选项,C 1:x 2+y 2+2x =0即(x +1)2+y 2=1,是圆心为C 1(﹣1,0),半径r 1=1, 圆x 2+y 2﹣4x ﹣8y +m =0,即(x ﹣2)2+(y ﹣4)2=20﹣m 要表示圆,则20﹣m >0即m <20, 此时圆心为C 2(2,4),半径为√20−m ,两圆有四条公切线,所以两圆外离,所以5>1+√20−m ,解得4<m <20,C 选项正确. D 选项,圆x 2+y 2=2的圆心为(0,0),半径为√2,圆心到直线x ﹣y +1=0的距离为√2=√22, 所以圆 x 2+y 2=2上有且仅有3个点到直线l :x ﹣y +1=0的距离都等于√22,所以D 选项错误. 故选:AC .11.如图,在多面体ABCDEP 中,P A ⊥平面ABCD ,四边形ABCD 是正方形,且DE ∥P A ,P A =AB =2DE =2,M ,N 分别是线段BC ,PB 的中点,Q 是线段DC 上的一个动点(不含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得NQ ⊥PBB .不存在点Q ,使得异面直线NQ 与PE 所成的角为30°C .三棱锥Q ﹣AMN 体积的取值范围为(13,23)D .当点Q 运动到DC 中点时,DC 与平面QMN 所成的余弦值为√66解:以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),E (0,2,1),P (0,0,2),N (1,0,1),M (2,1,0),对于A ,假设存在点Q (m ,2,0)(0<m <2),使得NQ ⊥PB , ∵NQ →=(m ﹣1,2,﹣1),PB →=(2,0,﹣2),∴NQ →⋅PB →=2(m ﹣1)+2=0,解得m =0,不合题意,故A 错误;对于B ,假设存在点Q (m ,2,0)(0<m <2),使得异面直线NQ 与PE 所成的角为30°, ∵NQ →=(m ﹣1,2,﹣1),PE →=(0,2,﹣1), ∴|cos <NQ →,PE →>|=|NQ →⋅PE →||NQ →|⋅|PE →|=5√(m−1)+5⋅√5=cos30°=√32,解得m =1±√153,不符合0<m <2, ∴不存在点Q ,使得异面直线NQ 与PE 所成角为30°,故B 正确; 对于C ,连接AQ ,AM ,AN ,DQ =m ,(0<m <2),CQ =2﹣m ,∵S △AMQ =S ABCD ﹣S △ABM ﹣S △QCM ﹣S △ADQ =4﹣1−12(2−m)−m =2−m2, 点N 到平面AMQ 的距离为d =12PA =1, ∴V Q ﹣AMN =V N ﹣AMQ =13(2−m 2)=23−m 6, ∵0<m <2,∴V Q ﹣AMN ∈(13,23),故C 正确; 对于D ,当点Q 运动到DC 中点时,Q (1,2,0), ∵N (1,0,1),M (2,1,0),∴NQ →=(0,2,﹣1),NM →=(1,1,﹣1), 设n →=(x ,y ,z )是平面QMN 的法向量,则{n →⋅NQ →=2y −z =0n →⋅NM →=x +y −z =0,令y =1,则n →=(1,1,2),∵DC →=(2,0,0),设直线DC 与平面QMN 所成的角为θ,∴sin θ=|cos <DC →,n →>|=|DC →⋅n →||DC →|⋅|n →|=22×6=√66,故D 错误. 故选:BC .12.椭圆有如下的光学性质,从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在x 轴上,中心在坐标原点,左、右焦点分别为F 1、F 2.一束光线从F 1射出,经椭圆镜面反射至F 2,若两段光线总长度为6,且椭圆的离心率为√53,左顶点和上顶点分别为A ,B .则下列说法正确的是( ) A .椭圆的标准方程为x 29+y 24=1B .若点P 在椭圆上,则sin ∠F 1PF 2的最大值为19C .若点P 在椭圆上,|BP |的最大值为9√55D .过直线y =x +2上一点M 分别作椭圆的切线,交椭圆于P ,Q 两点,则直线PQ 恒过定点(−92,2) 解:选项A ,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,由题意知,2a =6,离心率e =c a =√53, 所以a =3,c =√5,b =√a 2−c 2=2, 所以椭圆的方程为x 29+y 24=1,即选项A 正确;选项B ,当点P 位于椭圆的上或下顶点时,OP 平分∠F 1PF 2,且sin ∠OPF 2=ca =√53,cos ∠OPF 2=ba =23,所以sin ∠F 1PF 2=sin2∠OPF 2=2sin ∠OPF 2•cos ∠OPF 2=2×√53×23=4√59>19,即选项B 错误; 选项C ,设点P (x 0,y 0),其中y 0∈[﹣2,2],则x 029+y 024=1,即x 02=9(1−14y 02),而B (0,2),所以|BP |2=x 02+(y 0−2)2=9(1−14y 02)+y 02−4y 0+4=−54y 02−4y 0+13=−54(y 0+85)2+815,在[﹣2,−85]上单调递增,在[−85,2]上单调递减, 所以当y 0=−85时,|BP |2取得最大值815,此时|BP |max =√815=9√55,即选项C 正确;选项D ,设点M (x 1,y 1),则y 1=x 1+2①, 过点M 作椭圆的切线,切点弦所在的直线方程为x 1x 9+y 1y 4=1,即直线PQ 的方程为x 1x 9+y 1y 4=1②,联立①②,消去y 1可得,4x 1x +9x 1y +18y ﹣36=0,整理得,(4x +9y )x 1+18y ﹣36=0,令{18y −36=04x +9y =0,解得{x =−92y =2, 所以直线PQ 恒过定点(−92,2),即选项D 正确. 故选:ACD .三、填空题:本大题共4题,每小题5分,共计20分.13.圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4的公共弦所在的直线方程为 x ﹣2y ﹣1=0 . 解:圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4,两圆方程相减可得x 2+y 2﹣[(x ﹣1)2+(y +2)2]=1﹣4,即x ﹣2y ﹣1=0, 则两圆的公共弦所在直线方程为x ﹣2y ﹣1=0. 故答案为:x ﹣2y ﹣1=0.14.所有棱长都为1的平行六面体ABCD ﹣A 1B 1C 1D 1中,若M 为A 1C 1与B 1D 1的交点,∠BAD =60°,∠DAA 1=∠BAA 1=30°,则|BM →|的值为√52. 解:因为BM →=BB 1→+B 1M →=BB 1→+12(B 1A 1→+B 1C 1→)=−12AB →+12AD →+AA 1→,所以BM →2=(−12AB →+12AD →+AA 1→)2=14AB →2+14AD →2+AA 1→2−12AB →⋅AD →−AA 1→⋅AB →+AD →⋅AA 1→=14×1+14×1+1−12×1×1×cos60°−1×1×cos30°+1×1×cos30°=54, 所以|BM →|=√52. 故答案为:√52. 15.已知椭圆C :x 2a 2+y 2a 2−1=1(a >1)的左,右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,AF 2、BF 2分别交y 轴于P 、Q 两点,△PQF 2的周长为4.过F 2作∠F 2AF 1外角平分线的垂线与直线BA 交于点N ,则|ON |= √17 . 解:如图,∵PQ ∥AB ,∴|PQ||AB|=|PF 2||AF 2|=|QF 2||BF 2|=12,∵△PQF 2的周长为4,∴△ABF 2的周长|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =8 ∴a =2,∴椭圆方程为x 24+y 23=1,c 2=4﹣3=1,F 1(﹣1,0),直线AB 垂直x 轴,设A (﹣1,y 0),不妨设y 0>0, 则14+y 023=1,解得y 0=32,即A(−1,32),∴|AF 2|2=|AF 1|2+|F 1F 2|2=94+4=254,即|AF 2|=52, ∵∠F 2AF 1外角平分线AT 的垂线与直线BA 交于点N , ∴|AF 2|=|AN|=52,又|AF 1|=32, ∴|NF 1|=52+32=4,则|ON|2=|NF 1|2+|F 1O|2=42+1=17, ∴|ON|=√17, 故答案为:√17.16.已知直线l 与圆O :x 2+y 2=4交于A (x 1,y 1),B (x 2,y 2)两点,且|AB|=2√3,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为 30 . 解:|3x 1+4y 1−10|5+|3x 2+4y 2−10|5的几何意义为点A ,B 到直线3x +4y ﹣10=0的距离之和,根据梯形中位线知其最大值是AB 的中点M 到直线3x +4y ﹣10=0的距离的2倍, 由题可知,圆O :x 2+y 2=4的圆心O (0,0),半径为2,|AB|=2√3, 则|OM|=√22−(232)2=1,所以AB 的中点M 的轨迹是以原点O 为圆心,1为半径的圆, 故点M 到直线3x +4y ﹣10=0的最大距离√32+42+1=3,所以|3x 1+4y 1−10|5+|3x 2+4y 2−10|5的最大值为2×3=6,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为30. 故答案为:30.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,已知射线OA :x ﹣y =0(x ≥0),OB :x +2y =0(x ≥0).过点P (3,0)作直线分别交射线OA ,OB 于点A ,B . (1)已知点B (6,﹣3),求点A 的坐标;(2)当线段AB 的中点为P 时,求直线AB 的方程. 解:(1)由题意知,k BP =0−(−3)3−6=−1, 因为P (3,0),所以直线BP 的方程为y =﹣(x ﹣3),即x +y ﹣3=0, 联立{x +y −3=0x −y =0(x ≥0),解得{x =32y =32,即A(32,32).(2)不妨设A (a ,a ),B (﹣2b ,b ),a >0,b <0, 则线段AB 的中点为(a−2b 2,a+b2), 因为线段AB 的中点为P ,所以{a−2b2=3a+b 2=0,解得{a =2b =−2, 所以A (2,2),B (4,﹣2),所以直线AB 的斜率为2−(−2)2−4=−2,因为直线AB 经过点P (3,0),所以直线AB 的方程为y =﹣2(x ﹣3),即2x +y ﹣6=0, 故直线AB 的方程为2x +y ﹣6=0.18.(12分)如图,ABCD 和ABEF 是不在同一平面上的两个矩形,DM →=13DB →,AN →=13AE →,记AB →=a →,AD →=b →,AF →=c →.请用基底{a →,b →,c →},表示下列向量: (1)FC →; (2)MN →.解:(1)FC →=FA →+AB →+BC →=−AF →+AB →+AD →=a →+b →−c →.(2)MN →=AN →−AM →=AN →−(AD →+DM →)=13AE →−(AD →+13DB →)=13(AB →+AF →)﹣[AD →+13(AB →−AD →)] =13(a →+c →)﹣[b →+13(a →−b →)] =(13−1)b →+13c →=−23b →+13c →. 19.(12分)已知圆C ,圆C 1:(x +3)2+y 2=9,圆C 2:(x −1)2+y 2=9,这三个圆有一条公共弦. (1)当圆C 的面积最小时,求圆C 的标准方程; (2)在(1)的条件下,直线l 同时满足以下三个条件: (i )与直线√19x +y −3=0垂直; (ii )与圆C 相切;(iii )在y 轴上的截距大于0,若直线l 与圆C 2交于D ,E 两点,求|DE |. 解:(1)依题意,由{(x +3)2+y 2=9(x −1)2+y 2=9,解得{x =−1y =−√5或{x =−1y =√5, 因此圆C 1与圆C 2的公共弦的两个端点坐标分别为M(−1,−√5),N(−1,√5), 当圆C 的面积最小时,MN 是圆C 的直径,则圆C 的圆心为(﹣1,0),半径为√5, 所以圆C 的标准方程是(x +1)2+y 2=5;(2)因为直线l 与直线√19x +y −3=0垂直,则设直线l 的方程为x −√19y +m =0, 而直线l 与圆C 相切,则有d =|−1+0+m|2√5=√5,解得m =1或m =﹣9,又因为l 在y 轴上的截距大于0,即√190,所以m =11,即直线l 的方程为x −√19y +11=0,而圆C 2的圆心C 2(1,0),半径r 2=3, 点C 2到直线l :x −√19y +11=0 的距离为d 2=|1+0+11|25=6√55,于是得|DE|=2√r 22−d 22=2√9−(655)2=6√55.20.(12分)如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠ABC=π3,H为BC的中点,P A=PB=PH=√2.E为PD上的一点,已知PD=4PE.(1)证明:平面P AB⊥平面ABCD;(2)求平面EAC与平面P AB夹角的余弦值.(1)证明:取AB中点O,连接PO,HO,∵P A=PB,O为AB中点,∴PO⊥AB,∵PA=√2,OA=12AB=1,∴PO=√PA2−OA2=1,∵四边形ABCD为菱形,∠ABC=π3,∴△ABC为等边三角形,∴AC=2,又O,H分别为AB,BC中点,∴OH=12AC=1,∴OH2+PO2=PH2,即PO⊥OH,∵OH∩AB=O,OH,AB⊂平面ABCD,PO⊄平面ABCD,∴PO⊥平面ABCD,∵PO⊂平面P AB,∴平面P AB⊥平面ABCD;(2)解:连接CO,由(1)知:△ABC为等边三角形,∴CO⊥AB,CO=√3,以O为坐标原点,OC、OB、OP所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则A(0,−1,0),C(√3,0,0),D(√3,−2,0),P(0,0,1),H(√32,12,0), ∴AC →=(√3,1,0),PD →=(√3,−2,−1),PH →=(√32,12,−1),PA →=(0,−1,−1), 由PD =4PE 得:PE →=(√34,−12,−14), ∴EA →=PA →−PE →=(−√34,−12,−34), 设平面EAC 的法向量为m →=(x ,y ,z),则{AC →⊥m →EA →⊥m →⇒⇒{AC →⋅m →=0EA →⋅m →=0⇒⇒{√3x +y =0−√34x −y 2−34z =0, 令z =1,解得:x =√3,y =−3,∴m →=(√3,−3,1), ∵x 轴⊥平面P AB ,∴平面P AB 的一个法向量ℎ→=(1,0,0), 设平面EAC 与平面P AB 的夹角为θ, 则cosθ=|cos <m →,ℎ→>|=|m →⋅ℎ→||m →|⋅|ℎ→|=3√13=√3913,所以平面EAC 与平面P AB 夹角的余弦值为√3913. 21.(12分)已知A(−√3,1),B ,M 是椭圆C 上的三点,其中A 、B 两点关于原点O 对称,直线MA 和MB 的斜率满足k MA •k MB =−13. (1)求椭圆C 的标准方程;(2)点Q 是椭圆C 长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若1|PQ|+1|QN|为定值,则称点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有的“稳定点”,并说明理由;若没有,也请说明理由. 解:(1)设M (x ,y ),易知B(√3,−1), 由k MA ⋅k MB =−13,得x+√3⋅x−√3=−13,化简得x 26+y 22=1,故椭圆C 的标准方程为x 26+y 22=1.(2)∵点Q 是椭圆C 长轴上的不同于A 、B 的任意一点, 故可设直线PN 的方程为x =my +x 0,P (x 1,y 1),N (x 2,y 2), 由{x =my +x 0x 26+y 22=1,得(m 2+3)y 2+2mx 0y +x 02−6=0, ∴y 1+y 2=−2mx 0m 2+3,y 1y 2=x 02−6m 2+3,Δ>0恒成立.又|PQ|=√1+m 2|y 1|,|QN|=√1+m 2|y 2|, ∴1|PQ|+1|QN|=√1+m2(1|y 1|+1|y 2|)=√1+m 212−y 1y 2,=1√1+m 2√(y1+y 2)2−4y 1y 2−y 1y 2=1√1+m 2⋅√(−2mx 0m 2+3)2−4⋅x 02−6m 2+3−x 02−6m 2+3=26−x 02√6m 2−3x 02+18m 2+1=26−x 02√6(m 2+6−x 022)m 2+1, 要使其值为定值,则6−x 022=1,故当x 02=4,即x 0=±2时,1|PQ|+1|QN|=√6.综上,存在这样的稳定点Q (±2,0). 22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为4√3,且点P(2,√3)在椭圆E 上.(1)求椭圆E 的方程;(2)若A 、B 、Q 是椭圆E 上的三点,且直线AB 与x 轴不垂直,点O 为坐标原点,OQ →=λOA →+μOB →,则当△AOB 的面积最大时,求λ2+μ2的值.解:(1)由题意得,{2c =4√34a 2+3b 2=1a 2−b 2=c 2,解之得{a 2=16b 2=4c =2√3,故椭圆E 的方程为x 216+y 24=1;(2)设A (x 1,y 1),B (x 2,y 2),Q (x 0,y 0),直线AB 的方程为y =kx +t . 将y =kx +t 代入x 216+y 24=1,整理得(1+4k 2)x 2+8ktx +4t 2﹣16=0,Δ=(8kt )2﹣4(1+4k 2)(4t 2﹣16)>0,即16k 2+4﹣t 2>0, 则x 1+x 2=−8kt 1+4k2,x 1x 2=4t 2−161+4k2,故|AB|=√1+k 2|x 1−x 2|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅4√16k 2−t 2+41+4k2.又原点O 到直线AB 的距离为d =|t|√1+k,所以S △AOB=12|AB|×d =12⋅√1+k 2⋅4√16k 2−t 2+41+4k 2⋅|t|√1+k=2√(16k 2−t 2+4)t 21+4k 2≤16k 2+41+4k 2=4, 当且仅当16k 2﹣t 2+4=t 2,即2+8k 2=t 2……①时,等号成立. 由OQ →=λOA →+μOB →,得{x 0=λx 1+μx 2,y 0=λy 1+μy 2,代入x 0216+y 024=1,整理得λ2(x 1216+y 124)+μ2(x 2216+y 224)+2λμ(x 1x 216+y 1y 24)=1,即λ2+μ2+2λμ(x 1x 216+y 1y 24)=1⋯⋯②.而x 1x 216+y 1y 24=x 1x 216+(kx 1+t)(kx 2+t)4=(1+4k 2)x 1x 2+4kt(x 1+x 2)+4t 216=(1+4k 2)×4t 2−161+4k2+4kt×(−8kt 1+4k2)+4t216=t 2−2−8k22(1+4k 2).由①可知x 1x 216+y 1y 24=0,代入②式得λ2+μ2=1.故λ2+μ2=1的值为1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年吉林省长春150中学高二(上)期中化学试卷一、选择题(本题包括18小题,每小题3分,共54分.每小题只有一个选项符合题意.)1.(3分)(2012秋•珠海期末)有一支50mL酸式滴定管中盛盐酸,液面恰好在amL刻度处,D3.(3分)(2014秋•长春校级期中)下列热化学方程式表达正确的是(△H的绝对值均正确)6.(3分)(2014秋•长春校级期中)在4NH3+5O2⇌4NO+6H2O反应中,表示该反应速率最快7.(3分)(2013春•泉州校级期末)在一定条件下,对于密闭容器中进行的反应:P(g)+Q10.(3分)(2014秋•长春校级期中)已知在1×105Pa,298K条件下,2mol氢气燃烧生成水蒸O++2﹣12.(3分)(2012春•武汉校级期末)在容积可变的密闭容器中存在如下反应:CO(g)+H2O (g)⇌CO2(g)+H2(g)△H<0,下列对图象的分析中不正确的是()﹣114.(3分)(2014秋•长春校级期中)常温时,若1体积硫酸恰好与10体积pH=11的氢氧化15.(3分)(2013秋•秦安县期末)在0.1mol •L ﹣1 CH 3COOH 溶液中存在如下电离平衡:﹣+16.(3分)(2014春•五华区校级期中)已知:(1)Zn (s )+O 2(g )=ZnO (s )△△H=﹣348.3kJ/mol (2)2Ag(s )+O 2(g )=Ag 2O (s )△H=﹣31.0kJ/mol17.(3分)(2013秋•白城期末)某探究小组在某温度下测定溶液的pH 值时发现,0.01mol •L ﹣1的NaOH 溶液中,由水电离出的c (H +)•c (OH ﹣)=10﹣22(mol •L ﹣1)2,则该小组在该温﹣118.(3分)(2013•重庆)将E 和F 加入密闭容器中,在一定条件下发生反应:E (g )+F (s )60%③该反应的△S >0 ④K (1000℃)>K (810℃)二、填空题(共46分)19.(12分)(2014秋•长春校级期中)物质在水中可能存在电离平衡、盐的水解平衡,它们都可看作化学平衡.请根据所学的知识回答:(1)A为Cu(NO3)2其水溶液呈(填“酸”、“中”、“碱”)性,常温时的pH7(填“>”、“=”、“<”)实验室在配制Cu(NO3)2的溶液时,常将Cu(NO3)2固体先溶于较浓的硝酸中,然后再用蒸馏水稀释到所需的浓度,以(填“促进”、“抑制”)其水解.(2)B为0.1mol/L的NH4Cl溶液,在该溶液中各种离子的浓度由大到小顺序为.(3)C为0.1mol/L NaHCO3溶液,请分析NaHCO3溶液显碱性的原因,用离子方程式表示:.(4)D为FeCl3溶液,若把C和D溶液混合,将产生红褐色沉淀和无色气体,该反应的离子方程式为.20.(10分)(2012秋•泸县校级期末)某学生欲用已知物质的量浓度的盐酸来测定未知物质的量浓度的氢氧化钠溶液时,选择甲基橙作指示剂.请填写下列空白:(1)用标准的盐酸溶液滴定待测的氢氧化钠溶液时,左手把握酸式滴定管的活塞,右手摇动锥形瓶,眼睛注视.直到因加入一滴盐酸后,溶液由黄色变为橙色,并为止.(2)下列操作中可能使所测氢氧化钠溶液的浓度数值偏低的是(A)酸式滴定管未用标准盐酸溶液润洗就直接注入标准盐酸溶液(B)滴定前盛放氢氧化钠溶液的锥形瓶用蒸馏水洗净后没有干燥(C)酸式滴定管在滴定前有气泡,滴定后气泡消失(D)读取盐酸体积时,开始仰视读数,滴定结束时俯视读数(3)若滴定开始和结束时,酸式滴定管中的液面如图所示:则起始读数为mL,终点读数为mL;所用盐酸溶液的体积为mL.=(保留小数点后4位).21.(10分)(2014秋•长春校级期中)T℃时,A气体与B气体反应生成C气体,反应过程中,A、B、C浓度变化如图(I)所示,若保持其他条件不变,温度分别为T1和T2时,B的体积分数与时间的关系如图(Ⅱ)所示.根据以上条件,回答下列问题:(1)A与B反应生成C的化学方程式为,正反应为(填“吸热”或“放热”)反应.(2)t1min后,改变下列某一条件,能使平衡向逆反应方向移动的有.A.保持其他条件不变,增大压强B.保持容器总体积不变,通入少量稀有气体C.保持其他条件不变,升高温度(3)T℃时,该反应化学平衡常数K=,若将温度升高100℃时,K值将.(填“增大”,“减小”或“不变”)22.(14分)(2014秋•长春校级期中)NH4Al(SO4)2是食品加工中最为快捷的食品添加剂,用于焙烤食品中;请回答下列问题:(1)NH4Al(SO4)2溶液呈性(填“酸”、“碱”、“中”)(2)相同条件下,0.1mol•L﹣1NH4Al(SO4)2中c(NH4+)(填“等于”、“大于”或“小于”)0.1mol•L﹣1NH4HCO3中c(NH4+).(3)如图1是0.1mol•L﹣1电解质溶液的pH随温度变化的图象.①其中符合0.1mol•L﹣1NH4Al(SO4)2的pH随温度变化的曲线是(填写序号),导致pH随温度变化的原因是.②20℃时,0.1mol•L﹣1NH4Al(SO4)2中2c(SO42﹣)﹣c(NH4+)﹣3c(Al3+)=mol•L﹣1.(4)室温时,向100mL 0.1mol•L﹣1 NH4HSO4溶液中滴加0.1mol•L﹣1 NaOH溶液,得到溶液pH与NaOH溶液体积的关系曲线如图2所示:试分析图2中a、b、c、d四个点,水的电离程度最大是点;在b点,溶液中各离子浓度由大到小的排列顺序是.2014-2015学年吉林省长春150中学高二(上)期中化学试卷参考答案与试题解析一、选择题(本题包括18小题,每小题3分,共54分.每小题只有一个选项符合题意.)1.(3分)(2012秋•珠海期末)有一支50mL酸式滴定管中盛盐酸,液面恰好在amL刻度处,D3.(3分)(2014秋•长春校级期中)下列热化学方程式表达正确的是(△H的绝对值均正确)6.(3分)(2014秋•长春校级期中)在4NH3+5O2⇌4NO+6H2O反应中,表示该反应速率最快A.=0.2B.C.D.=0.37.(3分)(2013春•泉州校级期末)在一定条件下,对于密闭容器中进行的反应:P(g)+Q10.(3分)(2014秋•长春校级期中)已知在1×105Pa,298K条件下,2mol氢气燃烧生成水蒸O+O++2﹣12.(3分)(2012春•武汉校级期末)在容积可变的密闭容器中存在如下反应:CO(g)+H2O (g)⇌CO2(g)+H2(g)△H<0,下列对图象的分析中不正确的是()﹣114.(3分)(2014秋•长春校级期中)常温时,若1体积硫酸恰好与10体积pH=11的氢氧化=115.(3分)(2013秋•秦安县期末)在0.1mol•L﹣1 CH3COOH溶液中存在如下电离平衡:﹣+16.(3分)(2014春•五华区校级期中)已知:(1)Zn(s)+O2(g)=ZnO(s)△△H=﹣348.3kJ/mol (2)2Ag(s)+O2(g)=Ag2O(s)△H=﹣31.0kJ/mol+O17.(3分)(2013秋•白城期末)某探究小组在某温度下测定溶液的pH值时发现,0.01mol•L ﹣1的NaOH溶液中,由水电离出的c(H+)•c(OH﹣)=10﹣22(mol•L﹣1)2,则该小组在该温﹣1=18.(3分)(2013•重庆)将E 和F加入密闭容器中,在一定条件下发生反应:E (g )+F (s )①b <f ②915℃、2.0MPa 时E 的转化率为60%③该反应的△S >0 ④K (1000℃)>K (810℃)=75%=75%二、填空题(共46分)19.(12分)(2014秋•长春校级期中)物质在水中可能存在电离平衡、盐的水解平衡,它们都可看作化学平衡.请根据所学的知识回答:(1)A为Cu(NO3)2其水溶液呈酸(填“酸”、“中”、“碱”)性,常温时的pH<7(填“>”、“=”、“<”)实验室在配制Cu(NO3)2的溶液时,常将Cu(NO3)2固体先溶于较浓的硝酸中,然后再用蒸馏水稀释到所需的浓度,以抑制(填“促进”、“抑制”)其水解.(2)B为0.1mol/L的NH4Cl溶液,在该溶液中各种离子的浓度由大到小顺序为c(Cl﹣)>c(NH4+)>c(H+)>c(OH﹣).(3)C为0.1mol/L NaHCO3溶液,请分析NaHCO3溶液显碱性的原因,用离子方程式表示:HCO3﹣+H2O⇌H2CO3+OH﹣,.(4)D为FeCl3溶液,若把C和D溶液混合,将产生红褐色沉淀和无色气体,该反应的离子方程式为2Fe3++3H2O+3CO32﹣=2Fe(OH)3↓+3CO2↑.20.(10分)(2012秋•泸县校级期末)某学生欲用已知物质的量浓度的盐酸来测定未知物质的量浓度的氢氧化钠溶液时,选择甲基橙作指示剂.请填写下列空白:(1)用标准的盐酸溶液滴定待测的氢氧化钠溶液时,左手把握酸式滴定管的活塞,右手摇动锥形瓶,眼睛注视锥形瓶中溶液颜色变化.直到因加入一滴盐酸后,溶液由黄色变为橙色,并半分钟内不复原为止.(2)下列操作中可能使所测氢氧化钠溶液的浓度数值偏低的是D(A)酸式滴定管未用标准盐酸溶液润洗就直接注入标准盐酸溶液(B)滴定前盛放氢氧化钠溶液的锥形瓶用蒸馏水洗净后没有干燥(C)酸式滴定管在滴定前有气泡,滴定后气泡消失(D)读取盐酸体积时,开始仰视读数,滴定结束时俯视读数(3)若滴定开始和结束时,酸式滴定管中的液面如图所示:则起始读数为0.00mL,终点读数为26.10mL;所用盐酸溶液的体积为26.10mL.请选用其中合理的数据列式计算该氢氧化钠溶液的物质的量浓度:c(NaOH)=0.1044mol/L (保留小数点后4位).==,可知,可知=0.1044mol/L21.(10分)(2014秋•长春校级期中)T℃时,A气体与B气体反应生成C气体,反应过程中,A、B、C浓度变化如图(I)所示,若保持其他条件不变,温度分别为T1和T2时,B的体积分数与时间的关系如图(Ⅱ)所示.根据以上条件,回答下列问题:(1)A与B反应生成C的化学方程式为A+3B⇌2C,正反应为放热(填“吸热”或“放热”)反应.(2)t1min后,改变下列某一条件,能使平衡向逆反应方向移动的有C.A.保持其他条件不变,增大压强B.保持容器总体积不变,通入少量稀有气体C.保持其他条件不变,升高温度(3)T℃时,该反应化学平衡常数K=533.3,若将温度升高100℃时,K值将减小.(填“增大”,“减小”或“不变”)K==22.(14分)(2014秋•长春校级期中)NH4Al(SO4)2是食品加工中最为快捷的食品添加剂,用于焙烤食品中;请回答下列问题:(1)NH4Al(SO4)2溶液呈酸性性(填“酸”、“碱”、“中”)(2)相同条件下,0.1mol•L﹣1NH4Al(SO4)2中c(NH4+)大于(填“等于”、“大于”或“小于”)0.1mol•L﹣1NH4HCO3中c(NH4+).(3)如图1是0.1mol•L﹣1电解质溶液的pH随温度变化的图象.①其中符合0.1mol•L﹣1NH4Al(SO4)2的pH随温度变化的曲线是Ⅰ(填写序号),导致pH随温度变化的原因是NH4Al(SO4)2水解,溶液呈酸性,升高温度,其水解程度增大,pH减小.②20℃时,0.1mol•L﹣1NH4Al(SO4)2中2c(SO42﹣)﹣c(NH4+)﹣3c(Al3+)=10﹣3mol•L ﹣1.(4)室温时,向100mL 0.1mol•L﹣1 NH4HSO4溶液中滴加0.1mol•L﹣1 NaOH溶液,得到溶液pH与NaOH溶液体积的关系曲线如图2所示:试分析图2中a、b、c、d四个点,水的电离程度最大是a点;在b点,溶液中各离子浓度由大到小的排列顺序是c(Na+)>c(SO42﹣)>c(NH4+)>c(OH﹣)=c(H+).。

相关文档
最新文档