武汉大学数学物理的方法考试习题25页PPT
《数学物理方法》课件第7章

小弦长,与其过点z0的原像曲线在z0处的无穷小弦长之比
的极限,不管曲线的方向如何,都等于|f'(z0)|。换句话说,
一切过z0点的曲线的无穷小弦长都被放大(或缩小)了|f'(z0)|
倍,可知无穷小面积就被放大(或缩小)了|f'(z0)|2倍。这正是
高等数学中定义的面积变换因子雅可比行列式
J
u, x,
k 1
1
2k 13
2k
sin
1 x
cos k
2k
1 at
l
(7.15) 可以验证这个解与用分离变量法得到的结果完全一致。
13
7.2 保角变换法
电学、光学、流体力学和弹性力学中的很多实际问题, 都可以归结为求解平面场的拉普拉斯方程或泊松方程的边 值问题,而这些边值问题中的边界形状通常十分复杂,我 们可以设法先将它转化为简单形状边界的边值问题,然后 求解。本节所介绍的保角变换法就是按照这种思路求解问 题的有效方法。
27
7.2.2 拉普拉斯方程的解
保角变换之所以受人重视,主要是因为拉普拉斯方程 的解在经过一个保角变换后仍然是拉普拉斯方程的解,即:
定理3 在单叶解析函数的变换(保角变换)下,拉普拉 斯方程式仍然变为拉普拉斯方程。
证明 设w=f(z)=u(x,y)+iv(x,y)是一单叶解析函数,
且j(x,y)满足拉普拉斯方程
(7.17)
16
定理1 若f(z)是D上的单值解析函数,且f'(z)≠0(z∈D), 则变换w=f(z)在区域D上构成一一对应的变换(或映射), 并称该变换为D域上的单叶变换,函数w=f(z)为D域上的 单叶解析函数。
下面我们进一步来研究这种单叶变换的特点。图7.1中, 设z平面上的原像曲线C经单叶变换w=f(z)变成w平面上的 变像曲线G;在C上的无穷小弦长为Dz,则在Dz上的变像为 Dw,分别记为
数学物理方法复习要点13.6.19-24页PPT资料

利用递推公式
P lx P l' 1 x P l' 1 x
上式 u22Pl10Pl10Pl11Pl11
展成广义傅立叶级数。 7、熟练利用连带勒让德多项式给出拉普拉斯方程非轴对称
性定解问题的解。
第十一章 柱函数
1、熟悉三类贝塞尔方程和三类柱函数 2、掌握几类柱函数的自然边界条件 3、熟练掌握贝塞尔函数的递推公式 4、掌握贝塞尔函数的零点与模值 5、能将函数展成贝塞尔级数 6、能熟练解决柱坐标系下的边值问题(波动方程,输运方
第七章 数学物理方程定解问题 1、能导出弦的横振动方程、均匀杆的纵振动方程、扩散
方程、热传导方程、静电场方程 2、能正确写出波动方程、输运方程的初始条件 3、能正确写出数理方程方程的三类边界条件(注意符号的
正负) 固定端、自由端、弹性支撑、绝热、过截面有热量交换
衔接条件:振动问题,两种材料连接,位移连续、连接面上二力相等 静电场:电势相等,点位移矢量连续 4、能正确写出定解问题 5、掌握达朗贝尔公式,熟练运用达朗贝尔公式解无界和半 无界弦波动方程的定解问题 6、明确行波法中波动方程解的物理意义
解格林函数的边值问题。 5、掌握三维无界空间的基本解和二维无界空间极坐
标下的基本解。 6、熟练应用电像法求半空间、球形区域和圆域等的
格林函数 7、运用电像法给出半空间、球形区域和圆域等边值
问题的积分公式。
第十三章 积分变换法
1、掌握傅立叶变换的定义 2、掌握傅立叶变换的基本性质 3、掌握拉普拉斯变换的定义 4、掌握拉普拉斯变换的基本性质 5、熟练运用傅立叶变换法求解无限长杆热传导问
所以
ur,C 0l 1C lrllla l1a rl1P lcos
代入 第二个边界条件,有
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
第九章习题课-武汉大学数学物理方法

~ (ω ) ~ (ω ), F [ψ ( x )] = ψ ~ (ω , t ), F [ϕ ( x )] = ϕ 解 : (1) 记 F [u ( x, t )] = u ~ (ω , t ) d 2u 2 4~ + a ω u (ω , t ) = 0 (4) 2 dt 则 ~ (ω ) ~ (ω ,0 ) = ϕ u (5)
2 2 2
傅氏变换习题课
4π ⎡ 1 − μr ⎤ ⎡ 1 ⎤ 4π (μ > 0 ) 证明 : (1 ) F ⎢ ⎥ = 2 ; (2 ) F ⎢ e ⎥ = 2 2 ⎣r ⎦ ω ⎣r ⎦ ω +μ v v ∞ 4π 1 v −1 ⎡ 4 π ⎤ iω ⋅r e d ω 提示 : F ⎢ 2 ⎥ = 3 ∫ ∫ ∫− ∞ 2 ω ω (2 π ) ⎣ ⎦
4π ∞ 2π π 1 iωr cos θ 2 = e ω sin θ dθ dϕdω 3 ∫0 ∫0 ∫0 2 ω (2π ) x = cos θ 1 ∞ 1 = ∫ ∫ e iωrx dxd ω
π
0
−1
Wuhan University
二、有关性质及其应用
已知: ∫− ∞
∞
∞
傅氏变换习题课
求 f (x ) = ? 解:
−1
~ (ω , t )] u ( x, t ) = F −1 [u ~ (ω ) cos aω 2t ] − F −1 [ ~ (ω ) sin aω 2t ] = F −1 [ϕ ψ
−1
F e
−1
[ ]
iaω 2t
[
−1 −1 2 ( ) − F F ψ x ∗ F sin a ω t cos aω t
∫
∞
−∞
武汉大学数学物理方法考试习题

n n xm xm n 本征值:km , m 1,2, Rm (k ) J n ( ), m 1,2, a a
Wuhan University
三、S-L本征值问题
2、 S-L本征值问题的性质:
16.1 S-L问题
(2) m 0, m 1,2,
(3)
n (k m ) 2 0 如:
x 2 y xy [k 2 x 2
d dy m2 [(1 x 2 ) ] y l (l 1) y 0 2 dx dx 1 x d dy n 2 2 [( x ] y k 2 xy 0 n ]y 0 dx dx x
d dy [k ( x) ] q( x) y ( x) y 0, a x b (1) dx dx
b
a
( x) ym ( x) yn ( x)dx N
a
2 n mn
(见附2)
a2 2 n J n1 (kln a) ml 如: J n (km )J n (kln )d 0 2 1 b (4) f ( x) cm ym ( x) cm 2 a ( x) f ( x) ym ( x)dx Nm m 1
Wuhan University
第十六章 斯-刘问题
问题的引入:
d 2 dy (1 x ) y 2 xy l (l 1) y 0 [(1 x ) ] l (l 1) y 0 dx dx
2
m2 (1 x 2 ) y 2 xy [l (l 1) ]y 0 2 1 x
) 解: 1 k ( x) 1, k (0) k (l ) 1, , q( x) 0, ( x) 1;
最新数学物理方法(MethodofmathematicalPhysics)PPT
2021/1/22
数学物理方法
1
(MethodofmathematicalPhysics)
5 4 3 2 1 5
2 1 0 -1
16
2 -2
复变函数
三角函数
20
定义:w = sin(z)
0
分析
-20
-5
u + iv = sin(x+iy) = sin(x)ch(y)
-2.5
+ i cos(x)sh(y)
100
50 0
-50 -100
-10 -5 0
10 5 0 -5
5 -10
10
u = x2 -y2 ,
v = 2xy 200
性质
对称性、无周期性 无界性、单值性
100 0
-100 -200
-10 -5 0
10 5 0 -5
2021/1/22
数学物理方法 (MethodofmathematicalPhysics)
正交性:解析函数的实部与虚部梯度正交,
即 ∇u ∇ v=(uxi+uyj)(vxi+vyj)= uxvx+uyvy = 0 或曲线 u(x,y)=C1, v(x,y)=C2 相互垂直。
2021/1/22
数学物理方法
22
(MethodofmathematicalPhysics)
解析函数
应用
例1:已知平面电场的电势为u=x2-y2,求电力线方程。
vx=-uy=2y, vy=ux =2x dv = vxdx+vxdy=2ydx+2xdy=d(2xy)
v = 2xy 注意:热流线方程的一般形式为 f(2xy)=C
第十章习题课-武汉大学数学物理方法
r3
gi :
x
−
3
第十章习题课
三、求泊松方程的狄氏问题
1、求上半空间的狄氏问题 ∂G ⎧ Δu = 0, z > 0 → u ( M ) = − ∫∫ f ( M 0 ) dx 0 dy 0 σ ⎨ ∂n0 u f ( x , y ) = 1 M ⎩ z =0
Δg = 0, z > 0 1 | z =0 g | z =0 = − 4πr −q (1)在M1 ( x, y,− z )放 − q, 则Δ( ) = 0 , z > 0 4πε 0 r1 ε0 −q q 使 | z =0 = − | z =0 则 g = − 4πε 0 r1 4πε 0 r 4πε 0 r1
[
]
[
]
∂G ∂G ∂G =− = ∂y ∂n ∂ (− y )
2( y + y 0 ) 2( y − y 0 ) ∂G 1 ∴ − ] | y =0 = [ 2 2 2 2 y =0 ∂y 4π ( x − x0 ) + ( y + y 0 ) ( x − x0 ) + ( y − y 0 )
⎤ y0 ⎡ 1 = ⎢ 2⎥ π ⎣ ( x − x0 ) 2 + y0 ⎦
0 0
3.
−∞
∫
f ( x )δ ( n ) ( x − x 0 )dx = ( − 1) n f
n
(n)
( x0 )
δ ( x − xi ) 4. δ [ϕ ( x)] = ∑ , 其中ϕ ( xi ) = 0 i =1 ϕ ′( xi )
Wuhan University
第十章习题课
一、 δ 函数及其在物理上的应用
r = ( x − x0 ) 2 + ( y − y 0 ) 2 , r1 = ( x − x0 ) 2 + ( y + y0 ) 2
武汉大学:数学物理方法课件2_1Bessel函数
ν
(ν - ν )C0 = 0, 设 C0 ≠ 0
2 2
2 2 ( ν + 1) ν C1 = 0 → C 1 = 0
x v+k :
2 2 ( ν + k ) ν C k + C k -2 = 0
Ck -2 ∴ Ck = (3) k (2ν + k )
n m
n m ——称之为
J n ( x)
0 x 的第m个零点如: 1 = ?
0 , x2 =?
③本征值问题(9)~(10)或(9)’~(10)’
n 本征值为: m
k
=
n xm 本征函数为:y = Jn ρ a
n xm a
证:∵ 由(9)’=1有:y ( x ) = J n ( x ) 而由(10)’ 有 J n (ka ) = 0 即 ∴
由书p353,常微方程的级数解法知,
1 p( x ) = , x ν q( x ) = 1 - x
2
∴ x=0为(1)的正则奇点,故
k+ρ y = C x ∑ k 1.令
∞
k =0
代入(1):
∑(k + ρ)(k + ρ -1)Ck x + ∑(k + ρ)Ck x + ∑Ck x
(-1) x y = J ±ν ( x ) = ∑ k = 0 k ! Γ( ±ν + k + 1) 2
∞ k 2 k +ν
(**)
当 ν ≠ n : y c = Cν Jν ( x ) + dν J -ν ( x ) 当 ν = n : J - n ( x ) = (-1) J n ( x ) 2.
数学物理方法第三版.ppt
即z ei 0
则:lim lim lim ei z0 z 0 z 0
lim
0
u iv
ei
u
i
v
e
i
再令z沿横向逼近于零,
即z ei iei 0
则:lim lim lim ei z0 z 0 z 0
i ei lim u iv
u(x, x
y)
v( x, y
y)
v(x, y) u(x, y)
x
y
以上条件为复数z可导的必要条件,又称 为柯西—黎曼条件(简称C-R条件)。
极坐标系下的C-R条件
u
v
u
v
推导极坐标下的C-R方程
证明:由定义可知
u(x, y) iv(x, y) u(,) iv(,)
习题
例一
求解析函数u(x, y) x2 y2的虚部v(x, y)
解:因为:u 2x,u 2 y
x
y
所以:v 2 y,v 2x
x
y
即dv 2 ydx 2xdy
v 2 ydx 2xdy c
既然积分与路径无关,为方便计 算,取如图所示路径积分可得:
Y
(X,Y)
0
(X,0)
X
v
外点: Zo及其邻域均不属于点集E,则 该点叫作E的外点。
境界线:若Zo及其邻域内既有属于E的点, 也有不属于E的点,则该点为境界 点,境界点的全体称为境界线。
境界线 内点 境界点 外点
区域
区域:(1)点集中的每个点都是内点 (2)点集是连通的,即点集中
的任何两点都可以用一条曲线连接起来 ,且线上的点全属于该点集。
cos z 1 (e2y e2 y ) 2(cos2 x sin2 x) 2