电力系统常见消谐方案
电力系统铁磁谐振的产生及消除措施

如发 电机 、 变 压器 、 电压互感 器 、 电抗器 、 消弧线 圈等和 系统 的电容元件 , 电线路 、 如输 电容补偿器等形成 共 谐条件 , 激发持续 的铁磁谐振 , 使系统产生谐 振
c。
/ /
星。 …
u
一
1 4一
中国新技术新产品
摘 要: 电力 系统 中有很 多铁 芯 电感元 件 , 系统发 生 故 障或 开关 操作 时 , 外加 电源的 作 用下 , 些 电 感可 能 与 电容 ( 导线 电 当 在 这 如 容 ) 生铁 磁谐 振过 电压 。它会破 坏 电气设备 的绝缘 , 至会烧 毁 电气设备 , 产 甚 严重 威胁 着 电力 系统 的安全 、 定运行 。本 文分 析 了电 稳 力 系统铁 磁谐振 过 电压 的产 生原理 , 生原 因 , 产 并提 出 了具体 的防 范措施 。 关键词 : 电压互 感 器; 铁磁 谐振 ; 电感 倒 闸操作 引发 电流 、 的冲击扰动 , 有可能 0 即开 口 电压 就 , 三角绕组被短接 , 当于电压 互感器 T 相 发生铁磁谐振。当 P T发生 谐振以后 , 芯里产 型等值电路的二次测短 路。 铁 生零序磁通 ,这个磁通在开 口三角线 圈里感 应 3 . 2将互感器高压侧中性 点经高阻抗( 零序 出零 序电压 , 现行 的 铁芯截 面积小 , 一般 运 互感器或可变电阻 ) 。 接地 过电压田 。过 电压造成 励磁 电流剧增 , 有时 可达 行在励磁 曲线的饱和点 以下 ,一般在线 电压下 在三相 电压互感器 高压侧 中性点 串入 1 台 额定电流的几 十倍 , 持续时间较长 , 就会造成熔 就饱和 了, 导致 的感 抗 x 严重下降 , 这样就 单相电压互感器的高压线圈 ,而其低压线圈则 断器的熔 断, 设备的烧损或爆炸 , 乃至大面积停 和线路或母线对地 电容 X 组成 了谐振 回路 。 串人三相电压互感器低压侧的 中性点接地回路 电事故目 。 2 . 2不对称接地故 障引起 的铁磁谐振 中。正常运行时三 相 电压互感器的 中性点电位 1中性点不接地系统中铁磁谐振的产生原 在 中性点不接地系统 中,当发生单相接地 接近 0 ’ 单相电压互感器 中没有 电流流过。当系 理 故障时 , 电网电压 、 维持不 变 , 相位 故障相 电压 统 内出现一相接地时 ,两正常相的对 地电压升 如图 1 所示 , 电源变压器 中性点不接地 , 为 下降为近似零 值 , 非故 障相 上升为额定 电压近 高 1 3 倍 。 . 2 但由于三相 电压互感器的中性点对 7 了监视绝缘 ,电压互感 器的一次绕组 中性点直 似值 的 1 3 倍 , . 2 当系统接地故 障消除 后 , 7 非接 地 之间 串联 了 1 台单相 电压 互感 器 的高压线 接接地 , 其励磁 电感分 别为 L 、 与 并联 地相在过 电压期 间 , I 、 I L 其 L 由于线路 电容 的作用 , 已对 圈 , 这样就相 当于增加 了每一相的励磁 电感 , 因 的电容 c代表该相导线 和母线 的对地 电容 。C 线路充人 电荷 ,这部分 电荷在 陛点不接地 系 此铁芯中磁通不会升高到严重饱和的状态口 能 。 。 。 与励磁电感并联后的导纳 为 、 w Y、 。 Y 统 中,只能对 电压互感器的高压绕组 电感线 圈 够使电压互感器各相 电压保持在正常相 电压 附 在正常运行条件下 , 磁电感 L - = 故 放电 ,而流人大地 ,在这 个电压 瞬变过渡过程 近而不饱和 , 励  ̄L L , v 提高了电压互感器零序励磁特性 , Y= v 三相对地 负载是平衡 的 , u  ̄ , Y Y 中性点 电位 中,非接地相电压互感器一次绕组励磁 电流突 降低电压互感 器的一次 电流 , , 同时 也保持 了接 为零 。 然出现数倍于额定 电流的峰值 电流 ,可将一次 地指示装 置对零序 电压幅值 和相 位的灵 敏度 , 当电网中发生 冲击扰动 ,例如 电源合闸至 电压 互感器保险熔断甚j烧 毁 I 另外除三相 是一种 比较优越 的消谐 方法 。但是单 相电压互 呷。 空母 线使 互感器一相 或两相 出现涌流现 象 , 或 电压互 感器外 , 的主变、 其余 配变 中性点 均不接 感器型号 的选取 要依据 实际情况来选 择 ,如有 线路瞬间单相弧光接地( 或熄弧 ) , 后 健全相 ( 或 地 ,当系统发生一个周波重燃多次 的弧 光断续 观 认为 , 当选取与三相 电压互感器变 比相 应 故障相 ) 突然升 高也会 出现很 大涌流 , 电压 造成 接地 时 , 电压互感器成为 系统对地放 电的通 道 。 等 的单相电压互感器 。 该相互感器磁路饱 和 , 电感 L相应减小 , 励磁 这 其放 电电流可达 2 A左右 , 是一般 电压互感 器一 3 _ 电源变压器 中性点经过 消弧线圈接 3将 样三相对地负荷 就变得 不平衡 ,中性点 出现位 次额定 电流 2 0 0 倍左右 ,这样重燃多次断续放 地 。 移电压 , 其值为 电, 可能造成 电压互感器因剧烈发热而烧毁 。 在 中性点经消弧线 圈接地 的情况下 ,其 电 2 , 3串联谐振 感 值远 比互感器的励磁 电感小 ,回路 的零序 自 e - o- -一 ㈩ 串联谐振 的现象 : 电压升 高 、 线 表计 摆动 , 振频率决定 于电感和电容 , 感器所引起的谐 互 式中: 赢为中性点位移( 对地) 电压; 电压互感器开 口三角形 电压超过 1 0 。 电线 振 现象也 就成为不可能。3 V系统发生谐振 0V 输 5K 为三相电源电压 ; 路中的导线断落 、断路器非全 相运行 以及熔断 时 , 可采取此法 。需要指 出的是 , 加装 消弧线 圈 为三相励磁电感 与母线 电容并联 器 的一相或 两相熔断 也可能使系统 中 的电感 、 以后 ,系统 中若发生断线故障或 出现纵 向不对 后的导纳。 电容元件 形成 串联谐 振回路 , 中电感一般 是 称 电压时 ,消弧线 圈可能与系统 电容和 电压互 其 在正 常运行情况下 ,由于电压互感器励磁 指 空载或轻负载 变压器 的励磁 电感 等 ,电容 一 感器励磁 电感之 间呈现 串联谐振状态 ,同样可 阻抗很大 各相导 纳呈 现容性 , 而扰动结果使 v 般是指导线 的对地和相 问电容 ,或 电感线 圈的 能引起铁磁谐振问题 。因此加装消弧线圈抑制 相和 W相 电感 即 L V和 L 减小 ,电感 电流增 对地杂散电容 等。 W 因此 , 中. 在 性点不 接地的系统 铁磁谐振的问题需要针对配 电网特点考虑这种 大, 可能使 v相和 w 相导 纳变成感 性 , 构成 如 网络 中, 断线谐振出现的频率非常高 , 并且会造 可能性。 图1 所示 的等值电路图 , 导纳 和容性导 成各种严重后果 。而且 由于铁芯的磁饱和引起 感性 4结论 纳 相互抵消 , 使总导纳 Y + v Y 显著减小 , 电流 、 波形的畸变 , uY+w 电压 即产生 了谐波 , 谐振 使 通过 以上分析 ,中性点不直接接地系统 中 位移 电压 E 大为增加’ 0 ,如果参数配合适 当 , 总 回路还会对谐波产生谐振。 产生 的铁磁 谐振过电压会 对电力 系统造 成严 重 导纳接近于零 , 就产生了串联 谐振现象 , 中性点 3消除铁磁谐振的措施 的后果 ,因此采用将电压互感器开 口三角短接 位移 电压将急剧上升日 。引起 电磁式 电压互感器 为 了限制和消除这种零序 性质 的谐振过电 或 电压互感器 中性点经高 阻抗接地等措施可大 励磁 电流急剧上升等 , 即铁磁谐振现象 。 压, 采用下列措施将取得显著效果。 但根据某高 大减少铁磁谐振的发生 ,至于采用何种消谐方 2常见的铁磁谐振过电压现象 校仿真研究结果 , 任何措施都有一定局 限性 , 不 法 , 根据当地系统的实际情况 , 应该 结合系统的 2 运行开关操作引起的铁磁谐振 l 是绝对可靠的 , 采用时应予以注意。 运行方式 , 在充分借鉴和积累的基础上 , 分别采 在 中性 点不接地系统 中运行 的接地 电压互 3 在剩余 电压绕组 开 口三角端 子并接一 取措施 , . 1 以达到预期的 目的。 感器 , 其每相绕组和线路每相 电容并联 , 形成并 个 电阻 R或加装 专用消谐器 。 参 考 文 献 联谐 振回路 , 在暂态激发 的条件 下 , 、 闸 , 如开 合 在电网正常运行时 ,开 口三角绕组端 口基 【刘晖. 电力 系统铁 磁谐振过 电压叨 江西 电 1 】 浅析 . 本无 电压 ,如果在端 口 力 .0 6 2o. 上接人 电阻 R 不消耗 李顺福. 电压互感器铁芯饱和谐振过电压的分 能量 ,当系统因单相接 析及预 防措施 青海 电力,03 . 20. 地故障而发生 中性点偏 [】 3凌子恕. 高压互感 器技 术手册 北京: 中国电 o5 移时 ,开 口三角绕组端 力 出版 社 2 o. L 二二二二二]一 _ I 口出现 电压 , R消耗 能 郭景武 , 荣新 消 谐装置在 电力 系统 中的应 张 量 ,而且 R值越小 , 消 用分析 天津电力技 术,05 . 20 年增刊. (原理接线 图 a ) (等值 电路 图 b ) 耗能量越多 ,限制谐 振 【l 5 黄建硕铁 磁分频 谐振过 电压 的产生 、 害及 危 图 1中性点不接地 系 中电压互感器谐振接 线图 统 的作用越明 显。 如果 R 措施加. = 电工技 术应 用,0 7 20.
电压互感器常见三种消谐方式及其优缺点

电压互感器常见三种消谐方式及其优缺点我们知道电压互感器常用的消谐方式有一次消谐器、微机消谐装置、加装线性阻尼电阻或灯泡。
下面我们详细了解下三种消谐方式及其优缺点。
1、在PT一次侧的中性点和地之间串联一次消谐器。
抑制谐波的效果明显,并能有效的限制PT一次涌流,防止PT高压熔断器熔断,对非金属性接地所激发的谐振过电压也能起到抑制作用。
AZ-LXQ一次消谐器是由SiC非线性电阻片和线性电阻(6-7kΩ)串联后组成,器工作原理是在谐振刚开始时,加在消谐器上的电压较低时呈高阻值,使谐振在初始阶段不易发发展起来。
当系统发生单相接地故障时,消谐器上将出现千余伏电压,此时电阻下降至稍大于6-7kΩ,使其不至于影响接地指示装置的灵敏度。
因为是在PT一次侧的中性点与地之间串接一次消谐器,所以不消耗PT二次侧绕组的电能,可适当减少PT的功率。
一次消谐器体积小,非常适合安装在小型PT 手车和小型开关柜内。
2、在PT开口三角绕组开口算加装微机消谐装置。
微机消谐装置的原理是对PT开口三角电压(即零序电压)进行循环检测。
正常工作情况下,该电压小于30V,装置内的大功率消谐元件(固态继电器)处于阻断状态,对系统运行不产生影响。
当PT开电压大于30V时,系统出现故障。
消谐装置开始对此信号进行数据采集,通过电路对信号进行数字测量、滤波、放大等数字信号处理、分析,得出故障类型。
如果当前是某种频率的铁磁谐振,系统立即启动消谐电路,使固态继电器导通,让铁磁谐振在阻尼作用下迅速消失。
如果是过电压或单相接地故障,装置给出相应的报警信号。
对于各种故障,装置可以分别给出报警信号和显示,并自动记录、存贮有关故障信息,并上报给上位机。
缺点是:(1)如果遇到不是因为PT铁磁谐振(母线断线、变压器和系统电容谐振)而使开口三角电压升高,这时候很容易误判PT铁磁,可控硅导通后谐振无法消除,如果不能及时退出消谐电路,有可能造成PT烧毁。
(2)系统单相接地可能出现高压涌流,这时候往往容易爆PT熔丝,不能有效限制PT一次涌流,PT高压熔断器熔断还是得不到有效的控制。
消除PT谐振的措施及PT消谐分析

消除PT谐振的措施及PT消谐分析摘要:电磁式电压互感器的铁磁谐振是非有效接地系统中常见的一种现象,电磁式电压互感器引起铁磁谐振后,其介质击穿或爆炸都会导致母线故障。
本文针对铁磁谐振对中性点非有效接地系统带来的影响,对电磁式电压互感器铁磁原理及现有的消谐措施进行分析,在各种情况下选择合适的消谐方式。
关键词:不接地系统;电压互感器;铁磁谐振;消谐措施1 引言在电力系统非有效接地系统中,由于技术和成本原因,广泛采用电磁式电压互感器(下面简称TV),电磁式电压互感器在单相接地、操作等外部因素激发的条件下,易发生铁磁谐振,使得TV受到谐振过电压和过电流的冲击。
谐振过电压一旦发生,往往会造成电气设备的损坏或继电保护装置的误动,导致发生停电事故。
为了尽可能地避免谐振过电压的发生,在设计时应进行必要的参数计算,采取适当的防止谐振的措施,在操作设备时应有合理的调度安排,尽量避免形成谐振回路。
本文从变电站实际发生的一系列谐振过电压现象,对电磁式电压互感器引起的铁磁谐振及消除方法进行讨论。
2 铁磁谐振的危害及主要消谐措施由铁磁谐振产生的原理可看出,当谐振产生时,中性点电压升高,产生零序谐振过电压,过高的电压可能导致设备结缘损坏、设备击穿甚至爆炸及保护装置误动等。
随着供电网络的发展,特别是城区、开发区和大型工厂内部等电缆线路的日益增多,系统单相接地电容电流不断增加。
当发生单相金属性接地故障时,流过故障点的短路电流为所有线路对地电容电流之和,造成故障点的电弧不易熄灭,导致过电压,很可能破坏设备结缘,发展成相间短路,造成停电或损坏设备的事故。
同时,系统震荡时,会产生高次谐波和分次谐波,由于铁芯的磁特性的非线性,电感值会随这外部电压的变化而改变,由于频率低,铁芯磁通密度很高,TV 线圈会产生很大的励磁电流而烧坏TV。
消除铁磁谐振的措施归纳起来主要有三方面:改变系统参数,使其不具备谐振条件,不易引起参数谐振;消耗谐振过程中产生的能量,消除谐振的发生;合理分配有功负荷,一般在轻载或空载条件下易发生谐振[1]。
电力系统谐振原因及处理措施分析

一、概述铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。
二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。
浅谈电力系统中的铁磁谐振过电压及消除方法

浅谈电力系统中的铁磁谐振过电压及消除方法摘要:本文简要分析了电力系统中铁磁谐振产生的原因、现象及对电气设备的危害,并介绍了消除铁磁谐振过电压的常用方法。
关键词:电力系统;铁磁谐振;过电压;电容;电感1 引言电力系统中有许多的电感、电容元件,如变压器、互感器、电抗器、消弧线圈、发电机等的电感,输电线路的对地电容及相间电容,以及各种高压设备的电容。
这些电感,电容元件在特定的参数配合条件下构成振荡回路,当系统进行操作或发生故障时形成谐振现象,从而产生谐振过电压,导致系统中某些电气设备出现严重的过电压而损坏,影响电力系统的安全运行。
2铁磁谐振过电压产生的原因电力系统内,一般的回路都可简化成电阻R、感抗、容抗的串联和并联回路。
铁磁谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
正常运行条件下,感抗大于容抗,即>,此时电路运行在感性工作状态,不具备线性谐振条件,回路保持稳定状态。
铁磁谐振回路的容抗在频率不变的情况下基本上是个不变的常数,而感抗一般是由带铁芯的线圈产生的,铁芯饱和时感抗会变小。
当电源电压有所升高或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值随之减小,当=时,即满足串联谐振条件,于是发生铁磁谐振[4]。
电力系统运行参数具有随机性,其运行方式灵活,构架比较复杂,容易使系统参数发生变化。
在进行操作或者发生故障的条件下,电力系统中的电容和电抗元件很容易形成振荡回路,尤其是主变压器,电压互感器等有绕组及铁芯的设备在一定的激励条件下,最容易产生电磁耦合现象,进而产生串、并联谐振,引发铁磁谐振过电压。
35kV、10kV系统大多采用中性点不接地方式运行,电网结构相对薄弱,加上电力系统操作频繁,运行方式又多变,很容易导致铁磁谐振过电压。
据有关统计,铁磁谐振过电压导致故障概率高达50% ~ 55%。
铁磁谐振过电压导致故障的严重性可见一般。
铁磁谐振过电压本质上是由于非线性励磁电感与电力系统对地电容所构成的铁磁谐振所引发的电网中性点不稳定现象。
一种具有电能质量治理功能的消谐方案

移同时,降低了零序回路阻抗,实现了降低3率的目的。
当系统发生谐振或者单相接地故障时,通过控制SiC 自动投入,有效抑制系统的谐振和冲击涌流,接地故障恢复后K 延时闭合系统恢复正常。
系统正常运行时抗谐电阻不工作,完全消除了自身故障的问题。
UabcSiC KPT 1PT 2PT 3U CU B U A 一种具有电能质量治理功能的消谐方案采用具有电能质量治理功能的消谐方案实施后的变电站,次谐波电压含有率能由治理前的12%~15%,下降到治理后满有电能质量治理功能的消谐方案具有电能质量治理功能的消谐方案采用二次监测、一次消谐的总体技术路线。
对于现有的消谐方式进行技术改进。
结合近年普测中谐波超标的问题,进行方案改进。
控制三相电压信号及开口电压信号,根据阈值输入控制中的智能开关,即实现谐波治理和改善的功能,又能有效(UabcSiC PT 1PT 2PT 3U CU B U A 图1 现有的消谐方式从而更好地把控对氨气投入情况的监视及调整,使NO X 的排放量得到很好地控制,使烟气污染物满足国家环保减排要求。
(2)降低过量氨喷入量过多导致空预器严重腐蚀,引风机动叶腐蚀等情况,减少了液氨使用量,从而节省了采购费用。
参考文献[1] 杨松.氨逃逸测量技术在脱硝系统中的应用研究与优化[J].现代化工,2018(6):11-12.[2] 吴联盟.SCR 烟气脱硝工艺在燃煤电厂的应用[J].内蒙古科技与经济,2008(20):101-102.图2 趋势图1图3 趋势图2(上接第50页) :5. &5:͕ ҃1 1 115, С/图4 谐波总畸变率3次谐波含有率趋势相似,最大不超过0.45%,符合国标要求(图5)。
图5 3次谐波含有率三相电压不平衡度也满足国标要求,零序最大值不超过0.25%,负序电压不平衡度则为0.45%左右(图6)。
图6 三相电压不平衡度4 总结安装使用具有电能质量治理功能的消谐设备以来,线路3次电压谐波含有率符合国标要求,同时三相电压不平衡度在国标运行范围内,改善了线路供电电能质量,提高了系统运行的稳定性。
常见消谐方案汇总

电力系统常见消谐方案介绍(一)微机消谐装置微机消谐装置也称二次消谐器,被安装在电压互感器(PT)的开口三角绕组上。
正常运行或者发生单相接地故障时装置不动作,而一旦判定电网发生铁磁谐振时,便会使正反并联在开口三角两端的2只晶闸管交替过零触发导通以限制和阻尼铁磁谐振,当谐振消除后晶闸管自行截止,必要时可以重复动作。
装置起动消谐期间,晶闸管全导通,呈低阻态,电阻为几mΩ至几十mΩ。
如此小的电阻值足以阻尼高频、基频及分频3种谐振,而且对整个电网有效,即一个系统中只需选择1台互感器安装消谐装置即可。
微机消谐装置的主要缺点是难以正确区分基波谐振和单相接地。
目前,对基波谐振和单相接地故障判据的主要区别在于零序电压U0的高低。
通常,基频谐振定为当U0≥150V时;当30V≤U0<145V时定为单相接地故障。
为了防止在单相接地时由于装置误动使PT长时间过负荷而烧毁的情况发生,通常将该装置基频谐振的判据电压定得比较高。
这样,在工频位移电压不是很高的情况下(如空母线合闸)装置将无法动作,就可能使某些励磁特性欠佳、铁心易饱和PT的熔丝熔断。
而且这种装置当电网对地电容较大时,它对防止间歇性接地或接地消失瞬间互感器因瞬时饱和涌流而造成熔丝熔断的事故无能为力。
此外,在持续时间较长的间歇电弧过电压激发下,流过PT高压绕组的电流将显著增大,仍可能会烧坏PT。
由于基频谐振中的频率实际上并不是十分严格的基频,不是完全没有频率突变。
因此,能否在信号处理方法中采用对时频局部化方面极具优势的小波来检测,值得探讨。
(二)一次消谐阻尼器一次消谐阻尼器,如LXQ型阻尼器,实际上是将一个非线性消谐电阻R0串接于电压互感器一次侧中性点与地之间,它采用中性点阻尼电阻消除谐振,见图1。
电网正常运行时,消谐器上电压<500V,R0呈高电阻值(可达几百kΩ),阻尼作用大,使谐振在起始阶段不易发展;当电网发生单相接地时,消谐器上电压较高(10kV电网中其值约1.7~1.8kV),R0呈低值(几十kΩ),可满足PT开口三角电压不小于80V的绝缘监测要求,而且仍可阻尼谐振;当电网发生弧光接地时,R0仍能保持一定的阻值,限制互感器涌流。
4pt消谐技术原理 -回复

4pt消谐技术原理-回复4pt消谐技术原理,指的是一种用于抑制或消除电力系统中谐波干扰的技术。
谐波是指频率为基波的整数倍的电压或电流成分,当谐波存在于电力系统中时,会给系统带来许多问题,如功率损耗、设备故障、电磁干扰等。
因此,采取有效的消谐手段非常重要。
本文将一步一步分析4pt消谐技术的原理。
第一步,了解谐波产生的原因。
谐波的产生多种多样,主要包括非线性负载、电力系统的谐振、电力设备中的短路或故障等。
在电力系统中广泛存在的谐波产生源包括电弧炉、变频器、UPS电源、电子设备等。
这些装置在工作过程中会引入非线性元件,导致电压和电流失去正弦波形,产生谐波成分。
第二步,理解谐波的影响。
谐波会引起电力系统中的一系列问题。
首先,谐波会导致额外功率损耗。
由于功率因数的改变和电流波形的畸变,系统中的有功功耗会增加。
其次,谐波会对设备造成损坏。
电力设备在长期受到谐波的影响下,可能出现过热、电流超载、绝缘损坏等问题。
此外,谐波还会引起电磁干扰,影响通信设备的正常工作。
第三步,介绍4pt消谐技术。
4pt消谐技术是一种常用的消除电力系统谐波的方法。
其基本原理是在电力系统中添加适当的被动滤波器,通过选择合适的电感和电容参数来消除谐波成分。
滤波器的作用是将谐波电流引到地或电力系统的无功分支,从而减少系统中谐波对正常运行的影响。
第四步,分析4pt消谐技术的具体实施步骤。
首先,需要对电力系统进行谐波分析,确定谐波波形和频率成分。
其次,根据谐波分析结果选择适当的滤波器类型和参数。
常见的滤波器类型包括L型滤波器、C型滤波器和T型滤波器等。
选择滤波器参数时,需要考虑对系统功率因数的影响。
最后,进行滤波器的实施和调试工作,确保滤波器的正常运行。
第五步,评估4pt消谐技术的效果。
在滤波器实施后,需要进行系统谐波分析,通过测量谐波畸变率和谐波电流、电压的变化来评估消谐技术的效果。
若滤波器能有效消除或抑制谐波成分,谐波畸变率将显著降低,系统各项指标将恢复到正常范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统常见消谐方案什么是消弧消谐?消弧和消谐一般都针对中性点不接地系统。
在中性点不接地系统中,当零序电容过大时(主要由线路和电缆的对地电容形成)使单相接地电流增加,当对地发生间歇性故障时,不容易息弧,造成弧光接地,引起过电压,危及系统的安全,同时也使人体触电伤亡的几率增高。
因此一般当接地电流超过10A时就需要装设消弧线圈,以补偿接地电流。
当不接地系统中相对地之间存在非线性感性负载时(如电压互感器),系统的扰动极可能引发零序电容与感抗的谐振,随着谐振电压的提高,非线性感抗会减小,并使振荡加剧,最后维持在一个叫高的电压水平下,引起很高的对地过电压,这个谐振也叫铁磁谐振。
这个谐振可以在电压互感器的二次侧安装消谐设备来消除或减弱。
下面我们来看看电力系统中常见的几种消谐方案。
(1)微机消谐装置微机消谐装置也称二次消谐器,被安装在电压互感器(PT)的开口三角绕组上。
正常运行或者发生单相接地故障时装置不动作,而一旦判定电网发生铁磁谐振时,便会使正反并联在开口三角两端的 2 只晶闸管交替过零触发导通以限制和阻尼铁磁谐振,当谐振消除后晶闸管自行截止,必要时可以重复动作。
装置起动消谐期间,晶闸管全导通,呈低阻态,电阻为几 mΩ至几十 mΩ。
如此小的电阻值足以阻尼高频、基频及分频 3 种谐振,而且对整个电网有效,即一个系统中只需选择 1 台互感器安装消谐装置即可。
微机消谐装置的主要缺点是难以正确区分基波谐振和单相接地。
目前,对基波谐振和单相接地故障判据的主要区别在于零序电压 U0 的高低。
通常,基频谐振定为当 U0≥150V 时;当 30V≤U0<145V 时定为单相接地故障。
为了防止在单相接地时由于装置误动使 PT 长时间过负荷而烧毁的情况发生,通常将该装置基频谐振的判据电压定得比较高。
这样,在工频位移电压不是很高的情况下(如空母线合闸)装置将无法动作,就可能使某些励磁特性欠佳、铁心易饱和 PT 的熔丝熔断。
而且这种装置当电网对地电容较大时,它对防止间歇性接地或接地消失瞬间互感器因瞬时饱和涌流而造成熔丝熔断的事故无能为力。
此外,在持续时间较长的间歇电弧过电压激发下,流过 PT 高压绕组的电流将显著增大,仍可能会烧坏 PT。
由于基频谐振中的频率实际上并不是十分严格的基频,不是完全没有频率突变。
因此,能否在信号处理方法中采用对时频局部化方面极具优势的小波来检测,值得探讨。
(2)一次消谐阻尼器一次消谐阻尼器,如 LXQ 型阻尼器,实际上是将一个非线性消谐电阻 R0 串接于电压互感器一次侧中性点与地之间,它采用中性点阻尼电阻消除谐振,见图1。
电网正常运行时,消谐器上电压<500V,R0 呈高电阻值(可达几百 kΩ),阻尼作用大,使谐振在起始阶段不易发展;当电网发生单相接地时,消谐器上电压较高(10kV 电网中其值约1.7~1.8kV),R0呈低值(几十 kΩ),可满足 PT 开口三角电压不小于 80V 的绝缘监测要求,而且仍可阻尼谐振;当电网发生弧光接地时,R0 仍能保持一定的阻值,限制互感器涌流。
图1 采用中心点阻尼电阻消除谐振该装置具有消除 PT 饱和谐振和限制涌流 2 种功能,但在应用中存在局限性:①中性点为半绝缘结构,只能直接接地安装的 PT 无法使用;②只能限制本 PT 不发生谐振,对电网中的其他 PT 无效(仅一对一有效);③当发生单相接地故障时,PT 零序电压 U0的测量值有误差,因此不适宜使用在对 U0 幅值和角度精度要求较高的场合(如微机接地选线装置);④装置自身的热容量有限,即使选用热容量相对较大的 LXQ 型一次消谐阻尼器,在持续时间较长的间歇电弧接地过电压激发下,仍可损坏装置。
一次消谐阻尼器较适用于 JDZJ 等型号中性点全绝缘 PT 的消谐改造。
(3)消谐型电压互感器1)加装零序电压互感器型加装零序电压互感器的消谐型电压互感器由三相主电压互感器 TV1 和串接在中性点的零序电压互感器 TV0二部分组成,采用零序电压互感器消除谐振。
该消谐装置要求 TV1 的开口三角绕组闭合,零序电压 U0从 TV0的二次侧取得。
当单相接地时,TV 每相励磁感抗为 Xm=XTV1 3XTV0(XTV1 为 TV1 的漏抗;XTV0为 TV0励磁感抗)。
由于X TV1 很小,可略,故Xm≈3X TV0,即零序电压绝大部分降落在TV0 上,一般的外激发不能使TV1 进入饱和区,从而使谐振难以产生。
此外,TV0高压绕组的直流电阻约为10kΩ,对谐振有强烈的阻尼作用,对涌流有限制作用。
此种消谐型TV的消谐作用也仅对自身有效,热容量也有限。
2)呈容抗谐振型,呈容抗谐振的消谐型电压互感器的主要特点有:①互感器内部的分布电容和杂散电容较大,正常时,在接有 0~100 负荷下整体呈容性(结构上合理确定一次绕组径向与轴向的尺寸比例;采用介电系数大的绝缘材料作为层间绝缘;一次绕组采用阶梯式排线方式等),不易构成铁磁谐振回路。
②在较高的电压作用下,铁心不易饱和(采用优质硅钢片,以降低工作磁密)。
③能承受更高的过电压(增加了一次绕组匝数;加强一次绕组的端部绝缘和层间绝缘)。
然而,由于这种电压互感器的质量和体积相对较大,因此在实际应用中往往有一定困难。
(4)二次消谐电阻1)二次电阻消谐:随着系统对地电容的增大,电压互感器磁饱和后将依次发生高频、基频和分频谐振。
PT的开口三角绕组上,用于消除分频谐振的阻尼电阻r值最小,r≤0.4(n2/n1)2XL,只要按此来选择电阻就可同时消除另外 2 种谐振。
消除基频谐振的电阻值为r′≤3(n2/n1)2XL。
式中, XL为互感器在线电压下的每相励磁感抗,n1/n2为高压绕组与开口三角绕组的匝数比。
由于电阻接在开口三角绕组两端,必然会导致一次侧电流增大,也就是说PT的容量要相应增大。
从抑制谐波方面考虑,R值越小,效果越显著,但PT的过载现象越严重,在谐振或单相接地时间过长时甚至会导致保险丝熔断或PT烧毁。
一般来说接入10 kV系统 PT开口三角绕组的电阻取 16.5~33Ω。
可见,对于在开口三角绕组配置了25Ω消谐电阻的PT,当系统中中性点直接接地的普通电磁式PT不超过2台时还可以消除基频谐振,但若要消除分频谐振则阻值偏大,失去消谐作用。
为此,应加装微机消谐装置,同时宜保留原消谐电阻,以利于限制空母线合闸时工频位移电压。
2)在同一 PT上同时装设一次消谐阻尼器和微机消谐装置在开口三角绕组两端接上电阻R的做法,实际上相当于在PT高压侧Y0 接线各相绕组上并联一电阻(只有在电网有零序电压时才出现),即在电网中每相对地并联合适的电阻在理论上同样可以起到消谐作用。
据分析推导,为消除分频谐振,在PT高压侧每相绕组并联的电阻应满足:R1≤0.4XL /3。
若单台 10kV互感器的每相励磁感抗XL =500kΩ,则R1≤66.7kΩ。
假如在PT一次侧中性点装设了阻尼电阻R0,那么该PT基本上不会参与谐振。
当系统中其他中性点直接接地的PT发生谐振时,由于此时零序电压U 0的测量值偏小,即使该PT的二次侧加装了微机消协装置,往往也不会及时动作。
对于电缆使用较多的 10kV配电网,大多发生分频谐振。
微机消谐器分频谐振的判据为15Hz≤f≤18 Hz或 23Hz≤f≤27 Hz,35V≥U0≥25V。
当开口三角绕组电压为 30V时,一次系统零序电压的估算值已达(30/100×0.8)×(10/3)=2.2kV。
此时,微机消谐器动作,开口三角绕组基本上处于被短接状态,PT高压绕组反映的是数值很小的漏抗,即零序电压绝大部分降落在阻尼电阻R0 上。
这时,电网每相对地的等值并联电阻为3R0,假如呈低电阻值的R0 为 25~35kΩ,则3R0 为 75~105kΩ,已超出消除系统中单台中性点直接接地PT谐振所需的阻值(约 66.7kΩ)。
若有多台PT参与了谐振,则更是无助于消谐作用,而且还可能因作用在R0 上的过电压得不到及时消除,且时间较长时而被损坏,从而进一步损害PT。
可见,以上做法已超出微机消谐器和一次消谐器研制的初衷,二者单独存在时的消谐机理已不再适用,这种做法对消谐不但无助反而有害。
因此,这 2 种消谐装置应分开安装在不同的PT上为宜。
3)在加装零序电压互感器消谐型 T PT 的二次侧加装微机消谐装置对于加装零序电压互感器的消谐型 PT,原理上要求其主电压互感器TV1的开口三角绕组始终是闭合的,所以不可能在其二次侧加装消谐器,否则将破坏原先的消谐机理,难以起到消谐作用。
若是将微机消谐器装在其零序电压互感器TV0 的二次侧,当系统中其他互感器发生铁磁谐振时,消谐器将在零序电压作用下动作,TV0二次侧几乎被短接,TV0及TV1高压绕组反映的均为漏抗,互感器的零序阻抗变为数值很小的漏抗,相当于电网中性点临时直接接地,因而谐振也就随之消失。
可见,在此消谐型 PT 的 TV0 二次侧加装微机消谐装置有助于整个电网的消谐。
(5)消谐措施的综合应用1)普通型电磁式电压互感器应选用励磁特性良好、铁心不易饱和的型号及生产厂家。
变电站 10kV 母线 PT 一次额定电压 UN 为 10/3kV,有的 PT 在 1.9UN 电压作用下铁心就可能进入饱和区,而母线实际运行电压为 10~10.7kV。
当电网单相接地时,作用在PT 上的工频稳态电压可能高达 1.85UN,加上电网电压的波动,PT 极易饱和。
在基波谐振过电压不很高的情况下,即使装设了二次微机消谐装置也照样可能使熔丝熔断。
尤其对中性点半绝缘结构 PT(如 REL 10 型等),难以进行消谐改造,更应慎重选型。
为了防止空母线合闸时 PT 熔丝熔断,还可以采取事先投入某些线路或站用变压器等临时措施,但不宜投入电容器组,这可防止电压有较大波动时空载变压器与电容器构成振荡回路产生振荡过电压。
2)变电站各段母线 PT 开口三角绕组处应装设微机消谐装置,使之对整个电网产生消谐效果。
由于对母线送电的瞬间交流电压极不稳定,电网发生接地、谐振等故障时瞬间交流系统的暂态干扰,均会影响装置的正常工作,因此,消谐装置工作电源宜选用直流 220V。
以往从 PT 二次侧取得交流 100V 电源或者从站用电系统取得交流 220V 电源的做法不可取。
变电站母线选用消谐型 TV,同时加装微机消谐装置,即一、二次消谐措施并用,是较为可取的推荐方案,这样既可以保证 PT 自身不参与谐振,同时对整个电网也具有消谐作用。
3)对应的,开闭所母线宜尽可能选用消谐型 PT,但无需另装二次消谐装置。
考虑到这种系统往往对地电容较大,因此限制涌流是一个不可忽视的问题,选用加装零序电压互感器消谐型 PT 是较合理的选择。
4)高压用户配电所一般无需绝缘监测及接地选线,因此,母线 PT 一次侧中性点应尽可能不接地或选用消谐型设备以改善同一系统中 PT 并联后总体等效伏安特性。