碳纤维织物增强树脂实验报告总结

合集下载

碳纤维增强环氧树脂基复合材料的制备及力学性能研究

碳纤维增强环氧树脂基复合材料的制备及力学性能研究

碳纤维增强环氧树脂基复合材料的制备及力学性能研究碳纤维增强环氧树脂基复合材料的制备及力学性能研究摘要:碳纤维增强环氧树脂基复合材料具有出色的力学性能和优异的耐腐蚀性能,因此在许多领域广泛应用。

本研究使用真空浸渍工艺制备了碳纤维增强环氧树脂基复合材料,并对其力学性能进行了详细研究。

结果表明,制备过程中的浸渍时间、浸渍压力和固化温度对复合材料的力学性能有显著影响。

1. 引言碳纤维增强环氧树脂基复合材料被广泛应用于航空航天、汽车制造、体育器材等领域。

其具有轻质、高强度、高模量、优异的耐腐蚀性能等特点,因此在替代传统金属材料方面具有巨大潜力。

本研究旨在通过真空浸渍工艺制备碳纤维增强环氧树脂基复合材料,并对其力学性能进行评估和分析。

2. 实验方法2.1 材料准备碳纤维和环氧树脂材料被选作本实验的主要原料。

碳纤维具有优良的力学性能和导电性能,是制备复合材料的理想选择。

环氧树脂具有良好的粘接性能和化学稳定性,可以作为基体材料。

同时,活性固化剂和助剂用于提高复合材料的性能。

2.2 制备过程(1)将环氧树脂均匀涂布在碳纤维上;(2)将涂布好的碳纤维经过真空排气处理;(3)将预处理好的碳纤维进行真空浸渍;(4)浸渍后的碳纤维进行固化过程。

2.3 力学性能测试采用传统的拉伸试验和冲击试验评估复合材料的力学性能。

拉伸试验用于评估复合材料的拉伸强度、弹性模量和断裂应变,冲击试验用于评估复合材料的冲击强度。

3. 结果与讨论3.1 浸渍时间通过改变浸渍时间,研究了浸渍时间对复合材料力学性能的影响。

结果表明,随着浸渍时间的增加,复合材料的拉伸强度和弹性模量呈增加趋势,但当浸渍时间过长时,力学性能开始下降。

这是由于过长的浸渍时间导致材料内部产生孔隙和缺陷。

3.2 浸渍压力通过改变浸渍压力,研究了浸渍压力对复合材料力学性能的影响。

结果显示,随着浸渍压力的增加,复合材料的强度和韧性都得到了提高。

这是由于高压可以更好地填充碳纤维与环氧树脂之间的空隙,提高界面的粘合强度。

碳纤维增强树脂复合材料的制备工艺与性能研究

碳纤维增强树脂复合材料的制备工艺与性能研究

碳纤维增强树脂复合材料的制备工艺与性能研究随着工业领域的不断进步,碳纤维增强树脂复合材料逐渐成为了一种热门的材料,因其轻量化、高强度等特点,已被广泛应用于航空、航天、汽车、体育器材等领域。

随着市场对其需求不断增加,如何进一步提高这种复合材料的性能和降低其成本也成为了人们关注的一个问题。

一、成分与制备工艺碳纤维增强树脂复合材料是由碳纤维和树脂共同组成的,其中碳纤维充当着骨架支撑的作用,而树脂则起到胶合的作用。

树脂一般采用环氧树脂,具有极好的机械性能,而碳纤维则可分为短纤维和长纤维两种。

制备工艺一般采用手工复合和自动复合两种方式。

手工复合是采用人工将碳纤维放置在模具中,然后涂布树脂,最终进行硬化成型的方式。

而自动复合则是采用机器将碳纤维和树脂进行混合,并在一定条件下进行固化。

二、性能研究碳纤维增强树脂复合材料的性能一般由以下几个方面组成:1.力学性能:包括抗拉强度、弯曲强度、剪切强度等。

其实验测试方法是在试验机上进行拉伸、弯曲、剪切等实验,从而得出样品的力学性能指标。

2.耐热性能:是材料在高温下的稳定性表现。

其实验测试方法是将样品置于高温环境下,测定其失重情况,从而得出其耐高温能力。

3.耐久性能:材料在使用过程中的长期稳定性。

其实验测试方法是进行长时间的负载实验,测定其稳定性。

以上三个方面是碳纤维增强树脂复合材料性能评价的主要指标。

三、进一步提高性能和降低成本在制备工艺方面,进一步提高工艺水平,采用自动化生产设备,可以提高生产效率,降低成本。

在树脂和碳纤维材质选择上,可以选择效益更高、市场价格更为稳定的材质,有效降低成本。

在加强材料设计与计算的创新方面,可以进一步优化当前的设计方案,提高碳纤维增强树脂复合材料的性能。

在未来碳纤维增强树脂复合材料的应用领域将更广泛,如在地面交通工具、船舶、军工等领域将逐渐被应用。

因此,提高这种复合材料的性能是一个持久的研究方向。

光固化碳纤维增强树脂基复合材料的研究

光固化碳纤维增强树脂基复合材料的研究

光固化碳纤维增强树脂基复合材料的研究光固化碳纤维增强树脂基复合材料是一种新型的高性能材料,具有优异的力学性能和化学稳定性,因此在航空航天、汽车、建筑等领域得到了广泛的应用。

本文将从材料的制备、性能及应用等方面进行探讨。

一、材料的制备光固化碳纤维增强树脂基复合材料的制备主要包括预浸料制备、层压成型和光固化三个步骤。

预浸料制备是将碳纤维与树脂预浸料混合均匀,使其充分浸润碳纤维,形成预浸料。

层压成型是将预浸料按照一定的层次和方向堆叠在一起,然后经过高温高压处理,使其形成固态复合材料。

最后,通过光固化技术,将复合材料暴露在紫外线下,使其树脂基固化,形成最终的光固化碳纤维增强树脂基复合材料。

二、材料的性能光固化碳纤维增强树脂基复合材料具有以下优异的性能:1. 高强度:碳纤维具有高强度和高模量,能够有效地增强复合材料的强度和刚度。

2. 轻质:碳纤维比重轻,能够有效地降低复合材料的重量。

3. 耐腐蚀性:树脂基具有良好的耐腐蚀性,能够在恶劣的环境下长期使用。

4. 耐热性:碳纤维具有良好的耐高温性能,能够在高温环境下长期使用。

5. 良好的成型性:复合材料具有良好的成型性能,能够制成各种形状的零件。

三、材料的应用光固化碳纤维增强树脂基复合材料在航空航天、汽车、建筑等领域得到了广泛的应用。

在航空航天领域,光固化碳纤维增强树脂基复合材料被广泛应用于飞机机身、翼面、尾翼等部件,能够有效地降低飞机的重量,提高飞行性能。

在汽车领域,光固化碳纤维增强树脂基复合材料被应用于车身、底盘等部件,能够有效地降低汽车的重量,提高燃油经济性。

在建筑领域,光固化碳纤维增强树脂基复合材料被应用于建筑结构、桥梁等部件,能够有效地提高结构的强度和耐久性。

总之,光固化碳纤维增强树脂基复合材料是一种具有广泛应用前景的高性能材料,随着科技的不断进步和应用领域的不断拓展,其应用前景将会更加广阔。

碳纤维增强环氧树脂的制备及性能

碳纤维增强环氧树脂的制备及性能

碳纤维增强环氧树脂的制备及性能2)把握环氧值的测定办法。

3)把握碳纤维增加环氧树脂的制备办法及性能测试办法。

4)把握环氧树脂固化时固化剂用量的计算。

2.试验原理环氧树脂是分子中含有环氧基团的树脂的总称。

在环氧树脂中,环氧基普通在分子链的末端,分子主链上还含有醚键、仲经基等。

醚键和仲经基为极性基团,可与多种表面之间形成较强的互相作用,而环氧基则可与介质表面的活性基,特殊是无机材料或金属材料表面的活性基起反应形成化学键,产生强力的豁结,因此环氧树脂具有独特的戮附力,配制的胶粘剂对多种材料具有良好的粘接性能,而且耐腐蚀、耐溶剂、抗冲性能和电性能良好,广泛应用于金属防腐蚀涂料、建造工程中的防水堵漏材料、灌缝材料、胶粘剂、复合材料等工业领域。

工业上考虑到原料来源和产品价格等因素,最广泛应用的是由环氧氯丙烷和双酚A 缩聚而成的双酚A型环氧树脂。

其反应机理普通认为是逐步聚合反应,是在碱(氢氧化钠)存在下不断举行开环和闭环的反应,总反应方程式如下:反应方程式中,n-般在0-12之间,分子量相当于340-3800,n=0时为淡黄色黏滞液体,n≥2时则为固体。

n值的大小由原料配比(环氧氯丙烷和双酚A的摩尔比)、温度条件、氢氧化钠的浓度和加料次序来控制。

为使产物分子链两端都带环氧基,必需用法过量的环氧氯丙烷。

树脂中环氧基的含量是反应控制和树脂应用的重要参考指标,按照环氧基的含量可计算产物分子量,环氧基含量也是计算固化剂用量的依据。

环氧基含量可用环氧值或环氧基的百分含量来描述。

环氧基的百分含量是指每l00g树脂中所含环氧基的质量。

而环氧值是指每100g环氧树脂中所含环氧基的物质的量。

环氧值采纳滴定的办法来获得。

环氧树脂的分子量越高,环氧值就越低。

分子量小于1500的环氧树脂,其环氧值可用盐酸一丙酮法测定,高分子量的可用盐酸一毗陡法测定。

环氧栩旨用法时必需加人固化剂,并在一定条件下举行固化反应,生成立体网状结构的产物,才会显现出各种优良的性能,成为具有真正用法价值的环氧材料。

碳纤维增强环氧树脂复合材料性与结构的研究

碳纤维增强环氧树脂复合材料性与结构的研究

碳纤维增强环氧树脂复合材料性能与结构的研究碳纤维增强环氧树脂复合材料性能与结构的研究摘要:本文研究了E-44双酚A型环氧树脂固化体系的反应特性,以低分子聚酰胺树脂为固化剂,采用手糊成型螺栓加压工艺制备了复合材料,并以沥青基碳纤维为增强材料,研究了复合材料的常温力学性能、水煮后力学性能和固化过程的热分析,并对其拉伸断面进行了分析。

研究结果得出:E-44树脂基体粘度低、韧性好且适用期长,适合于手糊成型,缠绕成型等低成本的制造工艺,因此制得的EP/CF复合材料具有优良的力学性能;该复合材料也具有良好的界面粘接性(树脂对纤维的浸润性良好)、较低的空隙率且碳纤维分布均匀。

关键Carbon fibre reinforced epoxy resin composite materialproperties and structure of the researchAbstract: This paper studies the E-44 bisphenol A type epoxy resin curing system response characteristics, with low molecular polyamide resin as curing agent, the pressure molding paste hand bolt for the composite technology was studied, and the carbon fiber with asphalt to strengthen materials, the mechanical properties of the composite materials under normal temperature, boiled after the mechanical properties and the solidification process of thermal analysis, and the tensile section is analyzed. We can get this conclusions:E-44 resin matrix low viscosity, good toughness penguins applicable periods long, suitable for molding paste hand around the molding, the low cost manufacturing process, thus made EP/CF composite material with excellent mechanical properties; The composite material also has a good interface bonding sex (of the fibers infiltrating the resin good), low air void and carbon fiber distribution even.Keywords: epoxy resins; Carbon fiber; Composite materials; Mechanical propertie.目录1 前言 (1)1.1 课题背景 (1)1.1.1 复合材料定义 (1)1.1.2 EP/CF复合材料的应用 (1)1.2 双酚A型环氧树脂 (2)1.2.1 双酚A型环氧树脂的定义 (2)1.2.2 双酚A型环氧树脂的固化原理 (3)1.2.3 双酚A型环氧树脂的结构 (3)1.3 环氧树脂固化剂 (4)1.3.1 环氧树脂固化剂的定义 (4)1.3.2 环氧树脂固化剂分类 (4)1.3.3 环氧树脂固化剂发展趋势 (6)1.3.4低分子聚酰胺树脂(型号650) (7)1.4碳纤维 (8)1.4.1 碳纤维概述 (8)1.4.2 碳纤维的性能 (9)1.4.3 碳纤维的处理 (11)1.5 环氧树脂/碳纤维的增强机理 (13)1.6 选题的目的与研究意义 (13)2 实验部分 (15)2.1 主要实验原料及试剂 (15)2.2 实验原料的配比 (15)2.3 主要实验设备 (15)2.4 实验流程 (16)2.4.1 实验流程图 (16)2.4. 碳纤维处理 (18)2.4.3 环氧树脂/碳纤维复合材料的制备 (18)2.5 性能测试 (19)2.5.1 力学性能测试 (19)2.5.2 固化过程的热分析 (19)2.5.3 E-44环氧树脂固化过程的温度变化的研究 (19)2..4 碳纤维增强环氧树脂复合材料的微观结构的观察 (19)3 结果与讨论 (20)3.1 常温下处理的碳纤维增强复合材料的力学性能 (20)3.2 水煮后碳纤维增强环氧树脂复合材料的力学性能 (21)3.3 碳纤维处理时间的不同对复合材料的力学性能的影响 (22)3.4 力学性能的对比 (27)3.4.1 常温下复合材料的力学性能 (27)3.4.2 水煮后复合材料的力学性能 (27)3.5 固化过程的热分析 (27)3.6 E-44环氧树脂固化过程的温度升高研究 (28)3.7 碳纤维增强复合材料的断面的显微结构 (29)4 结论 (31)参考文献 (32)致谢 (33)1前言1.1 课题背景1.1.1 复合材料定义复合材料,是指把两种以上宏观上不同的材料,合理地进行复合而制得的一种材料,目的是通过复合材料来提高单一材料所不能发挥的各种特性。

碳纤维增强复合材料用环氧树脂研究报告进展

碳纤维增强复合材料用环氧树脂研究报告进展

碳纤维增强复合材料用环氧树脂研究进展摘要:综述了环氧树脂的合成方法、固化方法以及改性的研究现状以及理论知识,介绍了碳纤维增强环氧树脂复合材料的生产和性能,重点讲述了环氧树脂的改性方法。

关键词:环氧树脂;碳纤维;复合材料;改性碳纤维(carbon fiber,简称CF),是一种含碳量在90%以上的高强度、高模量、综合性能优异的新型纤维材料,其中含碳量高于99%的称石墨纤维。

碳纤维作为一种高性能纤维,具有高强度、高模量、耐高温、抗化学腐蚀、抗蠕变、耐辐射、耐疲劳、导电、传热和热膨胀系数小等诸多优异性能。

此外,还具有纤维的柔曲性和可编性[1]。

碳纤维既可用作结构材料来承载负荷,又可用作功能材料。

因此在国外碳纤维及其复合材料近几年的发展都十分迅速。

碳纤维的制备是有机纤维进行碳化的过程,在惰性气体中将含碳的有机物加热到3000℃左右,非碳元素脱离,碳元素含量逐步增大并最终形成碳纤维。

其典型的宏观结构如图1所示。

图1 碳纤维的宏观结构a 整体效果b 局部效果1891年德国的Lindmann用对苯二酚和环氧氯丙烷合成了树脂状产物,1909年俄国化学家Prileschajew发现用过氧化苯甲醚和烯烃反应可生成环氧化合物,在19世纪末20世纪初的这两个重大发现揭开了环氧树脂走向世界的帷幕。

环氧树脂是一类重要的热固性树脂,是聚合物复合材料中应用最广泛的基体树脂。

环氧树脂具有优异的粘接性能、耐磨性能、机械性能、电绝缘性能、化学稳定性能、耐高低温性能,以及收缩率低、易加工成型和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、电子电气绝缘材料及先进复合材料等领域得到广泛应用[2]。

我国环氧树脂的研制开始于1956年,在、两地首获成功,并在1958年于首先开始了工业化生产。

到了60年代中期国开始研究新型的环氧树脂,如脂环族环氧树脂、酚醛环氧树脂、缩水甘油酯环氧树脂、聚丁二烯环氧树脂等种类,70年代末着手开发了元素改性环氧树脂、特种环氧树脂等诸多新品种。

碳纤维织物增强树脂实验报告总结

碳纤维织物增强树脂实验报告总结

碳纤维织物增强树脂实验报告总结背景碳纤维织物增强树脂是一种常用于制造轻量、高强度的复合材料的技术。

在这种技术中,碳纤维织物被浸泡在树脂中,形成一个坚固的复合结构。

这种材料具有优异的力学性能和化学稳定性,广泛应用于航空航天、汽车、体育器材等领域。

本次实验旨在研究不同树脂对碳纤维织物增强效果的影响,并找出最佳的树脂配方,以提高复合材料的力学性能。

分析实验设计1.准备不同类型的树脂样品:A、B和C。

2.准备相同规格和数量的碳纤维织物样品。

3.将每种树脂样品分别浸泡在碳纤维织物中,保持一定时间以确保充分渗透。

4.将浸泡后的样品进行固化处理,使树脂完全硬化。

5.对每个样品进行力学性能测试,包括拉伸强度、弯曲强度和冲击强度。

6.比较不同树脂样品的力学性能,找出最佳树脂配方。

结果经过实验测试和数据分析,我们得到了以下结果:1.树脂A的拉伸强度最高,达到了200 MPa。

树脂B的拉伸强度为180 MPa,而树脂C的拉伸强度为160 MPa。

2.在弯曲强度方面,树脂B表现最好,达到了250 MPa。

树脂A的弯曲强度为230 MPa,而树脂C的弯曲强度为210 MPa。

3.冲击强度方面,树脂C表现最好,达到了30 J/m。

树脂A的冲击强度为25J/m,而树脂B的冲击强度为20 J/m。

分析通过对结果进行分析,我们可以得出以下结论:1.根据拉伸和弯曲测试结果来看,树脂A是最适合用于碳纤维织物增强材料的选择。

它具有优异的力学性能,在多种应用领域有很大潜力。

2.尽管在冲击强度方面树脂C表现最好,但考虑到综合性能,树脂A仍然是最佳选择。

3.树脂B在弯曲强度方面表现优异,但在其他方面的性能稍逊于树脂A。

建议基于以上分析,我们提出以下建议:1.在实际应用中,可以选择树脂A作为碳纤维织物增强材料的理想树脂。

它具有出色的拉伸和弯曲性能,适用于需要高强度和抗变形的应用。

2.如果注重冲击性能,在特定应用场景下可以考虑使用树脂C。

它具有较高的冲击强度,适用于需要抵御冲击载荷的情况。

碳纤维增强环氧树脂复合材料的制备及其性能研究

碳纤维增强环氧树脂复合材料的制备及其性能研究

碳纤维增强环氧树脂复合材料的制备及其性能研究介绍随着科技的不断发展,复合材料在工业和民用领域中得到广泛应用。

而碳纤维增强环氧树脂复合材料是目前最常用的一种,它具有力学性能优良、耐热、防腐等优点,因而在航空航天、汽车、体育器材等领域中得到广泛应用。

本文将介绍碳纤维增强环氧树脂复合材料的制备及其性能研究。

制备方法碳纤维增强环氧树脂复合材料的制备方法分为手工层坯法和机械自动化层坯法两种。

手工层坯法主要是通过手工将碳纤维叠放、涂覆环氧树脂制成层坯,其中的纤维层坯配比和工艺控制都在操作工的经验和技术控制下完成。

这种制备方法的优点是成本低,缺点是不易保证工艺质量稳定。

机械自动化层坯法是通过机械化设备将碳纤维层坯制成复合材料。

将预先切好的纤维根据设计图样放置在模具中,然后通过涂胶、烘干、压制等多道工序制成复合材料。

这种制备方法的优点是工艺质量稳定,缺点是设备投资大,成本相对较高。

性能研究碳纤维增强环氧树脂复合材料的力学性能优良,主要体现在以下三个方面:1、高强度和高刚度。

碳纤维本身就是一种优质的高强度、高模量材料,而环氧树脂的刚度也比较高,在二者结合后可以弥补各自的不足,大大提高复合材料的力学性能。

2、疲劳性能好。

研究表明,碳纤维增强环氧树脂复合材料的能够承受大量的疲劳循环,在动载情况下具有良好的应用前景。

3、耐热性好。

环氧树脂在高温下仍能保持较好的力学性能,而碳纤维能够对高温下膨胀进行补偿,从而使得复合材料的高温性能大大提高。

总结本文介绍了碳纤维增强环氧树脂复合材料的制备方法和性能研究,这种材料具有力学性能优良、耐热、防腐等优点,已经在航空航天、汽车、体育器材等领域中得到广泛应用。

随着科技的不断进步,我们相信这种材料会有更广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纤维织物增强树脂实验报告总结
碳纤维织物增强树脂实验报告总结
引言:
碳纤维织物增强树脂是一种常见的复合材料,具有轻质、高强度和耐腐蚀等优点。

在本次实验中,我们对碳纤维织物增强树脂进行了一系列的测试和分析,以评估其力学性能和应用潜力。

实验目的:
1. 评估碳纤维织物增强树脂的拉伸强度和模量;
2. 研究不同纤维取向对复合材料性能的影响;
3. 分析复合材料断裂面形貌。

实验方法:
1. 准备工作:收集所需材料,包括碳纤维布、环氧树脂、固化剂等;
2. 制备试样:将碳纤维布剪裁成所需尺寸,并用环氧树脂浸润碳纤维布;
3. 压制试样:将浸润后的碳纤维布放置在模具中,并施加适当的压力进行压制;
4. 固化试样:将压制好的试样放置在恒温箱中,按照固化工艺进行固化;
5. 测试力学性能:使用万能试验机对试样进行拉伸测试,记录拉伸强度和模量;
6. 断裂面分析:使用扫描电子显微镜(SEM)观察试样断裂面形貌。

实验结果:
1. 拉伸强度:经过测试,碳纤维织物增强树脂的拉伸强度为X MPa。

这表明该复合材料在受力时具有较高的抗拉性能。

2. 模量:根据测试数据计算得到的碳纤维织物增强树脂的模量为Y GPa。

这表明该复合材料具有较高的刚度和抗变形性能。

3. 纤维取向影响:通过对不同纤维取向的试样进行测试,发现纤维取
向对碳纤维织物增强树脂的力学性能有显著影响。

具体而言,当纤维
与加载方向平行时,复合材料的拉伸强度和模量最大;而当纤维与加
载方向垂直时,复合材料的拉伸强度和模量较低。

4. 断裂面形貌:通过SEM观察,发现碳纤维织物增强树脂的断裂面呈现出典型的纤维拉出和树脂剪切的特征。

这表明在受力过程中,纤维
起到了承载载荷的作用,而树脂则起到了传递载荷和保护纤维的作用。

讨论与分析:
1. 实验结果表明碳纤维织物增强树脂具有较高的拉伸强度和模量,适
用于需要轻质高强度材料的领域。

2. 纤维取向对复合材料性能有重要影响,应根据具体应用需求选择合
适的纤维取向。

3. 断裂面形貌分析揭示了复合材料在受力过程中纤维和树脂之间的相
互作用关系,为进一步优化复合材料设计提供了参考。

结论:
本实验通过对碳纤维织物增强树脂进行测试和分析,评估了其力学性
能和应用潜力。

实验结果表明该复合材料具有较高的拉伸强度和模量,并且纤维取向对其性能有显著影响。

断裂面形貌分析揭示了复合材料
的受力机制。

碳纤维织物增强树脂是一种具有广泛应用前景的复合材料,值得进一步研究和开发。

相关文档
最新文档