整车电子电气架构演进

合集下载

ECU逐步消亡,“域”向何方?

ECU逐步消亡,“域”向何方?

ECU逐步消亡,“域”向何方?在软件定义汽车的热潮之下与电子电气架构演进的过程中,域控制器是实现整车智能化网联化的核心载体。

各功能性ECU如何逐步被域控取代,真的会被消亡吗?域控制器的出现,整车产业链条中的各个供应商关系与利益将得到重新构建,传统供应商面临的挑战与机遇路在何方,本文结合国内新能源汽车的发展现状及趋势来一一解读。

一、汽车电子电气架构演进逻辑当前正处于从分布式电子电气架构向域集中、域融合电子电气架构过渡的阶段,中央域控制器+车云协同计算将成为整车电子电气架构的长期发展方向。

当前阶段,域控制器产品将由单域控制向跨域融合形态过渡,进一步降低硬件-基础软件-应用软件的耦合度,产业分工将更精细化,加速构建智能网联汽车产业链生态。

基于域控制器平台化软硬件,通过对多个(子)功能进行统一调度和管理来实现复杂功能,以满足智能网联等复杂智能化功能的要求。

1、基于电动化与智能化继工业革命以来,每次技术上的发明及革命性创新,换一个角度来看,其实是人类发展赖以生存、智慧结晶的一种考验和体现,也是由量变到质量、整个系统生态链互相促进,甚至倒逼的一个过程。

新能源汽车电动化及智能化也一样,就像当年PC机的发展、手机从功能机到智能机时代,再到自动驾驶智能汽车。

从最基础的操作系统-全栈解耦的基础软件及中间件-越来越标准化的API-丰富的应用层软件-5G技术-物联网-云平台-云计算-高精地图-车路协同等等组合因素,真正的智能汽车,它就是一个万物互相的载体、一个有脑有手有脚的智能移动空间、一个更强大的母生态系统。

这个是为什么这么多资本大力布局各大域控的真正原因,它里面的商业价值想像空间太大。

2、基于集成电路的发展当年手机的功能机向智能机时代的发展,很大成度也是基于“摩尔定律”观点和规律,就像当年刚出PC机时代一样,当时没人想到过做成一个电子书概念吗?我想肯定会有,只是按当时的硬件集成条件做出来实用吗?答案肯定是不实用的,所以说智能硬件的快速发展空间都得益于三次工业革命之后的电子计算机以及集成电路的飞速发展,包括汽车智能化方面也受益于目前集成电路的设计能力和制程工艺,也就出现不同功能特性的MCU、CPU、NPU、DPU、GPU、SoC等芯片,来满足智能汽车所需功能安全和算力特性方面的不同要求。

整车电子电气构架

整车电子电气构架

4. 测试执行
5. 测试报告生成
明确测试目标、测试范 围、测试方法、测试周 期等。
根据测试计划,设计详 细的测试用例,包括正 常情况下的测试用例和 异常情况下的测试用例 。
根据测试用例,搭建相 应的测试环境,包括硬 件环境、软件环境等。
按照测试用例执行测试 ,记录测试结果,并对 测试过程中发现的问题 进行跟踪和解决。
发动机控制系统
01
02
电控燃油喷射系统
电控点火系统
03
04
排放控制系统
变速器控制系统
05
06
手自一体变速器
动力系统
双离合变速器
01
无级变速器
悬挂系统
04
制动系统
02
底盘控制系统
03
转向系统
05
06
底盘系统
控制系统 电控悬挂系统 电控转向系统
电控制动系统 传感器与执行器 转向传感器
底盘系统
制动传感器 线束与连接 低压线束
整车电子电气构架
汇报人: 日期:
目录
• 整车电子电气构架概述 • 整车电子电气构架的核心构成 • 整车电子电气构架的设计与开发 • 整车电子电气构架的测试与验证 • 整车电子电气构架的优化与改进建议 • 整车电子电气构架的未来发展趋势
01
整车电子电气构架概述
定义与特点
定义
整车电子电气构架是指车辆电气系统的结构和布局,包括电 源系统、配电系统、信号传输系统、控制器以及各部件之间 的连接方式等。
详细描述
绿色环保的整车电子电气构架将采用环保材料和环保制造工艺,降低对环境的 影响。同时,还将采用能量回收技术、轻量化设计等手段,提高车辆的能效和 性能,减少能源消耗和排放。

汽车电子电气架构设计及优化措施

汽车电子电气架构设计及优化措施

汽车电子电气架构设计及优化措施随着科技的飞速发展,汽车电子电气系统在汽车中扮演着越来越重要的角色。

汽车电子电气系统不仅涉及到车辆动力、操控和舒适性,更关乎着汽车的智能化、网络化和安全性。

汽车电子电气架构的设计及优化成为了汽车制造商和电子系统供应商需要重点关注的问题。

一、汽车电子电气架构设计1. 传统的汽车电子电气架构传统的汽车电子电气架构主要由独立的控制单元(ECU)组成,各个功能模块独立运行,通信方式多采用CAN总线或LIN总线进行信息交互。

这种结构存在着电缆过多、通信速度慢、维护复杂等问题,难以适应汽车电子系统日益增长的需求。

2. 现代汽车电子电气架构现代汽车电子电气架构逐渐向集成化和分布化方向发展。

通过统一的总线结构和更高效的网络通信方式,将原本独立运行的ECU整合成少量的大型控制单元或者分布式电子系统,以实现信息共享和相互协作。

在整车级别上,通过CAN-FD、FlexRay、Ethernet等高速总线技术,提高车载电子系统的通信速率和数据带宽,满足更复杂的数据传输需求。

3. 汽车电子电气架构的设计原则在进行汽车电子电气架构设计时,需要考虑以下几个原则:- 简化结构:将原本分散的功能模块进行整合,减少电缆数量和系统成本;- 数据共享:通过统一的信息交换总线,实现各个控制单元之间的数据共享和协作,提高整车系统的集成度和性能;- 灵活性:架构要具备一定的扩展性和适应性,能够满足不同车型和功能需求的变化;- 可靠性:确保电子电气系统具备高度的稳定性和可靠性,以满足汽车行驶安全的要求。

1. 单片集成技术单片集成技术是通过将多个功能模块或传感器整合到一个芯片上,以减少成本、空间和功耗。

采用单片集成技术可以有效减少汽车电子系统的体积和数量,简化电缆连接,降低整车电子电气系统的复杂度。

2. AUTOSAR标准应用AUTOSAR(Automotive Open System Architecture)是一种用于汽车电子电气系统开发的标准体系架构。

整车电子电气构架PPT课件

整车电子电气构架PPT课件
➢通俗定义:EEA相当于汽车电子电气系统的总布置。具体 来说,EEA就是 在功能需求、法规和设计要求等特定约束下,通过对功能、性能、成本和装 配等各方面进行分析,所得到的最优的电子电气系统模型。 ➢整车电子电气架构设计与优化的最终目标就是:对汽车上的电子电气元器 件进行合理的排布以达到性能最优,成本最低。
能提供高质量的基于模型的图形文档输出可作为eea开发工作的系统信息管理工具能够同时保证其输出模型的一致性和完整还为大型工程团队提供了强大的单源数据管理系统所有参与建立模型的工程师共享同一个数据库提高了协同工作效率并保证了数据一致性并且提供了可配置的权限管理系统保证团队开发的安全性
电子电气构架EEA(Electronic & Electrical Architecture)
➢ 提供了一种具有丰富属性信息的用于建立架构模型的专业图形语 言。这种图形语言可以满足不同的开发领域的要求。
第4页/共7页
PREE vision软件
PREE vision优点:
➢ 集成了变型管理系统(同时设计多个方案,以备比较和选择,称 为“变型”),将整体模型分解成为多个模型部件,并能为模型 部件建立多个备选方案,并进行重新整合,这样就能有效评估各 种方案的优劣,并最终得到可靠的电子电气系统架构模型。
概述:
PREE vision是一款理想的系统架构设计及优化工具,作为基于 模型的计算机辅助开发工具进行电子电气系统架构的搭建。它的功能 包括需求开发、逻辑功能设计、网络和部件架构、电气系统和线束设 计以及拓扑结构设计,涵盖了从概念原型设计阶段到具体详细设计阶 段,并支持大型工程团队的详细开发和系统规范制定工作。
➢ 系统架构工程师能够建立一系列的评价指标,根据用户的需求, 来评估各个备选方案优劣,能够有效地在多个备选方案里得到符 合用户需求的最佳方案。

整车电子电气架构EEA--简述

整车电子电气架构EEA--简述

整车电子电器架构—简述汽车智能化、电子化程度的不断提高,这是大背景,这个大家肯定没异议。

毕竟客户爸爸们现在很喜欢,未来会更喜欢。

这时候来了三批工程师要搞定这个事,他们首先要解决的就是怎么把车上这么多电子设备连接起来,这个设计过程就是电子电器架构所谓「电子电气架构」,简单地说就是把汽车里的传感器、中央处理器、电子电气分配系统、软件硬件通过技术手段整合在一起。

通过这种架构,可以将动力总成、驱动信息以及娱乐信息等,转化为实际的电源分配的物理布局、信号网络、数据网络、诊断、容错、能量管理等电子电气解决方案。

通俗来说,汽车是一个软硬件结合的产物,如果把它比作是一个人,「四个轮子+一个沙发」是身体,电子电气架构就相当于神经系统,负责完成各个部位的连接,统领整个身体的运作,实现特定功能。

首先是一群抱着“机械定义汽车”思维的传统车企工程师开始动作了。

增加电子控制单元(ECU)、增加传感器、增加仪表。

要连接了咋么办。

哪两个东西之间有需求,就加根线呗。

传统的车上电气系统,大多采用点对点的单一通信方式,相互之间很少有联系但随着系统变复杂情况不对了,布线系统变得异常庞大, 一辆传统连接的汽车中,导线总长度可以达到2000多米,电气节点可以达到1500多个。

导致线束材料成本剧增,可靠性骤减。

系统不可持续了。

又来了一群抱着“硬件定义汽车”思维的车企工程师开始寻思了,计算机硬件里不是有总线嘛,能不能借鉴下,大家都先连在几根粗线上。

总线技术可以简单理解为高速公路,路上所有的车(信息)都走一段高速,降低道路(线束)成本。

为简化线路连接,提高可靠性、利于各装置之间的数据共享,以汽车分布式控制系统为基础的车载网络总线技术发展起来了。

汽车总线技术的优点是在统一应用层协议和数据定义的基础上,可以使之成为一个“开放式系统”,具有很强的灵活性。

对于任何遵循上述协议的供应商所生产的控制单元都可轻易添加入该网络系统中或者从网络系统中拆除,几乎不需要做任何硬件和软件的修改,这完全符合现代汽车平台式设计的理念。

汽车电子电气架构的“前世、今生和未来”(一)

汽车电子电气架构的“前世、今生和未来”(一)

高惠民(本刊编委会委员)曾任江苏省常州外汽丰田汽车销售服务有限公司技术总监,江苏技术师范学院、常州机电职业技术学院汽车工程运用系专家委员,高级技师。

文/江苏 高惠民汽车电子电气架构的“前世、今生和未来”(一)随着汽车“新四化”—电动化、智能化、网联化、共享化的发展,汽车电子化程度大幅提高,甚至不断向车外延伸,给汽车电子电气架构 (Electrical and Electronic Architecture,EEA)的发展带来了前所未有的挑战。

汽车正逐渐从传统的代步工具演变为集人、车、环境于一体的移动终端、储能单元和数字空间,为用户提供持续快速的功能升级和定制化服务,这也将逐渐成为汽车品牌间差异的重要体现。

因此,面向自动驾驶和网联化应用的下一代汽车,对由计算处理、数据存储、通信交互等组成的系统的架构性能提出了更高的要求。

传统分布式EEA采用单一功能控制器的设计思路,来自不同供应商的电子控制单元 (Electronic Control Unit,ECU)的算力不能协同,从而产生冗余,软硬件高度耦合,难以统一进行维护和实现空中下载 (Over The Air,OTA)。

同时,ECU数量的爆发式增长使通信复杂度大幅提升,也导致线束成本和整车质量增加。

因此,这种架构逐渐难以适应汽车“新四化”的需求。

未来,汽车EEA 的变革性发展势在必行。

基于软件集中化和域控制器的集中式电子电气架构将成为未来汽车电子电气架构(EEA)的发展方向。

一、汽车EEA定义架构的概念最早源于建筑行业,建筑师设计一栋建筑需根据业主的需求和边界条件从不同的角度考虑设计出所需的设计图。

设计图抽象地描述了建筑的某一个特定的方面(如几何关系和电气连接)。

根据这些所需的设计图便可以建造一栋建筑。

后来电气与电子工程协会制定的IEEE 1471-2000 《软件密集型系统体系结构描述推荐规程》 标准中第3.5条款义释了“架构”一词分析:“架构”是用来描述物理功能和信息功能之间的关联以及形式元素之间的分配。

电子电气架构演进

电子电气架构演进

电子电气架构演进汽车电子电气架构(EEA,Electrical/Electronic Architecture)把汽车中的各类传感器、ECU(电子控制单元)、线束拓扑和电子电气分配系统整合在一起完成运算、动力和能量的分配,进而实现整车的各项功能。

如果将汽车比作人体,汽车的机械结构相当于人的骨骼,动力、转向相当于人的四肢,电子电气架构则相当于人的神经系统和大脑,是汽车实现信息交互和复杂操作的关键。

电子电气架构涵盖了车上计算和控制系统的软硬件、传感器、通信网络、电气分配系统等;它通过特定的逻辑和规范将各个子系统有序结合起来,构成实现复杂功能的有机整体。

功能车时代,汽车一旦出厂,用户体验就基本固化;智能车时代,汽车常用常新,千人千面,电子电气架构向集中化演进是这一转变的前提。

从分布式到域控制再到集中式,随着芯片和通信技术的发展,电子电气架构正在发生巨大的变化。

1.1 分布式电子电气架构不堪重负汽车诞生之初是个纯机械产品,车上没有蓄电池,车上的设备亦不需要电力,1927 年博世开发出铅蓄电池,从此车上的电子设备才有了可靠的电力来源。

大规模集成电路的发展让汽车电子得以快速发展,发动机定时点火控制系统、电控燃油喷射系统、自动变速箱控制系统、牵引力控制系统、电控悬架系统、电控座椅、电控车窗、仪表、电控空调、汽车电子稳定控制系统等,逐步成为了汽车不可或缺的组成部分。

汽车电子控制技术逐步发展壮大,为消费者提供了更高性能、更舒适、更安全的出行工具。

早期分布式的电子电气架构下,每个 ECU 通常只负责控制一个单一的功能单元,彼此独立,分别控制着发动机、刹车、车门等部件,常见的有发动机控制器(ECM)、传动系统控制器(TCM)、制动控制器(BCM)、电池管理系统(BMS)等。

各个ECU之间通过CAN (Controller Area Network,控制器域网络)总线或者LIN(Local Interconnect Network,局部互联网络)总线连接在一起,通过厂商预先定义好的通信协议交换信息。

汽车电子电气架构的“前世、今生和未来”(三)

汽车电子电气架构的“前世、今生和未来”(三)

512023/09·汽车维修与保养文/江苏 高惠民汽车电子电气架构的“前世、今生和未来”(三)(接上期)③通信技术以5G网络为代表的通信弥补了传统移动通信网络存在的传输带宽不足、网络时延较大等缺陷,具有高速度、低时延等优点。

5G车联网与自动驾驶结合,可显著降低系统响应的时间,进一步提升整车的性能,提高信息传输的精准性,以及降低对高精度传感器的依赖,从而降低成本。

同时5G网络为无人驾驶和车联网技术提供了更广阔的平台,能够有效提高无人驾驶的智能化和探测的精准度,从而降低交通事故的发生率。

④网络安全技术随着汽车向智能化和网联化演进,有越来越多的汽车实现了与云、其他汽车、行人、道路等周边环境和基础设施实时交换信息。

现代车载网络可以通过有线连接方式(如诊断仪接口、USB)和多种无线连接方式与外部设备连接,如图22所示。

图22 网络安全架构常见的汽车无线通信方式包括Wi-Fi、蓝牙、蜂窝网络(4G/5G)等。

丰富的连接方式使外部设备访问车载网络逐渐变得更便捷。

新一代的网联汽车与外部设备一直保持着通信,很容易成为被攻击的对象。

未来,车载网络可能面临无处不在的网络威胁,在这种情况下,不仅要保证驾驶员的人身安全,还要保证网络内其他联网汽车和基础设施的正常工作,车载网络安全就变得极其重要。

基于对车载网络安全威胁的分析,车载网络的安全防护涉及以下3个方面:车外安全网络、车内安全网络和安全硬件基础设施。

车载网络最大的安全威胁来自汽车外部,相对于传统汽车封闭的网络,智能网联汽车实时在线的特点使车载网络更容易被攻击,因此车外安全网络变得非常重要。

车内安全网络的威胁与车外安全网络的威胁相比要小很多,但是随着车内个性化应用的增多,也需要关注车内安全网络。

安全硬件基础设施是实现车外安全网络通信和车内安全网络通信的基础,主要包括专用的硬件安全模块、安全启动、可信启动、安全存储、安全OTA等。

⑤资源调度技术车联网系统需要运行大量应用以服务于智能网联汽车及交通系统各种场景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整车电子电气架构演进什么是汽车电子电气架构?电子电气架构:EEA,Electrical/Electronic Architecture根据百度百科的解释:“汽车电子电气架构是集合了汽车的电子电气系统原理设计、中央电器盒设计、连接器设计、电子电气分配系统等设计为一体的整车电子电气解决方案”的概念,由德尔福(DELPHI)首先提出。

具体就是在功能需求、法规和设计要求等特定约束下,通过对功能、性能、成本和装配等各方面进行分析,将动力总成、传动系统、信息娱乐系统等信息转化为实际的电源分配的物理布局、信号网络、数据网络、诊断、电源管理等电子电气解决方案(如图1所示)。

图1 整车电子电气架构与功能域EEA不仅在汽车中经常使用,也在航电系统、工业自动化以及国防系统等其他控制系统中有广泛应用。

EEA的开发包括需求定义、逻辑功能架构设计、软件/服务架构设计、硬件架构设计、线束设计等不同层面的开发活动,如图2和图3。

图2 基于PREEvision的EEA开发模式图3 基于PREEvision的EEA设计电子电气架构演进随着移动互联网在消费者生活领域的广泛渗透,人们的生活习惯和价值取向开始转移。

伴随互联网尤其是移动互联网的飞速发展,人类的生产生活重心逐步转移至虚拟的赛博空间(Cyberspace)中。

尤其是2007年苹果创造出智能手机这种便携化的智能终端后,不论是网上购物、网上娱乐、网络社交、移动支付、网络咨询,还是在线政务、线上办公、在线教育等生产生活活动,都在逐步地向赛博空间转移。

未来还将有更多的老百姓被转化为网民,并更多地“生活”在赛博空间中。

人类生产生活逐步向赛博空间转移的过程中,也会对PC、平板电脑、手机或其他智能终端等消费电子产品的使用习惯和喜好向其他人类生产生活工具上转移。

一旦其他工具具备了PC、平板或手机相应特征,就会形成市场需求,因为人类又多了一种智能终端能够与赛博空间进行连接,熟悉的、便利的互联网应用又可以在新工具和设备上运行,方便了生活,提高了生产效率。

汽车的驾驶自动化(Drving Automatization)趋势在很久很久以前就已经产生了。

了解下Global OEM的Demo项目,甚至上知网搜索下相关论文,就会发现ADAS是多么古老的一种技术了,远远早于近几年的人工智能热潮。

但是,随着特斯拉Model S、Model X等一系列车型的推出,使人们对汽车智能化(Intelligence)有了新的期待。

仔细品一下Automatization和Intelligence这两个单词的含义,个人认为还是Intelligence含义更丰富。

因此,汽车智能化,不仅包括了驾驶自动化,也包括智能网联、智能交互(以及后续的智能座舱)等数字化和信息化趋势。

也因为特斯拉等新玩家的创新性车型的推出,人们开始对汽车有了以下这种强烈的预期(图4),即智能汽车。

所谓的智能汽车,基本是要对标着手机、PC这种数字化/信息化的半导体设备去了。

图4 智能汽车:拥有四个轮子的大型智能手机既然老百姓的需求是“智能汽车”,那么具备“智能汽车”特征的车型就会有更多市场需求,客户也更加愿意买单。

那么表征智能汽车的核心智能化功能都有哪些呢?按照汽车智能化的趋势(即CASE,Connected互联、Autonomous自动、Sharing共享、Electric电动),智能驾驶、智能座舱、智能网联应该就是终端用户期待的功能。

以上的这些功能,相对于曾经汽车电子的功能,复杂度有很大提升。

为了实现以上复杂功能,我们需要软件的SOA架构,我们需要基于服务的通信,我们需要满足车规的RTOS(实时操作系统),我们需要FOTA (固件空中升级),总之,我们需要一台软硬件解耦的、能够用软件来定义功能的汽车。

这就需要一个大大的前提——集中化的EEA。

这又是为什么呢?先进行粗略分析。

首先,看看当前的整车EEA现状:a) 电子单元:众多分散的运算&控制单元;b) 电气单元:发动机、伺服电机、电磁阀等; c) 执行机构:机械、液压、气门机构... 也就是说,当前的汽车只是一台相对精密的机电一体化设备(Mechatronics,隶属于控制工程范畴,还需进一步电气化),而非数字化/信息化的半导体设备(ICT范畴),距离智能手机有些遥远。

但是消费者目前想要的是一台像手机一样的车(智能终端、电子设备)。

究竟如何才能使汽车朝向一台大型的“电子”设备转型呢?答案是继续提高电气化程度,即电子电气架构从分布式向集中式发展,直到形成真正的车载中央计算机。

接下来,分为两个具体维度进行分析:2.2.1 整车设计/制造维度从整车的设计/制造维度讲,若汽车继续按照当前的分布式架构发展,且不说算力是否满足,单就车辆物理安装空间上讲就有问题。

可能会导致难以布置更多ECU和更多线束;更多的ECU和更多的线束,势必导致组装困难,只能继续依靠人工。

伊隆马斯克也曾为过度依赖自动化产线而焦头烂额,之后也曾发誓要对汽车进行“线束革命”,说明过多复杂线束和过多ECU的安装会严重影响产线的高度自动化。

而集中式电子电气架构,能够逐步平抑ECU和线束的增长趋势,甚至到达某个时间节点之后,能够促进大幅减少ECU和线束用量,降低EEA 网络拓的扑复杂度。

倘若确实能够减少ECU数量和线束用量,也就能够降低电子电气系统的重量,对整车的轻量化设计目标也有帮助。

电子电气架构的集中化,就意味着单个ECU的“扩容”,以及多个ECU的“合并”。

换句话说,ECU要越来越大型化,算力要高,功耗/成本还都需要进行控制。

结论是什么?需要大型的、高算力的、制程小的(意味着低功耗)车载SOC芯片。

为什么要用SOC芯片?因为通过堆大量算力低的芯片做控制器不可行;芯片多,集成度低,PCB板以及域控制器太大不好布置(想象一下Demo车的后备箱塞满工控机的场景),功耗和成本也高。

总之,集成化程度高是刚需,SOC芯片又能够较好的解决这个问题。

各个芯片玩家疯狂扩大SOC规模(从英伟达Xavier和ORIN,到特斯拉FSD芯片,甚至Mobileye提供EyeQ5的开放方案),也是为了解决这个痛点。

所谓“规模”,实质是指算力,DMIPS/TFLOPS/TOPS都要足够高。

有了强大而“趁手”的芯片,就能“攒”出来满足集中化要求的ECU了。

不管是叫DCU(域控制器),还是HPC(高性能计算机),甚至是VCC(车载中央计算机),也不过是表征一下ECU有多大规模。

综上论述,从整车维度讲,大型SOC芯片(以及基于大型SOC芯片构建的大型域控制器/高性能计算机)和先进线束都是集中化EEA的关键基础技术。

2.2.2 价格/成本维度不管是什么产品,到了只拼价格/成本的竞赛,基本意味着没有太大创新了。

因为创新是有代价的,创新是很“贵”的一件事,因此我相信集中化EEA也会遵循发展的常识。

最开始是功能导向,为了实现某些关键功能的落地而不惜代价,价格/因素会较少考虑;然后是性价比导向,关键功能实现了,为了体现性价比,就会把手伸到“别人的地盘”,即几个大型ECU通过吸收其他专用小型ECU的功能(把小型ECU从车上干掉,平抑整个系统的成本),通过集成更多功能来保持“虽然贵,但是功能也强大”的性价比优势;最后是成本导向,大型ECU 的功能scope确定了、“扩张边界”也确定了,就得比价格/成本了。

然后不停的往复循环以上逻辑。

当前的智能驾驶域,在L0-L2已经相对成熟,因为该级别的各个ADAS功能相对确定,因此边界已经清晰了,那么开始打“性价比”牌和赤裸裸的“价格”牌也就不奇怪了。

而L2+到L3还在比拼功能落地,那么价格因素就可以适当妥协(当然不能无限妥协,毕竟做产品归根结底是做生意,钱永远是最重要的)。

总之,若把智能驾驶、智能座舱的复杂功能作为必定要实现的“既定事实”看的话,集中化EEA还是“省钱”的。

因为,即便假设分布式EEA从技术角度能够实现复杂功能,成本也会非常高。

以上,也可以回答作者作为一个做量产ADAS/AD的技术人员,为什么要关注整车电子电气架构演进的原因。

因为关注EEA的进化,实质是关注前装量产高级别自动驾驶功能的落地节奏,以及汽车数字化、软件化的推进节奏!集中化EEA根据下图的描述,一般EEA从分布式到中央集中式需要经历三个阶段,即分布式-域集中-中央集中。

图5 电子电气架构演进的三个阶段集中式EEA类型4.1 三域EEA(域集中式EEA)三域,顾名思义,是指车辆控制域、智能驾驶域和智能座舱域。

其中,车辆控制域基本将原动力域、底盘域和车身域等传统车辆域进行了整合(整合更多是系统层面的概念,并不一定是硬件层面合并,因此并不是说这个域中其他ECU就不存在,或者就减少了);智能驾驶域和智能座舱域则专注实现汽车的智能化和网联化。

涉及的零部件主要有4类,车控域控制器(VDC,Vehicle Domain Controller)、智能驾驶域控制器(ADC,ADAS\AD Domain Controller)、智能座舱域控制器(CDC,Cockpit Domain Controller)以及若干高性能网关,其中:•VDC作为Private DCU,负责整车控制,实时性安全性要求高.•ADC作为Public DCU,负责自动驾驶相关感知、规划、决策相关功能的实现;•CDC作为Public DCU,负责HMI交互和智能座舱相关(甚至整合T-Box)功能的实现.三域EEA算是非常彻底的域集中式EEA。

三域EEA常见的实践包括:4.1.1 大众MEB平台的E3架构大众的MEB平台(首款车ID3)的E3架构,即由3个车辆应用服务器(ICAS,即In-Car Application Server)组成的域集中式EEA,具体包括:车辆控制服务器ICAS1、智能驾驶服务器ICAS2和信息娱乐服务器ICAS3(如图6所示)。

通过ICAS这种大型域控制器,逐步得将本域的其他ECU的软件功能(如智能传感器Smart Sensor的一些功能Applications,以及基础软件Basic Services)逐步向ICAS中转移,直到其他ECU(本域的传感器和执行系统)慢慢被合并。

图6 大众MEB平台的E3架构示意图E3的骨干网采用车载以太网实现,如下图所示。

由图可知,车控域控制器需要更多DMIPS 算力,因此除了提供MCU(Micro Controller Unit)外,还有一个多核ARM作为MPU (Micro Processor Unit)。

ICAS1作为Conti提供的方案,不知道这颗MPU会采用谁家的芯片。

图7 E3架构中车控域控制器(ICAS1)与智能座舱域控制器(ICAS3)的连接示意图4.1.2 宝马iNEXT车型的三域架构宝马iNEXT车型的EEA也包括3个域控制器,分别是BDC(body Domain Controller,对应VDC),SAS(即ADC)以及MGU(Media Graphics Unit,对应CDC)。

相关文档
最新文档