异步电机串级调速系统方案

合集下载

异步电机串级调速系统的设计

异步电机串级调速系统的设计

第一章串级调速系统1.1 主电路方案的确定全面比较单闭环和双闭环调速系统,把握系统要求实现的功能,选择最适合设计要求的虚拟控制电路。

根据系统实际,选择转速、电流双闭环调速系统。

对于交流异步电动机转差功率消耗型调速系统,当转速较低时转差功率消耗较大,从而限制了调速范围。

如果要设法回收转差功率,就需要在异步电动机的转子侧施加控制,此时可以采用绕线转子异步电动机。

但在电阻上将消耗大量的能量,效率低,经济性差,同时由于转子回路附加电阻的容量大,可调的级数有限,不能实现平滑调速。

为了克服上述缺点,必须寻求一种效率较高、性能较好的绕线转子异步电动机转差功率同馈型调速方法,串级调速系统就是一个很好的解决方案。

串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。

它属于变转差率来实现串级调速的。

与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以应用,因此效率高。

1.2 系统静态及动态要求采用转速电流双闭环调速系统,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级联接,这样就可以实现在起动过程中只有电流负反馈,而它和转速负反馈不同时加到一个调节器的输入端,到达稳态转速后,只靠转速负反馈,不靠电流负反馈发挥主要的作用,这样就能够获得良好的静、动态性能。

与带电流截止负反馈的单闭环系统相比,双闭环调速系统的静特性在负载电I时表现为转速无静差,这时,转速负反馈起主调作用,系统表现为电流小于dm流无静差。

得到过电流的自动保护。

显然静特性优于单闭环系统。

在动态性能方面,双闭环系统在起动和升速过程中表现出很快的动态跟随性,在动态抗扰性能上,表现在具有较强的抗负载扰动,抗电网电压扰动。

1.3 串级调速基本思路在异步电机转子回路中附加交流电动势调速的关键是在转子侧串入一个可变频、变幅的电压。

对于次同步电动状态的情况,将转子电压先整流成直流电压,再引入一个附加的直流电动势,控制此直流附加电动势的幅值,就可调节异步电动机的转速。

第二章--绕线式异步电动机串级调速系统

第二章--绕线式异步电动机串级调速系统

b.起动控制:控制逆变角,使在起动开始的瞬间,Ud与Uβ的差值能产生 足够大的 Id ,以满足所需的电磁转矩,但又不超过允许的电流值,这样电动 机就可在一定的动态转矩下加速起动。
随着转速的增高,相应地增大角以减小值 Uβ ,从而维持加速过程中动态 转矩基本恒定 。
30
(2)调速
a.调速原理:通过改 变角的大小调节电动机 的转速。
由于电机在 低于同步转速 下工作,故称 为次同步转速 的电动运行。
sn
0 n1
~
P1 Pm
(1-s)Pm
CU
sPm
10
次同步速度电动运行状态
sPm
Te
12
不断加大+Eadd, s n
就可提高电机的转 速。当接近额定转
1
2n1
SP
速时,如继续加大
+Eadd,电机将加
P
速到s<0的新的稳
Pm
态下工作,即电机
转子电流 I2 的增大,会引起交流电动机
拖动转矩的增大,设原来电机拖动转矩与负载 相等,处于平衡状态,串入附加电势引起电 动机升速,在升速的过程中,随着速度增加, 转差率S减小,分子中sE2减小,电流也减小, 使拖动转矩减小后再次与负载平衡,降速过程 最后会在某一个较高的速度下重新稳定运行。
* 这种向上调速的情况称为高于同步速的串级调速。(超同步串调) 9
一.串级调速的原理 二.串级调速的基本运行状态及功率关系 三.附加电动势的实现 四.次同步串级调速主电路
2
一. 串级调速的原理
转子串电阻调速方法有什么缺点?
我们知道,对于绕线转子异步电动机,可以在其 转子回路串入电阻来减小电流,增大转差率,从而改 变转速。这种方法就是转子串电阻调速方法。

6.2双闭环三相异步电动机串级调速系统

6.2双闭环三相异步电动机串级调速系统

6.2 双闭环三相异步电动机串级调速系统一.实验目的1.熟悉双闭环三相异步电动机串级调速系统的组成及工作原理。

2.掌握串级调速系统的调试步骤及方法。

3.了解串级调速系统的静态与动态特性。

二.实验内容1.控制单元及系统调试2.测定开环串级调速系统的静特性。

3.测定双闭环串级调速系统的静特性。

4.测定双闭环串级调速系统的动态特性。

三.实验系统组成及工作原理绕线式异步电动机串级调速,即在转子回路中引入附加电动势进行调速。

通常使用的方法是将转子三相电动势经二极管三相桥式不控整流得到一个直流电压,再由晶闸管有源逆变电路代替电动势,从而方便地实现调速,并将能量回馈至电网,这是一种比较经济的调速方法。

本系统为晶闸管亚同步闭环串级调速系统。

控制系统由速度调节器ASR,电流调节器ACR,触发装置GT,脉冲放大器MF,速度变换器FBS,电流变换器FBC等组成,其系统主回路原理图如图1-2所示,控制回路原理图可参考图1-1b所示。

四.实验设备和仪器1.电源控制屏(NMCL-32);2.低压控制电路及仪表(NMCL-31);3.触发电路和晶闸管主回路(NMCL—33);4.可调电阻(NMEL—03);5.直流调速控制单元(NMCL—18);6.电机导轨及测速发电机(或光电编码器);7.直流发电机M03;8.线绕电动机M09;9.双踪示波器;10.万用表;五.注意事项1.本实验是利用串调装置直接起动电机,不再另外附加设备,所以在电动机起动时,必须使晶闸管逆变角β处于βmin位置。

然后才能加大β角,使逆变器的逆变电压缓慢减少,电机平稳加速。

2.本实验中,α角的移相范围为90°~150°,注意不可使α<90°,否则易造成短路事故。

3.接线时,注意绕线电机的转子有4个引出端,其中1个为公共端,不需接线。

4.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

毕业设计绕线式三相异步电动机串级调速系统设计

毕业设计绕线式三相异步电动机串级调速系统设计

齐齐哈尔大学毕业设计 (论文)题目绕线式三相异步电动机串级调速系统设计学院计算机与控制工程学院专业班级学生姓名指导教师成绩2011年 06 月 21 日摘要晶闸管串级调速系统作为一种高效、节能的调速方案,具有装置结构简单、维护容易、能实现连续平滑调速等优点,尤其是对风机、泵类等大容量平方转矩负载进行控制时,其节能效果是十分可观的。

根据供水系统的现状,提出了串级调速的节能方案,分析了串级调速的原理,系统的调速特性,确定了微机水压转速双闭环控制的方案。

设计中详细地论述了水泵双闭环串级调速系统的组成与原理。

在系统硬件的设计上,采用驱动电路模块化设计技术和计算机辅助技术对硬件电路进行优化。

阐述了系统的工作原理,给出了以AT89C51单片机为核心组成了全新数字新型串级调速控制系统,针对该方案所要求的控制和触发脉冲,设计新型的数字触发器。

这种数字触发器有精度高、可靠性高等特点。

关键词:串级调速系统;单片机;数字触发器AbstractCrystals the level of machinery velocity modulation control system as an effective and energy efficient of machinery velocity modulation, a device structure to simple, easy and can achieve a smooth machinery velocity modulation advantages, especially of hair dryer, pumping big square and rectangular load capacity to control the energy the effect is very significant.Water supply systems based on the status quo,, a level of energy conservation programme and the level of machinery velocity modulation, a system of machinery velocity modulation, determine its speed of microcomputer the pressure of the control scheme. Design elaborated on a pair of pumps and the level of the system and mechanism of machinery velocity modulation. System design in hardware, the driving circuit modular design technology and computer hardware circuit of the new figures of the new machinery velocity modulation control system level, the scheme of control and firings for the design of the new digital pulses that trigger. These figures a high precision, high reliability and quality.Key words: analysis on serial timing system of alternating current; MCU; numerical trigger consisted of single piece unit目录摘要 (I)Abstract........................................................... I I 第1章绪论.. (1)1.1 串级调速技术概况 (1)1.2 研究意义及主要工作 (2)第2章水泵选取及串级调速方案确定 (3)2.1 水泵性能 (3)2.2 水泵与电动机的选择 (4)2.3 串级调速系统的分类 (5)2.4 串级调速原理 (6)2.5 新型三相四线制串级调速方案 (8)2.6串级调速系统的起动方式 (10)第3章数字触发器的硬件设计 (12)3.1 全数字串级调速系统组成 (12)3.2 主控制器设计 (12)3.2.1 单片机(AT89C51)芯片 (12)3.2.2 晶振电路 (14)3.2.3 复位电路 (15)3.2 AD转换电路 (15)3.4 晶闸管脉冲触发电路 (16)3.5 触发同步电路 (17)3.6 IGBT驱动器及驱动电路 (18)3.6.1 IR2130驱动器 (18)3.6.2 IGBT驱动电路 (19)3.6 双闭环控制器的设计 (20)3.6.1 串级调速电流环设计 (22)3.6.2 串级调速速度环的设计 (23)第4章数字触发器软件设计 (26)4.1 主程序设计 (26)结论 (28)参考文献 (29)致谢 (30)第1章绪论1.1 串级调速技术概况对于一个电力资源十分短缺的国家,节能是一项非常重要的利民政策、技术政策,对国民经济的发展和对国家资源的长久使用都有深远的影响。

异步电动机的串级调速

异步电动机的串级调速

2024年1月16日星期二
向低于同步速方向的串级调速
串附加电动势之前:电机匀速转动,I2,Te=Tl; 串附加电动势之后:
I2'
sE20 R2
E f jsX 20
I2'
I2
Te ' Te
n
s s' n s I2 ' I2 ' I2 n'
Te ' Te
电机在转速n′处实现平衡,转速调为n ′ 。
串级调速的原理与基本类型
一.串级调速的原理 二.串级调速的基本运行状态及功率关系 三.串级调速系统的基本类型
2024年1月16日星期二
绕线型异步电动机的转子
2024年1月16日星期二
绕线型异步电动机的转子
2024年1月16日星期二
集电环
三相绕线型异步电动机示意图
转子三相绕组接成 Y 形
2024年1月16日星期二
2024年1月16日星期二
4. 高于同步转速的回馈制动运行状态 s<0,Te<0。则
Pem Te0 0
PM (1 s)Pem 0 Ps s Pem 0
说通明 过电 定动 子机 回从馈轴给上电吸网收;机另械 一功 部率 分变PM为,转一差部功分率变P为s,电通磁过功产率生PemE•,f 装置回馈给电网。
迟一个角度 p 。
电流越大,这个强迫延时换相 角就越大,但有:
00 p 300
2024年1月16日星期二
3.转子整流器的故障状态 (Id过大,p 300
特征:
当重叠达到600、 强迫延时 换相角达到300时的电压电流波 形如右图所示。
如果负载电流继续增大, 重叠角又会大于600,但强迫延 时换相角会保持300不变。原因 是:即使前面两个管子换流未 换完,后面该导通的管子也会 承受正压而导通,这样,就会 出现共阴极管和共阳极管都在 换流,四个二极管同时导通---转子整流器短路的故障情况 。

实验三 双闭环三相异步电动机串级调速系统 实验

实验三 双闭环三相异步电动机串级调速系统 实验

实验三双闭环三相异步电动机串级调速系统实验一.实验目的⒈ 熟悉双闭环三相异步电动机串级调速系统的组成、工作原理、调试方法。

⒉ 了解双闭环三相异步电动机串级调速系统的静态和动态特性。

二.实验设备⒈ MCL – 31 低压控制电路及仪表。

⒉ MCL – 32 电源控制屏。

⒊ MCL – 33 触发电路及晶闸管主回路。

⒋ MEL – 03 三相可调电阻器。

⒌ MEL – 11 电容箱。

⒍ 绕线式异步电动机–直流电动机–测速机组。

⒎ 万用表。

⒏ 双踪示波器。

三.实验原理众所周知,在绕线转子异步电动机的转子侧引入一个可控的附加电动势,就可调节电动机的转速。

但由于电动机转子回路感应电动势E r 的频率随转差率而变化,所以附加电动势的频率亦必须随电动机转速而变化。

这就相当于在转子侧加入一个可变压变频的装置。

实际系统中是将转子交流电动势整流成直流电动势,然后再引入一个附加的直流电动势,控制此附加直流电动势的幅值,就可以调节异步电动机的转速。

这样就把交流变压变频的复杂问题,转化为与频率无关的直流变压问题,对问题的分析与工程实现都方便多了。

对于附加的直流电动势,较好的方案是采用工作在有源逆变状态的晶闸管可控整流装置,它既能够平滑的调节电压,以满足对电动机转速平滑调节的要求,从节能的角度又能够吸收从异步电动机转子侧传递来的转差功率并加以利用。

绕线转子异步电动机电气串级调速系统原理图如下图所示。

电气串级调速系统原理图四.实验内容⒈ 控制单元调试在主电路切断电源的情况下,进行控制单元调试。

⑴ 转速调节器( ASR )输出正、负限幅值的调试使转速调节器为 PI 调节器,将 MCL – 31 的给定端 U g 与转速调节器的“ 2 ” 端相接,接通控制电路电源﹙红色指示灯亮﹚。

分别加入一定的正、负输入电压,调节转速调节器的正、负限幅电位器 RP1 、 RP2 ,使转速调节器输出正、负限幅值等于± 5V 。

⑵ 电流调节器输出控制角 a 的调试使电流调节器为 PI 调节器,将 MCL – 31 的给定端 U g 与电流调节器的输入端“ 3 ” 端相接,电流调节器的输出端“ 7 ” 端与 MCL3 – 3 的 U ct 端相接,接通控制电路电源﹙红色指示灯亮﹚。

双闭环三相异步电机串级调速系统毕业设计(可编辑修改word版)

双闭环三相异步电机串级调速系统毕业设计(可编辑修改word版)

摘要本毕业论文所研究的是双闭环三相异步电动机的串级调速的基本原理与实现方法。

对于绕线式异步电动机来说,由于改变其转子绕组控制变量以实现调速,转子侧的控制变量有电流、电动势、电阻等。

通常转子电流随负载的大小决定,不能任意调节;而转子回路阻抗的调节属于耗能型调速,缺点较多,所以转子侧的控制变量只能是电动势,这也是本文所要研究的重点之一。

利用串级调速系统,就是使绕线式异步电动机实现高性能调速的有效办法。

用转子串反电动势来代替电阻,吸收转差功率;用双闭环控制提高系统的静、动态性能。

把这种用附加电动势的方法将转差功率回收利用的调速称为双闭环串级调速。

这是本文所必须研究的,也是本文的核心所在。

并通过利用MATLAB 软件对双闭环串级调速系统进行仿真,仿真结果表明通过双闭环串级调速系统能及时地对给定速度进行反馈,提高调速的准确性。

关键词:双闭环;串级;调速;MATLAB.AbstractThe graduation thesis studies three-phase asynchronous motor is double loop bunch_rank speed-control of the basic principle and implement method. With wound rotor series, asynchronous motors can adjust speeds through control variables, which include electric current, electromotive force and resistance, etc. on the rotor side. Typically, the rotor current is determined by the load and cannot be adjusted freely. In contrast, adjusting rotor’s return circuit impedance tends to consume more power along with other disadvantages. Therefore, electromotive force should be the only control variable on the rotor side, which is also one of the major points research in this paper.In summary, concatenation control system is one effective means to realize high control ability in series-wound asynchronous motors. Specifically, it is used to replace resistance with rotor’s electromotive force and absorb slip power; and to enhance the static and dynamic capabilities of the system using double closed loop. We refer to this method of utilizing additional electromotive force to recycle slip power as concatenation control with double close loop, which is also the focus of this paper. And through the use of MATLAB software on the double closed loop bunch_rank speed- control system, and simulation draw simulation diagram,the results show that by double closed loop bunch_rank speed-control system can timely given speed feedback, to improve the accuracy of speedKeywords: double-loop;cascade;governor;MATLAB.目录摘要 (I)Abstract (II)1绪论 (1)2串级调速的原理 (3)2.1异步电动机转子附加电动势时的工作情况 (3)2.2串级调速的功率传递关系 (4)2.3串级调速系统及其附加电动势的获得 (5)3双闭环三相异步电机的静态特性和动态特性 (9)3.1三相异步电动机串级调速开环工作机械特性 (9)3.2三相异步电动机单闭环ASR 系统静特性 (11)3.3双闭环调速系统的静态和动态特性 (13)4总体设计方案 (17)4.1双闭环三相异步电机串级调速各个模块的功能 (17)4.2串级调速系统设计 (23)4.3双闭环系统设计 (24)4.4总电路图的设计 (25)5系统仿真 (27)5.1仿真软件的简介 (27)5.2具体的软件仿真设计 (27)5.3系统的仿真、仿真结果的输出及结果分析 (36)总结 (37)参考文献 (38)致谢 (39)1绪论电力传动自动控制系统是把电能转换成机械能的装置。

绕线式异步电动机的串级调速

绕线式异步电动机的串级调速

绕线式异步电动机的串级调速一课程设计目的专业课程设计是学生基本完成全部理论课学习之后,综合运用所学知识、结合工程实际的实践教学。

通过设计使学生加深对所学专业课程内容的理解和掌握,了解工程设计的一般方法和步骤,培养理论联系实际、综合考虑问题和解决问题的能力。

二课程设计的内容从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。

在生产机械中广泛使用不改变同步转速的调速方法有:绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。

改变同步转速的有:改变定子极对数的多速电动机,改变定子电压、频率的变频调速及无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

转子电路串电阻调速,能量消耗大,不经济。

转子电路的损耗为sPem称为转差功率。

为使调速时这转差功率大部分能回收利用,可采用串级调速方法。

所谓串级调速,串级调速是指绕线式电动机转子回路中串入一个与E2频率相同而相位相同或相反的附加电动势Ef,通过改变Ef的大小来实现调速。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

串级调速的效率高,平滑性好,设备比变频调速简单,特别时调速范围较小时更为经济,缺点是功率因数较低。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:1)可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⏹第7 章⏹绕线转子异步电机双馈调速系统⏹——转差功率馈送型调速系统⏹内容提要⏹引言⏹异步电机双馈调速工作原理⏹异步电机在次同步电动状态下的双馈系统——串级调速系统⏹异步电动机串级调速时的机械特性⏹串级调速系统的技术经济指标及其提高方案⏹双闭环控制的串级调速系统⏹*异步电机双馈调速系统⏹7.0 引言⏹转差功率问题转差功率始终是人们在研究异步电动机调速方法时所关心的问题,因为节约电能是异步电动机调速的主要目的之一,而如何处理转差功率又在很大程度上影响着调速系统的效率。

如第5章所述,交流调速系统按转差功率的处理方式可分为三种类型。

●交流调速系统按转差功率的分类(1)转差功率消耗型——异步电机采用调压控制等调速方式,转速越低时,转差功率的消耗越大,效率越低;但这类系统的结构简单,设备成本最低,所以还有一定的应用价值。

(2)转差功率不变型——变频调速方法转差功率很小,而且不随转速变化,效率较高;但在定子电路中须配备与电动机容量相当的变压变频器,相比之下,设备成本最高。

●交流调速系统按转差功率的分类(续)(3)转差功率馈送型——控制绕线转子异步电动机的转子电压,利用其转差功率并达到调节转速的目的,这种调节方式具有良好的调速性能和效率;但要增加一些设备。

前两章已分别讨论了转差功率消耗型和不变型两种调速方法,本章将讨论转差功率馈送型调速方法。

⏹7.1 异步电机双馈调速工作原理本节提要⏹概述⏹异步电机转子附加电动势的作用⏹异步电机双馈调速的五种工况●转差功率的利用众所周知,作为异步电动机,必然有转差功率,要提高调速系统的效率,除了尽量减小转差功率外,还可以考虑如何去利用它。

但要利用转差功率,就必须使异步电动机的转子绕组有与外界实现电气联接的条件,显然笼型电动机难以胜任,只有绕线转子电动机才能做到。

●绕线转子异步电动机●绕线转子异步电动机转子串电阻调速根据电机理论,改变转子电路的串接电阻,可以改变电机的转速。

转子串电阻调速的原理如图所示,调速过程中,转差功率完全消耗在转子电阻上。

●双馈调速的概念所谓“双馈”,就是指把绕线转子异步电机的定子绕组与交流电网连接,转子绕组与其他含电动势的电路相连接,使它们可以进行电功率的相互传递。

至于电功率是馈入定子绕组和/或转子绕组,还是由定子绕组和/或转子绕组馈出,则要视电机的工况而定。

●双馈调速的基本结构如上图所示,在双馈调速工作时,除了电机定子侧与交流电网直接连接外,转子侧也要与交流电网或外接电动势相连,从电路拓扑结构上看,可认为是在转子绕组回路中附加一个交流电动势。

●功率变换单元由于转子电动势与电流的频率随转速变化,即f2 = s f1 ,因此必须通过功率变换单元(Power Converter Unit—CU)对不同频率的电功率进行电能变换。

对于双馈系统来说,CU应该由双向变频器构成,以实现功率的双向传递。

●双馈调速的功率传输⏹(2)转差功率输入状态⏹7.1.1 异步电机转子附加电动势的作用⏹异步电机运行时其转子相电动势为式中s —异步电动机的转差率;E r0 —绕线转子异步电动机在转子不动时的相电动势,或称转子开路电动势,也就是转子额定相电压值。

⏹转子相电流的表达式为:式中R r —转子绕组每相电阻;X r0—s = 1时的转子绕组每相漏抗。

⏹转子附加电动势⏹有附加电动势时的转子相电流:如图7-1所示,绕线转子异步电动机在外接附加电动势时,转子回路的相电流表达式⏹转子附加电动势的作用1. E r与E add同相●当E add­,使得:这里:⏹转子附加电动势的作用(续)●当E add¯,使得:这里:⏹转子附加电动势的作用(续)2. E r与E add反相同理可知,若减少或串入反相的附加电动势,则可使电动机的转速降低。

所以,在绕线转子异步电动机的转子侧引入一个可控的附加电动势,就可调节电动机的转速。

⏹7.1.2 异步电机双馈调速的五种工况本节摘要⏹电机在次同步转速下作电动运行⏹电机在反转时作倒拉制动运行⏹电机在超同步转速下作回馈制动运行⏹电机在超同步转速下作电动运行⏹电机在次同步转速下作回馈制动运行⏹异步电机的功率关系忽略机械损耗和杂散损耗时,异步电机在任何工况下的功率关系都可写作由于转子侧串入附加电动势极性和大小的不同,s 和P m都可正可负,因而可以有以下五种不同的工作情况。

⏹1. 电机在次同步转速下作电动运行●工作条件:转子侧每相加上与E r0同相的附加电动势+E add(E add <E r0),并把转子三相回路连通。

●运行工况:电机作电动运行,转差率为0 < s < 1,从定子侧输入功率,轴上输出机械功率。

●功率流程⏹2. 电机在反转时作倒拉制动运行●工作条件:轴上带有位能性恒转矩负载(这是进入倒拉制动运行的必要条件),此时逐渐减少+ E add值,并使之反相变负,只要反相附加电动势–E add有一定数值,则电机将反转。

●运行工况:电机进入倒拉制动运行状态,转差率s > 1,此时由电网输入电机定子的功率和由负载输入电机轴的功率两部分合成转差功率,并从转子侧馈送给电网。

式(7-4)可改写作●功率流程⏹3. 电机在超同步转速下作回馈制动运行●工作条件:进入这种运行状态的必要条件是有位能性机械外力作用在电机轴上,并使电机能在超过其同步转速n1的情况下运行。

此时,如果处于发电状态运行的电机转子回路再串入一个与sE r0反相的附加电动势+E add,电机将在比未串入+E add时的转速更高的状态下作回馈制动运行。

●运行工况:电机处在发电状态工作,s > 1,电机功率由负载通过电机轴输入,经过机电能量变换分别从电机定子侧与转子侧馈送至电网。

此时式(7-4)可改写成●功率流程⏹4. 电机在超同步转速下作电动运行●工作条件:设电机原已在0 < s < 1 作电动运行,转子侧串入了同相的附加电动势+E add,轴上拖动恒转矩的反抗性负载。

当接近额定转速时,如继续加大+E add电机将加速到的新的稳态下工作,即电机在超过其同步转速下稳定运行。

●运行工况:电机的轴上输出功率由定子侧与转子侧两部分输入功率合成,电机处于定、转子双输入状态,其输出功率超过额定功率,式(7-4)改写成●功率流程⏹5. 电机在次同步转速下作回馈制动运行•工作条件:很多工作机械为了提高其生产率,希望电力拖动装置能缩短减速和停车的时间,因此必须使运行在低于同步转速电动状态的电机切换到制动状态下工作。

设电机原在低于同步转速下作电动运行,其转子侧已加入一定的+ E add。

要使之进入制动状态,可以在电机转子侧突加一个反相的附加电动势。

●运行工况在低于同步转速下作电动运行,E add由“+”变为“-”,并使|- E add| 大于制动初瞬的sE r0 ,电机定子侧输出功率给电网,电机成为发电机处于制动状态工作,并产生制动转矩以加快减速停车过程。

电机的功率关系为●功率流程●五种工况小结⏹a)转子输出功率的工况⏹b)转子输入功率的工况⏹7.2 异步电机在次同步电动状态下的双馈系统——串级调速系统本章摘要⏹串级调速系统的工作原理⏹串级调速系统的其它类型⏹7.2.1 串级调速系统的工作原理⏹基本思路如前所述,在异步电机转子回路中附加交流电动势调速的关键就是在转子侧串入一个可变频、可变幅的电压。

怎样才能获得这样的电压呢?对于只用于次同步电动状态的情况来说,比较方便的办法是将转子电压先整流成直流电压,然后再引入一个附加的直流电动势,控制此直流附加电动势的幅值,就可以调节异步电动机的转速。

这样,就把交流变压变频这一复杂问题,转化为与频率无关的直流变压问题,对问题的分析与工程实现都方便多了。

⏹对直流附加电动势的技术要求●首先,它应该是可平滑调节的,以满足对电动机转速平滑调节的要求;●其次,从节能的角度看,希望产生附加直流电动势的装置能够吸收从异步电动机转子侧传递来的转差功率并加以利用。

⏹系统方案根据以上两点要求,较好的方案是采用工作在有源逆变状态的晶闸管可控整流装置作为产生附加直流电动势的电源,这就形成了图7-4a中所示的功率变换单元CU2。

按照上述原理组成的异步电机在低于同步转速下作电动状态运行的双馈调速系统如图7-5所示,习惯上称之为电气串级调速系统(或称Scherbius系统)。

⏹系统组成⏹功率变换单元●UR —三相不可控整流装置,将异步电机转子相电动势sE r0整流为直流电压U d。

●UI —三相可控整流装置,工作在有源逆变状态:●可提供可调的直流电压U i,作为电机调速所需的附加直流电动势;●可将转差功率变换成交流功率,回馈到交流电网。

⏹工作原理(1)起动●起动条件:对串级调速系统而言,起动应有足够大的转子电流I r或足够大的整流后直流电流I d,为此,转子整流电压U d与逆变电压U i间应有较大的差值。

●起动控制◆控制逆变角b ,使在起动开始的瞬间,U d与U i的差值能产生足够大的I d,以满足所需的电磁转矩,但又不超过允许的电流值,这样电动机就可在一定的动态转矩下加速起动。

◆随着转速的增高,相应地增大b 角以减小值U i,从而维持加速过程中动态转矩基本恒定。

⏹工作原理(续)(2)调速●调速原理:通过改变b 角的大小调节电动机的转速。

●调速过程:⏹工作原理(续)(3)停车串级调速系统没有制动停车功能。

只能靠减小b 角逐渐减速,并依靠负载阻转矩的作用自由停车。

⏹结论⏹串级调速系统能够靠调节逆变角b 实现平滑无级调速⏹系统能把异步电动机的转差功率回馈给交流电网,从而使扣除装置损耗后的转差功率得到有效利用,大大提高了调速系统的效率。

⏹*7.3 异步电动机串级调速时的机械特性本节提要⏹概述⏹异步电动机串级调速机械特性的特征⏹异步电动机串级调速时的转子整流电路⏹异步电动机串级调速机械特性方程式⏹概述在串级调速系统中,异步电动机转子侧整流器的输出量、分别与异步电动机的转速和电磁转矩有关。

因此,可以从电动机转子直流回路着手来分析异步电动机在串级调速时的机械特性。

⏹*7.3.1 异步电动机串级调速机械特性的特征1. 理想空载转速⏹在异步电动机转子回路串电阻调速时,其理想空载转速就是其同步转速,而且恒定不变,调速时机械特性变软,调速性能差。

⏹在串级调速系统中,电动机的极对数与旋转磁场转速都不变,同步转速也是恒定的,但是它的理想空载转速却能够连续平滑地调节。

根据式(7-5),当系统在理想空载状态下运行时(I d = 0),转子直流回路的电压平衡方程式变成•理想空载转速方程由此可得相应的理想空载转速n0 为:•特性分析⏹从式(7-6)和式(7-7)可知,在串级调速时,理想空载转速与同步转速是不同的。

当改变逆变角b 时,理想空载转差率和理想空载转速都相应改变。

相关文档
最新文档