欧拉公式-高中数学知识点讲解

欧拉公式-高中数学知识点讲解

欧拉公式

1.欧拉公式

1.由复数a+bi 的三角形式和指数形式:a+bi=r(cosθ+i sinθ)=re iθ,可以得到:{????+?????=?

??

????―?????=?―??,

得到:cosθ=???+?―??

,sinθ

=

2

???―

?―??

2?

这两个公式统称为“欧拉公式”.

令r=1,θ=π,可以得到:e iπ+1=0

它将数学里最重要的五个数字就这么神秘地联系到了一起:两个超越数﹣﹣自然对数的底e,圆周率π;三个单位﹣﹣虚数单位i、自然数的乘法单位 1 和加法单位 0.

1/ 1

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

高中数学函数知识点总结

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||2 2301 若,则实数的值构成的集合为B A a ? 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。 如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。 函数)(x y ?=的图象与直线a x =交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型?

欧拉公式的应用

滨州学院 毕业设计(论文) 题目欧拉公式的应用 系(院)数学与信息科学系 专业数学与应用数学 班级 2004级本科四班 学生姓名杨明证 学号 2004040635 指导教师徐化忠 职称讲师 2008年04月18日

欧拉公式的应用 摘要 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

Euler's Formula for the Application Abstract This text first introduced the Euler's formula and the generalized Euler's formula, and then briefly discussed the characteristics of the Euler's formula. The form of the Euler's formula is numerous ,and the application of the Euler's formula is extensive, this text researches the Euler's formula in the Triangle Function in detail, the Euler's formula in the application of the trigonometric series、the demonstration of the trigonometric identity, the solution of the problems of the trigonometry、the search of the complicated triangle ,the complex triangular transformation can be avoided , the problems can be resolved with more visualized algebraic operation . On the other hand, the use of the decreasing powers of the Euler's formula can express the sine function and the cosine function of higher-power as the algebraic addition of the function of the first power, To overcome the inconvenience of the high-power function in computation. Key words: Euler's formula trigonometric function series of decreasing powers triangular numbers

欧拉公式的证明和应用

欧拉公式的证明和应用https://www.360docs.net/doc/8113262657.html,work Information Technology Company.2020YEAR

数学文化课程报告 欧拉公式的证明与应用 一 .序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 1.1 极限法 --------------------------------------3 1.2 指数函数定义法-------------------------------4 1.3 分离变量积分法-------------------------------4 1.4 复数幂级数展开法-----------------------------4 1.5 变上限积分法---------------------------------5

1.6 类比求导法-----------------------------------7 三.欧拉公式的应用 2.1 求高阶导数-----------------------------------7 2.2 积分计算------------------------------------8 2.3 高阶线性齐次微分方程的通解------------------9 2.4 求函数级数展开式----------------------------9 2.5 三角级数求和函数----------------------------10 2.6 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言 欧拉是十八世纪最杰出的最多产的数学家之一[1],留下了数不胜数的以其名 字命名的公式。本文关注的欧拉公式x i x e ix sin cos +=,在复数域中它把指数函数 联系在一起。特别当π=x 时,欧拉公式便写成了01=+πi e ,这个等式将最富有特 色的五个数π,,,,10e i 绝妙的联系在一起,“1是实数的基本单位,i 是虚数的基本单位,0是唯一的中性数,他们都具有独特的地位,都具有代表性。i 源于代数,

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记 一、函数、导数 1、函数的单调性 (1)设21 2 1 ],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. *二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+- 4、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -= ≠. 6、会用导数求单调区间、极值、最值 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数 分数指数幂 (1)m n a =0,,a m n N *>∈,且1n >). (2)1m n m n a a - = = 0,,a m n N * >∈,且1n >).

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

欧拉公式的证明(整理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqr t(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2;

高中数学公式及知识点速记

高中数学公式及知识点速记 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函 数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -= ≠. 6、会用导数求单调区间、极值、最值 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;

欧拉公式的证明方法和应用

欧拉公式的证明方法和 应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

欧拉公式 θθθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 分离变量积分法

复数欧拉公式的证明和应用

复数欧拉公式 θθθ sin cos i e i +=的证明和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5], π是圆周率在公园前就被定义为“周长与直径的比” 。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 2.1幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 2.2复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 2.3类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 2.4分离变量积分法 假设x i x z sin cos +=,求导得 iz dx dz =,通过分离变量得,idx z dz =,然后两边取积分得

高中数学公式及知识点总结大全(精华版).

第 1页(共 10页 高中文科数学公式及知识点速记 一、函数、导数 1、函数的单调性 (1设 2121],, [x x b a x x <∈、那么 ], [ (0 ( (21b a x f x f x f 在?<-上是增函数; ], [ (0 ( (21b a x f x f x f 在?>-上是减函数 . (2设函数 (x f y =在某个区间内可导,若 0 (>'x f ,则 (x f 为增函数;若 0 (<'x f ,则(x f 为减 函数 . 2、函数的奇偶性 对于定义域内任意的 x ,都有 ( (x f x f =-,则 (x f 是偶函数; 对于定义域内任意的x ,都有 ( (x f x f -=-,则 (x f 是奇函数。奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称。 3、函数 (x f y =在点 0x 处的导数的几何意义 函数 (x f y =在点 0x 处的导数是曲线 (x f y =在 (, (00x f x P 处的切线的斜率 (0x f ',相应的切线方程是 ((000x x x f y y -'=-. *二次函数: (1顶点坐标为 24(, 24b ac b a a --; (2焦点的坐标为 241(, 24b ac b a a -+- 4、几种常见函数的导数 ① '

C 0=;② 1' (-=n n nx x ; ③ x x cos (sin' =;④ x x sin (cos' -=; ⑤ a a a x x ln (' =;⑥ x x e e =' (; ⑦ a x x a ln 1 (log' = ;⑧ x x 1 (ln' = 5、导数的运算法则 (1 ' ' ' ( u v u v ±=±. (2 ' ' ' ( uv u v uv =+. (3 ' ' ' 2 ( (0 u u v uv v v v -= ≠. 6、会用导数求单调区间、极值、最值

《欧拉公式及其应用》

华北水利水电大学 题目《欧拉公式及其应用》 课程名称:高等数学(2) 专业班级:电子信息工程2012154 成员组成: 联系方式: 2013年5月31 日

摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=, 举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式,证明,应用 英文题目"Euler formula and its application" Abstract: The different methods of several in the complex domain that Euler's formula, illustrates several kinds of application of Euler's formula in mathematics, to solve the problem through the summary of many ways to look at problems of the mind, through the solution of several kinds of problems that the reader more understood the importance of Euler in learning many aspects of the theory and the mathematical formula in the. Key words: Euler formula Prove application

高一数学知识要点与公式总结高一数学公式大全总结高一数学知识点总结公式大全

高一数学知识要点与公式总结高一数学公式大全总结高一数学知识点总结及公式大 全 高一数学公式大全总结高一数学知识点总结及公式大全 高一数学知识要点与公式总结1)、理解集合中的有关概念 (1)集合中元素的特征:确定性,互异性,无序性。 (2)集合与元素的关系用符号,表示。 (3)常用数集的符号表示:自然数集 ;正整数集、 ;整数集 ;有理数集、实数集。 (4)集合的表示法:列举法,描述法,韦恩图。 (5)空集是指不含任何元素的集合。 空集是任何集合的子集,是任何非空集合的真子集。 2)、集合中元素的个数的计算: (1)若集合中有 n 个元素,则集合的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是。

3)、若 ; 则是的充分非必要条件 ; 若 ; 则是的必要非充分条件 ; 若 ; 则是的充要条件 ; 若 ; 则是的既非充分又非必要条件 ; 4)、原命题与逆否命题,否命题与逆命题具有相同的 ; 5)、反证法:当证明“若,则”感到困难时,改证它的等价命题“若则”成立,步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。 矛盾的 1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。 适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。 正面词语等于大于小于是都是至多有一个否定正面词语至少有一个任意的所有的至多有 n 个任意两个否定 1)、映射与函数: (1)映射的概念: (2)一一映射: (3)函数的概念: 2)、函数的三要素:,,。 (1)函数解析式的求法:①定义法(拼凑):②换元法: ③待定系数法:④赋值法: (2)函数定义域的求法:含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来

欧拉公式的证明

欧拉公式的证明(是我摘录的) 2008/10/23 16:49 看到了q239urju空间里关于欧拉公式的证明。本着为人民服务的思想,我在此做一些补充: 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的)(就是q239urju空间里的那个) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。

a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2 由1,2得ρ=1,点P[a^(it)]在单位圆上,a^(it)可表达为: a^(it)=cosθ+isinθ 3 设t=u(θ),对3微商有: [a^(it)]*(lna)*u'(θ)*i=-sinθ+icosθ整理有: [a^(it)]*(lna)*u'(θ)*i=(cosθ+isinθ)(cosπ/2+isinπ/2)约去a^(it)有: u'(θ)=logae 4 4取积分有: T=(logae)*θ+Ψ 5 θ→0时,t=limt=Ψ,带入3有: a^(iΨ)=1 即: Ψ=0 6 6代入5有: T=(logae)*θ 7 7代入3有: [a^(logae)]^(iθ)=cosθ+isinθ化简得欧拉公式: e^(iθ)=cosθ+isinθ (后两者才是真正让我震惊的!!!!)

欧拉公式的证明方法和应用

欧拉公式 θθθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造 x i x x f e ix sin cos )(+= ,0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f , 使得x i x e ix sin cos += 分离变量积分法 假设x i x z sin cos +=,求导得 iz dx dz =,通过分离变量得,idx z dz =,然后两边取积分

高中数学公式及知识点总结

高中数学公式总结 一、 函数 1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。 二次函数c bx ax y ++=2 的图象的对称轴方程是a b x 2-= 求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2 )(, (交点式))()()(21x x x x a x f -?-=和k h x a x f +-=2 )()((顶点式)。 二、 三角函数 1、 以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点 ),(y x P ,点P 到原点的距离记为r ,则sin α= r y ,cos α=r x ,tan α=x y 2、 同角三角函数的关系中, 平方关系是:1cos sin 2 2 =+αα 相除关系是:α α αcos sin tan = 3、诱导公式可用十个字概括为:奇变偶不变,符号看(原)象限。 4、 函数B x A y ++=)sin(?ω),(其中00>>ωA 的最大值是B A +,最小值是B A +-,周期是ω π 2= T , 频率是πω2= f ,相位是?ω+x ,初相是?;其图象的对称轴是直线)(2 Z k k x ∈+=+π π?ω,凡是该图象与直线B y =的交点都是该图象的对称中心。 5、 三角函数的单调区间: x y sin =的递增区间是??? ?? ? + - 222 2πππ πk k ,)(Z k ∈,递减区间是????? ? ++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22, -)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是??? ? ? +-22ππππk k ,)(Z k ∈ 6、和角、差角公式:=±)sin(βαβαβαsin cos cos sin ± =±)cos( βαβαβαsin sin cos cos μ

相关文档
最新文档