熔体成型速率对微晶玻璃显微结构的影响 (1)

合集下载

Cu2O_纳米微晶玻璃的显微结构及性能研究 

Cu2O_纳米微晶玻璃的显微结构及性能研究 

easy large scale production is a potential substitute for silver loaded antibacterial glass. In this study, SiO2 -Al2 O3 -K2 OZnO-P2 O5 -B2 O3 -CuO glass-ceramics with different ZnO / K2 O were investigated. Their microstructures were characterized
Jobin) 记录样品中玻璃相和晶相特定基团分子的拉曼振动信号,选择激光器波长 532 nm,测试范围 100 ~
2 000 cm - 1 ;采用 X 射线光电子能谱仪( XPS, Thermo Fisher Scientific) 分析材料中 Cu 元素的价态;采用场发
射扫描电子显微镜( FESEM, Zeiss Ultra Plus) 和高分辨率透射电子显微镜( HRTEM, JEM-1400 Plus) 观察样
基于上述背景,本文选择 SiO2 -Al2 O3 -K2 O-ZnO-P2 O5 -B2 O3 硅酸盐玻璃体系,以 CuO 为铜源,采用熔体-淬
冷法制得了富含纳米 Cu2 O 的微晶玻璃。 采用多种表征方法重点研究了不同 ZnO / K2 O 比微晶玻璃的显微结
构,并分析讨论了显微结构与所制得微晶玻璃抗菌效果和可见光催化活性之间的关系,为新型功能微晶玻璃
基和氨基反应,改变细胞膜的通透性使细胞质基质流出,随后细胞死亡;而对于细胞壁较厚的革兰氏阳性菌,
Cu + 释放还可能进一步产生活性氧基团( 如 O2- 、·OH 和 H2 O2 ) ,从而诱导氧化应激,加速细菌的衰退和死

粉末冶金--熔体快淬法制非晶,纳米晶

粉末冶金--熔体快淬法制非晶,纳米晶

熔体快淬法制备非晶,纳米晶一、实验目的1.实践粗晶材料如何制备成非晶、纳米晶材料;2.了解不同快淬速度对材料的组织的影响;3.了解材料从粗晶变成非晶或纳米晶对其性能的影响。

二、概述熔体快淬就是在真空状态下,将熔融的金属或合金在一定的压力下,注射到高速旋转的水冷铜辊上,使其在极大的过泠度下凝固,获得具有超细结构的非平衡组织,由于这种方法具有极高的冷速,可使金属及合金的晶粒尺寸达到纳米级或得到非晶组织。

使制备的金属或合金具有与一般非平衡冷却完全不同的力学和物理性能。

金属或合金的晶粒尺寸随过冷度的增加而减小。

熔体快淬的冷速极高,可以使多种金属及合金形成纳米晶或非晶态。

而且,由于冷却铜辊的转速及液态金属及合金的喷射压力是可调的,所以冷却速度可以严格控制,从而达到控制金属或合金的晶粒度的目的。

应用熔体快淬制备纳米晶、非晶态金属及合金的工艺易于控制,而且可以实现批量生产,易于产业化。

目前,熔体快淬已经在稀土永磁材料、贮氢合金、Ni2MnGa磁性形状记忆合金、耐高温非晶钛基及钛锆基钎焊料、高强度非晶态结构材料等领域得到广泛的应用。

熔体快淬方法的典型工艺如下所示,母合金冶炼→浇注成锭→铸锭在带喷嘴的试管中再熔化→熔化喷射→高速旋转的冷却辊→固化→薄带和辊分离→收集带子→晶化退火(可省略)→破碎制粉→SPS烧结。

熔体快淬分为单辊快淬法和双辊快淬法。

本实验室用的是单辊快淬法,其原理如图1 所示。

铸锭在试管内被感应线圈加热熔化,然后通入氩气,使试管内外产生0.3~0.7个大气压的压力差,使熔化合金从漏嘴喷出,到达快速旋转的辊面,迅速凝固,形成连续薄带,再借助离心力抛离辊面。

如此完成一次喷铸过程需要数秒到数十秒的时间。

图2为快淬的薄带。

如果淬速更高,得到的薄带将更碎且细小,其晶粒为纳米级(如图3)。

实验中,水冷铜辊的转速、液态金属的压力、液态金属的温度、石英管喷口的尺寸、形状以及喷口与铜辊的距离都是快淬工艺的关键因素。

浅谈溶质对单相纳米晶材料晶粒长大行为的影响

浅谈溶质对单相纳米晶材料晶粒长大行为的影响

浅谈溶质对单相纳米晶材料晶粒长大行为的影响引言纳米晶材料的热稳定性关系到其能否在较高温度下保持纳米晶粒尺寸,也关系到能否在较高温度下保持优异的力学和物理化学性能。

因此,研究纳米晶材料的热稳定性不仅对认识一般纳米晶材料的结构稳定性的普遍规律具有重要的意义,而且对纳米晶材料的应用也有重要的科学意义和实用价值。

由于纳米晶材料具有高的界面分数,最初人们预计纳米晶材料应该有很强的长大趋势。

但是早期关于纳米晶材料稳定性的研究发现,它具有一定的结构稳定性,其长大的开始温度也可能会比较高。

例如机械合金化制备的纳米晶Ni的起始长大温度比亚微米Ni的起始长大温度要高。

事实上纳米晶材料的晶粒长大是一个十分复杂的问题,溶质、第二相粒子、初始晶粒尺寸、三叉晶界等对纳米晶材料的长大行为都有显著的影响。

针对这些问题研究人员开展了大量系统深入的研究。

如Novikov等的计算模拟结果表明,附着在晶界上的运动的第二相粒子阻碍纳米晶材料的长大,阻碍效果取决于第二相粒子的颗粒尺寸和体积分数不动的第二相粒子施加的拖曳力则能完全稳定纳米晶材料。

Okuda等的研究发现纳米晶材料的初始晶粒尺寸越大,其热稳定性越差。

Protasov等的计算模拟结果表明三叉晶界对纳米晶材料的晶粒长大有阻碍作用,纳米晶材料的晶粒尺寸越小,三叉晶界的拖曳力越强。

这在实验中也得到了验证。

而诸多实验结果证实,溶质是影响纳米晶材料晶粒长大行为的一个重要因素。

从热力学角度来看,溶质在晶界偏聚,通过降低晶界能来降低晶粒长大的驱动力,从而抑制晶粒长大。

从动力学角度来看,溶质与晶界交互作用,钉扎晶界,使晶界迁移速率降低,从而抑制晶粒长大。

本文从热力学和动力学两方面综述了溶质对单相纳米晶材料晶粒长大行为的影响,并展望了其发展方向。

2溶质对单相纳米晶材料晶粒长大热力学的影响通过确定温度与最大平均晶粒尺寸之间的关系,可以确定溶质在晶界上是否达到饱和。

Li等的计算结果表明,在一定温度范围内,式(6)和(7)的差异并不明显。

《无机非金属材料科学基础》第5章 熔体和非晶态固体

《无机非金属材料科学基础》第5章 熔体和非晶态固体
目前形成玻璃的方法有很多种,总的说来分为熔融 法和非熔融法。熔融法是形成玻璃的传统方法,即玻璃 原料经加热、熔融和在常规条件下进行冷却而形成玻璃 态物质,在玻璃工业生产中大量采用这种方法。此法的 不足之处是冷却速率较慢,工业生产一般为40~60℃/h, 实验室样品急冷也仅为1~10℃/s,这样的冷却速率不 能使金属、合金或一些离子化合物形成玻璃。
几种化合物生成玻璃的性能
一些化合物的熔点(TM)和转变温度(Tg)的关系
3. 玻璃形成的结晶化学条件
(1)复合阴离子团大小与排列方式 从硅酸盐、硼酸盐、磷酸盐等无机熔体转变为
玻璃时,熔体的结构含有多种负离子集团,这些集 团可能时分时合。这种大型负离子集团可以看作由 不等数目的[SiO4]4-以不同的连接方式歪扭地聚 合而成,宛如歪扭的链状或网络结构。
2. 晶体的熔解热不大,比液体的气化热小得多。
Na晶体 Zn晶体 冰
熔融热 (kJ/mol) 2.51
6.70 6.03
而水的气化热为40.46 kJ/mol。这说明晶体和液体内能差 别不大,质点在固体和液体中的相互作用力是接近的。
熔体是指加热到较高温度才能液化的物 质的液体,熔体或液体是介于气体和晶体之 间的一种物质状态。大量事实证明,熔体和 晶体更相似。
在低温基板上用蒸发沉积形成非晶质薄膜,如 Bi、Si、 Ge、B、M gO、Al2O3、TiO2、SiC 等化合物 在低压氧化气氛中,把金属或合金做成阴极,飞溅在基
极上形成非晶态氧化物薄膜,有 SiO2、PbO-TeO2、Pb -SiO2 系统薄膜等 SiCl4 水解或 SiH4 氧化形成 SiO2 玻璃。在真空中加热 B(OC2H3)3 到 700℃~900℃形成 B2O3 玻璃 利用辉 光放 电形 成原子 态氧 和低 压中 金属有 机化 合物 分解,在基极上形成非晶态氧化物薄膜,如 Si(OC2H5)4 →SiO2 及其它例子 利用电介质溶液的电解反应,在阴极上析出非晶质氧化

第三章 熔体与玻璃体

第三章 熔体与玻璃体

第三章熔体与玻璃体熔体指高温下形成的液体,当它冷却时会固化转变为固体。

冷却速度不同,熔体有两种固化方式:慢冷时,由于冷却慢,质点有足够的时间调整位置做有规则的排列形成晶格,所以熔体慢冷时形成晶体;快冷时,由于冷却速度快,粘度增大太快,质点没来得及做有规则排列就已经固化,因而形成玻璃体。

因此玻璃体的结构和熔体的结构有一定的相似性,也把玻璃体称为过冷液体。

一般玻璃是由玻璃原料加热成熔体冷却而成;同时在很多无机非金属材料中,在材料的使用和制备过程中晶相间都会有熔体和玻璃体存在和产生,影响着材料的性能。

例如,耐火材料中存在的玻璃相是决定其高温性能的重要因素,陶瓷釉的质量取决于玻璃体的组成及其与坯体的物化作用,等等。

因此了解玻璃体和熔体的结构及与性能的关系是十分必要的。

这里熔体和玻璃体的结构主要从原子级结构(0.2~1nm)和亚微观结构(3~几百nm)尺度来考虑。

第一节硅酸盐熔体的结构一. 液体的结构(介于晶体和气体之间)经实验数据证明,液体的结构一般偏向于晶体。

对于这一点我们可以从以下几点理解:液体和晶体的体积密度相近;晶体的熔融热比液体的汽化热小得多;晶体的热容与液体的热容相差不大,而和气体相差大;X衍射分析结果表明液体的结构更靠近晶体的结构。

关于液体的结构有两种理论:1.“近程有序”理论晶体的结构是近程有序、远程也有序;液体的结构是近程有序而远程没有序。

在液体内部每个中心质点的附近的微小范围内(大约10-20Å),认为是近程有序的。

超过此范围则无规律性。

2.“核前群”理论核前群理论是在“近程有序”理论的基础上发展而来的。

它也认为每个中心质点的附近有一个有序排列的范围,但越往外规律性越差,熔体是有一个个这样的复杂集团无规则的连接起来。

液体结晶首先要形成晶核,晶核如果继续长大则形成晶体。

核前群再发展就成为晶核的胚芽,但核前群不同于晶核,核前群一旦发展为晶核就有界面,就相当于出现新相,而核前群是熔体结构中的一部分,核前群之间没有界面。

材料化学-固相反应习题及答案

材料化学-固相反应习题及答案

第八章 相变1、一级相变:相变时两相化学势相等,但化学势的一级偏微商不相等。

发生一级相变时有潜热和体积的变化;二级相变:相变时两相化学势相等,其一阶偏微商也相等,但二阶偏微商不相等。

发生二级相变时无潜热和体积变化,只有热容量、膨胀系数和压缩系数的变化。

2、马氏体相变具有什么特征?它和成核-生成机理有何差别?特征:(1)母相与马氏体之间不改变结晶学方位关系(新相总是沿一定的结晶学面形成,新相与母相之间有严格的取向关系);(2)相变时不发生扩散,是一种无扩散相变,马氏体在化学组成上与母体完全相同;(3)转变速度极快;(4)马氏体相变过程需要成核取动力,有开始温度和终了温度。

区别:成核-生长过程中存在扩散相变,母相与晶相组成可相同可不同,转变速度较慢,无明显的开始和终了温度。

3、均匀成核:从均匀的单相熔体中产生晶核的过程,其成核几率处处相同。

非均匀成核:借助于表面、界面、微粒裂纹、器壁以及各种催化位置而形成晶核的过程。

4、当一种纯液体过冷到平衡凝固温度 (T 0)以下时,固相与液相间的自由焓差越来越负。

试证明在温度T 0附近随温度变化的关系近似地为:00()V V H G T T T ∆∆=-,式中(0)V H ∆<为凝固潜热。

解:G H T S ∆=∆-∆,平衡温度T 0时,000,T V H G H T S S ∆∆=∆-∆=∆=,T<T 0时,00000V T T H G H T S H T H T T -∆∆=∆-∆=∆-=∆。

5、为什么在成核一生成机理相变中,要有一点过冷或过热才能发生相变 ? 什么情况下需过冷,什么情况下需过热。

解:由热力学,G H T S ∆=∆-∆,平衡时,0,m mH G H T S S T ∆∆=∆-∆=∆=, T m :相变平衡温度;ΔH 相变热,温度T 时,系统处于不平衡状态,则0G H T S ∆=∆-∆≠,m m m mT T H T G H T H H T T T -∆∆∆=∆-=∆=∆,要使相变自发进行,0,0mT G H T ∆∆<∆<则,对放热过程如结晶,凝聚ΔH<0则ΔT>0,T m >0,必须过冷;对吸热过程如蒸发,熔融ΔH>0,则ΔT<0,T m >0,必须过热。

Na2O_对锂铝硅微晶玻璃析晶及性能的影响 

Na2O_对锂铝硅微晶玻璃析晶及性能的影响 

第43卷第4期2024年4月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.4April,2024Na 2O 对锂铝硅微晶玻璃析晶及性能的影响郑伟宏,王启东,高子鹏,张㊀浩,袁㊀坚,田培静(武汉理工大学硅酸盐建筑材料国家重点实验室,武汉㊀430070)摘要:采用熔融法制备了不同Na 2O 含量的透明锂铝硅微晶玻璃,通过DSC㊁XRD㊁FESEM 等测试方法研究了不同Na 2O 含量对玻璃析晶及性能的影响㊂结果表明:Na 2O 的引入能显著降低玻璃的转变温度和析晶温度,抑制LiAlSi 4O 10晶相的析出㊂但Na 2O 的引入促使微晶玻璃中析出Li 2Si 2O 5新相,并且随着Na 2O 引入量的增加,Li 2Si 2O 5转变为主晶相㊂由于晶体尺寸均为纳米级,主晶相的转变对透过率影响较小,微晶玻璃的可见光透过率均高于85%㊂主晶相的转变有效增强了微晶玻璃的机械性能,其弯曲强度由300MPa 提升至331MPa㊂Na 2O 的引入有效增强了Na-K 交换,Na 2O 含量为4%(质量分数)的Li 2O-Al 2O 3-SiO 2微晶玻璃在410ħ的KNO 3熔盐中交换6h 后,维氏硬度由7.108GPa 提升至7.403GPa,弯曲强度由331MPa 提升至470MPa㊂关键词:Na 2O;LiAlSi 4O 10;Li 2Si 2O 5;Li 2O-Al 2O 3-SiO 2微晶玻璃;主晶相转变;Na-K 交换中图分类号:TQ171㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)04-1301-07Effect of Na 2O on Crystallization and Properties of Lithium Aluminum Silicate Glass-CeramicsZHENG Weihong ,WANG Qidong ,GAO Zipeng ,ZHANG Hao ,YUAN Jian ,TIAN Peijing(State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan 430070,China)Abstract :Transparent lithium aluminum silicon glass-ceramics with different Na 2O content was prepared by melting method,and the effect of different Na 2O content on the crystallization and properties of the glass were studied by DSC,XRD,FESEM and other test methods.The results show that the introduction of Na 2O can significantly reduce the transition temperature and crystallization temperature of glass,and inhibit the precipitation of LiAlSi 4O 10crystalline phase.However,the introduction of Na 2O leads to the precipitation of a new Li 2Si 2O 5phase in glass-ceramics,and with the increase of Na 2O content,Li 2Si 2O 5transforms into the main crystal phase.Since the crystal size is in the nanometer range,the change of main crystal phase has little effect on transmittance,and the visible light transmittance of glass-ceramics is higher than 85%.The transition of main crystal phase significantly enhances the mechanical properties of glass-ceramics,and the flexural strength increases from 300MPa to 331MPa.The introduction of Na 2O effectively enhances the Na-K exchange.When the LAS glass-ceramics with Na 2O content of 4%(mass fraction)exchanges in KNO 3molten salt at 410ħfor 6h,the Vickers hardness increases from 7.108GPa to 7.403GPa,and the flexural strength increases from 331MPa to 470MPa.Key words :Na 2O;LiAlSi 4O 10;Li 2Si 2O 5;Li 2O-Al 2O 3-SiO 2glass-ceramics;main crystal phase transition;Na-K exchange 收稿日期:2023-11-20;修订日期:2024-01-03基金项目:硅酸盐国家重点实验室(武汉理工大学)开放基金(2011DA105356)作者简介:郑伟宏(1981 ),男,博士,副教授㊂主要从事电子玻璃/微晶玻璃方面的研究㊂E-mail:zhengweihong@通信作者:王启东,硕士研究生㊂E-mail:1422827245@ 0㊀引㊀言目前移动终端的最外层保护玻璃主要采用高铝玻璃,但其力学性能已无法满足移动终端领域的发展需求㊂与之相比,Li 2O-Al 2O 3-SiO 2(LAS)微晶玻璃通过组成和热处理调控,可析出不同晶体以提高玻璃力学性能,此外LAS 微晶玻璃具备可化学强化等优点,被视为第三代高强度玻璃基板[1],备受研究人员关注㊂1302㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷随着电子产品的轻薄化㊁大屏化发展,其对显示屏防护材料的硬度㊁强度和耐冲击等性能提出了更高的要求㊂通过化学强化产生压应力层可得到高强㊁耐摔的LAS微晶玻璃,目前已有不少LAS微晶玻璃化学强化工艺相关研究,例如结晶度[2]和熔盐配比[3]等对离子交换的影响研究,但针对玻璃化学组成,尤其是碱金属氧化物对二步法化学强化影响的研究较少㊂Na+作为二步强化的重要成分,通常依赖于第一步Li+-Na+交换或作为基础组分引入玻璃,而Li+-Na+交换可引入的Na+数极少,第二步离子交换的进行会被抑制,从而进一步限制了玻璃的力学性能提升㊂为得到优异的离子交换性能,需要通过在基础组分中添加Na2O从而增加Na+的含量,但是Na2O的引入对析晶和未强化前的微晶玻璃性能影响研究较为匮乏㊂作为一种重要的碱金属氧化物,Na2O可有效降低锂铝硅㊁镁铝硅等母体玻璃的高温黏度,从而降低析晶温度,同时产生新的主晶相[4-5]㊂Na2O会增加玻璃的热膨胀系数,从而降低玻璃的热稳定性和机械性能,何瑶等[6]的研究表明Na2O含量的增加会降低镁铝硅母体玻璃的密度㊁维氏硬度㊁弯曲强度和抗压强度㊂但是Na2O的引入对微晶玻璃析晶㊁二步离子强化以及力学性能影响研究较为匮乏㊂本文通过调整LAS玻璃中Na2O的含量,研究其对LAS微晶玻璃析晶及性能的影响,为制备可二步强化的LAS微晶玻璃提供参考㊂1㊀实㊀验1.1㊀玻璃样品制备表1为锂铝硅微晶玻璃样品化学组成㊂原料的引入分别为Li2CO3(纯度99.0%),Al2O3(纯度98.5%), SiO2(纯度99.8%),ZrO2(纯度99.0%),Na2CO3(纯度99.0%),(NH4)2H2PO4(纯度99.0%),CeO2(纯度99.9%)和Sb2O3(纯度98.0%)㊂表1㊀基础玻璃样品的化学组成Table1㊀Chemical composition of base glassSample Mass fraction/%SiO2Al2O3Li2O ZrO2P2O5Sb2O3CeO2Na2O BG-070~756~136~131~61~60~50~50 BG-170~756~136~131~61~60~50~52 BG-270~756~136~131~61~60~50~54将称量好的原料搅拌2h,以制备均匀配合料㊂将配合料装入铂金坩埚中,置于硅钼炉中加热至1580ħ保温4h进行熔化㊂将玻璃熔体浇铸在预热的铸铁模具上进行成型,之后转入550ħ的高温炉中保温2h,然后随炉冷却至室温以充分释放内应力㊂1.2㊀分析和测试取质量为10~15mg的玻璃粉末(粒径dɤ75μm),采用差示扫描量热仪(NETZSCH,DSC404F3, Germany)进行DSC测试,升温速率为10ħ/min㊂在室温下采用拉曼光谱仪(Raman,LabRAM Odyssey, HORIBA scientific,France)测试玻璃和微晶玻璃的拉曼光谱,测试波长为514.5nm㊂利用X射线衍射仪(XRD,UitimaⅣ,Rigaku)测试微晶玻璃的物相组成,扫描范围为10ʎ~70ʎ,扫描步长为0.02ʎ㊂微晶玻璃样品经过5%(体积分数)的氢氟酸溶液侵蚀30s,然后浸入去离子水中超声清洗30min,烘干后喷铂处理后,用场发射扫描电子显微镜附加X-max50X型能谱仪(FESEM,Ultra Plus,Zeiss)观察微晶玻璃的微观形貌㊂采用显微硬度维氏硬度计(Q10A+,QNESS,Austria)测定了基础玻璃和微晶玻璃的维氏硬度,试验样品的加载压力为1.96N,加载时间为15s,每组样品测量5次,取平均值,以减少测量误差㊂使用四点弯曲试验机(PT-605B,HOKUTO,China)测试微晶玻璃样品的弯曲强度㊂每组样品进行5次平行试验,取平均值,以减小弯曲强度的测试误差㊂测试前先用线切割将样品切成片状,并研磨和抛光切割断面,以消除切割导致的裂纹,将其制备成尺寸为2mmˑ30mmˑ60mm的玻璃片㊂试验中,下两个支架之间的距离为4cm,上两个支架之间的距离为2cm,加载速度为0.5mm/min㊂用紫外可见近红外分光光度计(UV-VIS-NIR,Lambda950, Perkin Elmer)测量母体玻璃和微晶玻璃的透过率,波长为200~800nm,精准度为ʃ1%㊂在测试之前,样品经过高度磨抛至镜面效果,并用乙醇超声清洗10min,然后烘干㊂使用电子探针微分析仪(EPMA,JXA-8230,第4期郑伟宏等:Na 2O 对锂铝硅微晶玻璃析晶及性能的影响1303㊀JEOL,Japan)测试分析离子交换后样品截面的K +分布深度,工作电压为20kV,光斑尺寸为1μm,测试前样品测试截面经抛光并以无水乙醇超声清洗㊂采用FSM-6000LE 钢化玻璃表面应力仪测量离子交换后玻璃的表面压应力(compressive stress,CS)及应力层深度(depth of layer,DOL),分别测量样品两个表面的中部和边部各5个位置取平均值㊂2㊀结果与讨论2.1㊀基础玻璃差热分析图1为基础玻璃BG-0㊁BG-1和BG-2在10ħ/min 升温速率下的DSC 曲线㊂所有曲线均包含一个吸热峰和两个放热峰,分别对应玻璃的转变温度T g 和结晶温度T p1与T p2㊂随着Na 2O 引入量的增加,玻璃转变温度T g ㊁析晶峰温度T p1和T p2均呈下降趋势,T g 由520ħ降至508ħ,T p1由727ħ降至664ħ,T p2由817ħ降至784ħ㊂此外,析晶峰T p1的强度明显降低,析晶倾向明显减弱;析晶峰T p2的强度显著增强,析晶倾向显著增强㊂DSC 分析表明:Na 2O 的引入虽然有效地降低了T p1所代表晶体的析晶温度,但也使析晶倾向大大降低,不利于该晶体的析出;同时,Na 2O 的引入不仅降低了T p2所代表晶体的析晶温度,还显著增强了其析晶峰的强度,极大增强其析晶倾向㊂2.2㊀基础玻璃拉曼光谱分析图2为基础玻璃BG-0㊁BG-1和BG-2在200~1400cm -1的拉曼光谱㊂拉曼光谱显示了470~550cm -1㊁750~840cm -1和900~1200cm -1三个主要宽峰㊂450~500cm -1处特征峰归因于T O T(T =Si,Al)构型中桥接氧原子(B O)的对称拉伸振动㊂750~840cm -1处特征峰归因于高阳离子和低氧置换的网络中Si 和Al 的振动运动[7]㊂950cm -1处特征峰归因于Li 3PO 4的形成,表明基础玻璃中有一定量的Li 3PO 4核形成[8]㊂1100cm -1处的峰归因于含有一个非桥接氧的SiO 4四面体的对称拉伸,其强度由Na 2O 的浓度决定[9],基础玻璃组分中的Na 2O 逐渐增加,1100cm -1的强度逐渐增强㊂图1㊀基础玻璃BG-0㊁BG-1和BG-2在10ħ/min升温速率下的DSC 曲线Fig.1㊀DSC curves of base glass BG-0,BG-1and BG-2at heating rate of 10ħ/min 图2㊀BG-0㊁BG-1和BG-2的拉曼光谱Fig.2㊀Raman spectra of BG-0,BG-1and BG-22.3㊀微晶玻璃的析晶性能分析微晶玻璃热处理制度通过DSC 曲线上的特征温度确定㊂通常,玻璃的成核温度一般在T g ~(T g +50)ħ,故以550ħ作为成核温度㊂为了探究Na 2O 对晶化过程的影响,将BG-0㊁BG-1和BG-2三组玻璃在550ħ核化6h,然后分别在600㊁625㊁650㊁675㊁700㊁725和750ħ结晶1h 后,观察玻璃的微晶化情况㊂图3是基础玻璃热处理后的XRD 谱㊂图3(a)为BG-0在不同晶化温度下的XRD 谱㊂在Na 2O 含量为0%(质量分数,下同)时,LiAlSi 4O 10是热处理后的唯一晶相,其析晶峰强随晶化温度的增加而增强㊂图3(b)为BG-1在不同晶化温度下的XRD 谱㊂由于2%Na 2O 的引入,600ħ/1h 热处理条件下的XRD 出现了较弱的Li 2SiO 3峰,以及微弱的LiAlSi 4O 10峰㊂在晶化温度升高至675ħ后Li 2SiO 3相消失,而LiAlSi 4O 10的峰强随晶化温度的升高逐渐增加㊂图3(c)为BG-2在不同晶化温度下的XRD 谱㊂当Na 2O 含量为4%时,600ħ/1h1304㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷热处理条件下的XRD中仅有Li2SiO3析晶峰,650ħ/1h热处理条件下的XRD出现微弱的新析晶峰㊂Li2SiO3析晶峰在700ħ/1h热处理后消失,随着晶化温度的升高,得到LiAlSi4O10和Li2Si2O5的复合相微晶玻璃㊂XRD结果表明,Na2O的引入抑制了LiAlSi4O10相的析出㊂在晶化制度为600ħ/1h时,相较于BG-0, BG-1的XRD中LiAlSi4O10的析晶峰明显减弱,BG-2中并无LiAlSi4O10的析晶峰㊂在晶化温度升高至650ħ时,BG-2才开始出现LiAlSi4O10的析晶峰㊂此外,Na2O的引入促使LAS玻璃中析出Li2Si2O5相㊂Li2SiO3是Li2Si2O5的前驱体[10],Li2SiO3的消失与Li2Si2O5的形成有关,二者的转化过程可以用式(1)~(3)解释[11]㊂P2O5(glass)+3Li2O(glass) 2Li3PO4(crystal)(1)Li2O(glass)+SiO2(glass) Li2SiO3(crystal)(2)Li2SiO3(crystal)+SiO2(glass) Li2Si2O5(crystal)(3)图3㊀BG-0㊁BG-1和BG-2玻璃热处理后的XRD谱Fig.3㊀XRD patterns of BG-0,BG-1and BG-2glasses after heat treatment2.4㊀微晶玻璃的显微结构分析图4为550ħ/6h-675ħ/1h热处理后微晶玻璃的微区形貌图,不同Na2O含量的微晶玻璃分别记为GC-0㊁GC-1㊁GC-2㊂图4(a)为GC-0的微区形貌图,LiAlSi4O10为粒状晶体,微晶玻璃内部为13nm左右的粒状堆叠晶体,粒状晶体对微晶玻璃强度的提升较低㊂图4(b)为GC-1的微区形貌图,由于Na2O阻碍了LiAlSi4O10的析出,微晶玻璃中晶体颗粒轮廓较为模糊,结晶度存在一定程度的降低,但XRD谱具有明显的析晶峰,表明2%Na2O对LiAlSi4O10的抑制效果较低㊂图4(c)为GC-2的微区形貌图,Na2O的引入促使Li2Si2O5晶体的析出,其晶体为板条状晶体,微晶玻璃中晶体为约45nm的不同长径比的板条状晶体, Li2Si2O5晶体的析出可能产生互锁结构[12],有利于提高微晶玻璃的机械性能㊂图4㊀不同Na2O含量微晶玻璃的微区形貌图Fig.4㊀Microstructure picture of glass-ceramics with different Na2O content第4期郑伟宏等:Na 2O 对锂铝硅微晶玻璃析晶及性能的影响1305㊀2.5㊀微晶玻璃的光学性能分析图5为微晶玻璃GC-0㊁GC-1和GC-2的透过率曲线㊂GC-0的透过率最高,达87.2%,而GC-1透过率为86.7%,GC-2透过率为85.22%㊂透过率的变化主要是由主晶相和晶粒尺寸的改变而造成的㊂根据Rayleigh-Gans 模型,微晶玻璃散射损耗计算如式(4)所示[13]㊂σp ʈ23NVk 4α3(n c Δn )2(4)式中:σp 为微晶玻璃的散射损耗,dB;N 为晶体的颗粒密度,g /cm 3;V 为晶粒的体积,m 3;k =2π/λ为玻尔兹曼常数(λ是光的波长,m);n c 为晶体的折射率;α为晶粒半径,m;Δn 为玻璃相和晶体之间的折射率之差㊂可见,微晶玻璃透过率主要取决于晶体与残余玻璃相的折射率差和晶体的晶粒尺寸㊂Beall 等[14]研究表明微晶玻璃的晶体相与玻璃相折射率相差越小,其可光范围透明性越好㊂在本研究中,随着Na 2O 的引入,主晶相由LiAlSi 4O 10变为Li 2Si 2O 5,而相较于Li 2Si 2O 5(折射率1.58),LiAlSi 4O 10的折射率(1.51)更接近于玻璃相(折射率1.54),此外晶粒尺寸由13nm 变为45nm㊂因此,随着Na 2O 含量的增加LAS 微晶玻璃的透过率逐渐降低㊂但这三个样品由于纳米级的晶体尺寸㊁晶体与玻璃相折射率之差均较小,因此在可见光范围内三组样品均有优异的透过率㊂2.6㊀微晶玻璃的Na-K 交换分析图6为微晶玻璃GC-0㊁GC-1和GC-2在410ħ的KNO 3熔盐中保温6h 后,以电子探针测量磨抛后玻璃截面所得的K +分布图㊂较低的Na +引入和细小的晶体并未对Na +-K +交换深度产生明显影响,因此GC-0和GC-1试样的K +交换深度基本相同,分别为12.18和13.56μm㊂当Na 2O 引入量为4%(质量分数)时,由于更大的晶粒尺寸和板条状晶体的交叉堆叠,在一定程度上增加了微晶玻璃中的离子运输通道,在Na +-K +交换后GC-2试样的K +深度有较为明显的提升,可达20.30μm㊂结果表明,在LAS 中引入4%的Na 2O 可有效地提升Na +-K +交换,从而达到更佳的二步强化效果㊂图5㊀GC-0㊁GC-1和GC-2的透过率曲线Fig.5㊀Transmittance curves of GC-0,GC-1and GC-2图6㊀GC-0㊁GC-1和GC-2的K +交换深度Fig.6㊀K +exchange depth of GC-0,GC-1and GC-2㊀㊀图7为不同Na 2O 含量的微晶玻璃在410ħ的KNO 3熔盐中离子交换2㊁4和6h 后的CS 和DOL㊂GC-0样品不含Na 2O,离子交换时为Li +-K +直接交换,较大的离子半径差使离子交换难以进行,其离子交换后的DOL 值较低,具体为2h 后DOL 为15μm,4h 后DOL 为20μm,6h 后DOL 则为24μm㊂由于离子交换量极少,其2h 离子交换后CS 仅为102.3MPa,6h 离子交换后CS 也仅提升至140.2MPa㊂当引入2%Na 2O 后,由于可直接进行Na +-K +交换,在2h 离子交换后GC-1的CS 有效提升至150.2MPa,而4h 的CS 为221.3MPa,进一步延长交换时间到6h 后其CS 可提升至242.6MPa㊂虽然与GC-0相比,GC-1的离子交换深度提升不大,但所交换离子量有明显增加,使得其DOL 得到有效的提升,2h 的DOL 提升至19μm,4h 的DOL 提升至30μm,6h 的DOL 则提升至38μm㊂当Na 2O 引入达4%(质量分数)时,微晶玻璃的离子交换能力得到显著的提升,2h 交换后的CS 进一步增加至160.3MPa,并且CS 随着交换时间的延长有明显增加,4h 交换后CS 显著提升至264.3MPa,而在6h 交换后CS 进一步增加至354.3MPa㊂此外,GC-2样品的DOL 随着离子交换深度的增加而增大,其2h 交换后的DOL 为25μm,4h 交换后的DOL 为38μm,且经6h1306㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷交换后可达45μm㊂图7㊀不同Na2O含量样品离子交换后的CS和DOLFig.7㊀CS and DOL after ion exchange of samples with different Na2O content2.7㊀微晶玻璃的力学性能分析图8为微晶玻璃GC-0㊁GC-1和GC-2在410ħ的KNO3熔盐中离子交换前后的维氏硬度和弯曲强度㊂XRD结果表明,Na2O含量的增加一方面抑制了LiAlSi4O10的析出,另一方面促使析出Li2Si2O5㊂Li2Si2O5晶体的析出有效地强化了微晶玻璃,因此微晶玻璃的维氏硬度由(7.0ʃ0.1)GPa增加到(7.1ʃ0.1)GPa㊂GC-0为颗粒状晶体,颗粒状晶体对强度的提升效果较差,因此GC-0到GC-1的弯曲强度提升较低;GC-2为板条状晶体,板条状的晶体结构比颗粒状晶体结构更有利于提升微晶玻璃的力学性能,并且,由于Li2Si2O5的互锁结构能有效的提升弯曲强度,其弯曲强度增加10.3%,由300MPa提升至331MPa㊂离子交换后,由于表面压应力层的形成玻璃的维氏硬度和弯曲强度均有明显的提升㊂在未引入Na2O 时,较大的Li+和K+半径差使Li+-K+交换十分困难,极低的Li+-K+交换量并未有效提升GC-0的维氏硬度,在6h离子交换后其弯曲强度仅由300MPa提升至350MPa㊂当Na2O引入量为2%时,虽然K+交换深度没有明显增加,但由于玻璃中Na+含量的提升有效地增加了Na+-K+交换量,离子交换后的表面压应力明显增加,一定程度上阻碍了微裂纹的扩展,因此GC-1在6h离子交换后的维氏硬度由7.051GPa提升至7.325GPa,弯曲强度由305MPa提升至412MPa㊂当进一步提升Na2O引入量为4%后,由于Na+-K+交换得到了极大的促进,K+交换至更深位置,更高的DOL有效地抑制了玻璃表面微裂纹的扩展,从而使GC-2的力学性能得到了显著的提升㊂在6h离子交换后其维氏硬度由7.108GPa提升至7.403GPa,弯曲强度增加41.99%,由331MPa提升至470MPa㊂图8㊀GC-0㊁GC-1和GC-2离子交换前后的维氏硬度和弯曲强度Fig.8㊀Vickers hardness and flexural strength of GC-0,GC-1and GC-2before and after ion exchange第4期郑伟宏等:Na2O对锂铝硅微晶玻璃析晶及性能的影响1307㊀3㊀结㊀论1)Na2O能有效降低LAS的玻璃转变温度和析晶温度㊂随着Na2O含量的增加,T g由520ħ降至508ħ,T p1由727ħ降至664ħ,T p2由817ħ降至784ħ㊂2)Na2O的引入抑制了LiAlSi4O10晶体的析出,并诱导析出新的Li2Si2O5相㊂随着Na2O含量的增加,在550ħ/6h-750ħ/1h热处理后得到以Li2Si2O5为主晶相㊁LiAlSi4O10为副晶相的LAS微晶玻璃㊂3)随着Na2O含量的提升,LAS微晶玻璃的力学性能有效提高㊂微晶玻璃维氏硬度由(7.0ʃ0.1)GPa 提升至(7.1ʃ0.1)GPa,弯曲强度由300MPa提升至331MPa㊂4)Na2O的引入有效地促进了LAS微晶玻璃的Na+-K+交换,使其力学性能显著提升㊂引入4%的Na2O 并在410ħ的KNO3熔盐中交换6h后,LAS微晶玻璃维氏硬度由7.108GPa提升至7.403GPa;弯曲强度增加41.99%,由331MPa提升至470MPa㊂参考文献[1]㊀王衍行,李现梓,韩㊀韬,等.锂铝硅玻璃的研究进展[J].硅酸盐通报,2022,41(6):2143-2152+2159.WANG Y H,LI X Z,HAN T,et al.Research progress on lithium aluminum silicate glass[J].Bulletin of the Chinese Ceramic Society,2022, 41(6):2143-2152+2159(in Chinese).[2]㊀ZHENG W H,GAO Z P,HUANG M,et al.Chemical strengthening of lithium aluminosilicate glass-ceramic with different crystallinity[J].Journal of Non-Crystalline Solids,2022,598:121940.[3]㊀王明忠,梁新辉,宋占财,等.熔盐配比对锂铝硅玻璃化学强化性能的影响[J].玻璃搪瓷与眼镜,2020,48(6):8-12.WANG M Z,LIANG X H,SONG Z C,et al.Effect of the ratio of molten salts on the chemically tempered performance of lithium aluminosilicate glasses[J].Glass Enamel&Ophthalmic Optics,2020,48(6):8-12(in Chinese).[4]㊀程金树,李淑晶,杨㊀飞.Na2O对LAS微晶玻璃高温粘度及析晶的影响[J].武汉理工大学学报,2010,32(22):44-47.CHENG J S,LI S J,YANG F.Effect of Na2O on high temperature viscosity and crystallization behavior of lithium aluminum silicate glass-ceramic[J].Journal of Wuhan University of Technology,2010,32(22):44-47(in Chinese).[5]㊀何㊀峰,郑媛媛,邓恒涛,等.Na2O对MAS系玻璃熔体性质及微晶玻璃结构的影响[J].武汉理工大学学报,2013,35(1):13-16.HE F,ZHENG Y Y,DENG H T,et al.Influence of Na2O mixed on the melt property and structure of MAS system glass-ceramics[J].Journal of Wuhan University of Technology,2013,35(1):13-16(in Chinese).[6]㊀何㊀瑶,何㊀茜,江㊀勇,等.Na2O对MgO-Al2O3-SiO2体系玻璃及微晶玻璃导电性能的影响[J].陶瓷学报,2020,41(5):662-670.HE Y,HE X,JIANG Y,et al.Effect of Na2O on electrical conductivity of MgO-Al2O3-SiO2glass and glass-ceramics[J].Journal of Ceramics, 2020,41(5):662-670(in Chinese).[7]㊀ROSS S,WELSCH A M,BEHRENS H.Lithium conductivity in glasses of the Li2O-Al2O3-SiO2system[J].Physical Chemistry ChemicalPhysics,2015,17(1):465-474.[8]㊀ZHANG T H,ZHANG Z M,HAN J J,et al.The structure and properties of chemical strengthened transparent lithium disilicate glass ceramicswith various P2O5contents[J].Journal of Non-Crystalline Solids,2022,588:121626.[9]㊀FURUKAWA T,FOX K E,WHITE W B.Raman spectroscopic investigation of the structure of silicate glasses.III.Raman intensities andstructural units in sodium silicate glasses[J].The Journal of Chemical Physics,1981,75(7):3226-3237.[10]㊀GOHARIAN P,NEMATI A,SHABANIAN M,et al.Properties,crystallization mechanism and microstructure of lithium disilicate glass-ceramic[J].Journal of Non-Crystalline Solids,2010,356(4/5):208-214.[11]㊀WEN G,ZHENG X,SONG L.Effects of P2O5and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics[J].Acta Materialia,2007,55(10):3583-3591.[12]㊀赵㊀婷,雷钰洁,秦㊀毅,等.棒状二硅酸锂晶体增强铝硅酸锂玻璃陶瓷的制备及性能[J].陕西科技大学学报,2020,38(4):101-106.ZHAO T,LEI Y J,QIN Y,et al.Preparation and properties of lithium aluminosilicate glass-ceramics strengthened by rod-like lithium disilicate crystals[J].Journal of Shaanxi University of Science&Technology,2020,38(4):101-106(in Chinese).[13]㊀SAKAMOTO A,HIMEI Y,SETO T.Applicability of optical scattering model toβ-quartz solid solution glass-ceramics with nanoscale crystallinephase[J].Journal of the American Ceramic Society,2008,91(8):2570-2574.[14]㊀BEALL G H,DUKE D A.Transparent glass-ceramics[J].Journal of Materials Science,1969,4(4):340-352.。

高等光学论文-LAS微晶玻璃的制备及结构性能分析

高等光学论文-LAS微晶玻璃的制备及结构性能分析

《高等光学》课程期末论文目录一、微晶玻璃的优点 (2)二、透明微晶玻璃的制备工艺 (2)2.1 整体析晶法 (2)2.2 烧结法 (2)2.3 溶胶-凝胶法 (3)三、LAS系统微晶玻璃的制备 (3)3.1 实验流程图 (3)3.2 LAS系统微晶玻璃组分的确定 (3)3.3 微晶玻璃的制备过程 (4)四、微晶玻璃的性能测试及分析 (4)4.1 XRD定性分析 (4)4.2 SEM分析 (5)4.3 可见光透过率测定分析 (5)4.4 透红外测试与分析 (5)4.5 热膨胀测定 (6)4.6 粘度测定 (6)4.7 抗折强度测试 (7)4.8 化学稳定性测试 (7)五、LAS微晶玻璃的应用 (7)5.1 在反射光学的应用 (7)5.2 激光导航陀螺仪 (8)5.3 光纤放大器 (8)5.4 激光材料 (8)5.5 其它方面的应用 (8)参考文献: (9)LAS微晶玻璃的制备及结构性能分析摘要:微晶玻璃有热膨胀系数低、化学性能稳定、机械强度高、介电常数小、密度小、质地致密等优异性能,在一些领域和工作环境中,微晶玻璃还具有较高光透过率,一直以来受到人们的广泛关注。

本文简单介绍了LAS微晶玻璃的制备和检测过程,以便在实验和生产中能得到性能较好,符合需求的制品。

由于LAS 微晶玻璃有诸多优良性能,使得它在电子、化工和军工等领域得到广泛应用。

关键词:透明微晶玻璃 LAS系统热处理制度 LAS微晶玻璃的应用Preparation and structural properties of LASglass-ceramicsAbstractPreparation of glass-ceramics with thermal expansion coefficient is low, the chemical stability and mechanical strength, dielectric constant is small, the density of small, dense texture, such as outstanding performance. In some areas and work environment, glass-ceramics also has a high light transmittance. It has been attracted extensive concern. This paper introduces the LAS glass-ceramics and testing process so that in the experiment and production can get better performance, in line with the demand of the products. As a result of LAS glass ceramics have many advantages, makes it in electronic, chemical industry and military and other fields has been widely used.Key words: transparent glass-ceramic LAS system heat treatment system application of LAS glass-ceramics一、微晶玻璃的优点微晶玻璃(glass—ceramics)又称微晶玉石或陶瓷玻璃[1],是将特定组成的基础玻璃,在加热过程中通过控制晶化而制得的一类含有大量微晶相及玻璃相的多晶固体材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

熔体成型速率对微晶玻璃显微结构的影响董伟1,卢金山1,李要辉2(1.南昌航空大学材料科学与工程学院,南昌330063;2.中国建筑材料科学研究总院玻璃科学研究所,北京100024)摘要:通过熔融法制备出不同熔体成型速率的锂铝硅(LAS)玻璃,利用XRD、DTA、IR、SEM等,研究了成型速率对热处理后微晶玻璃显微结构的影响。

结果表明:成型速率低(1cm·s-1)的玻璃内部由于冷却慢,冷却过程中部分Al3+取代了Si4+,析出了初始晶核,热处理后转变为白色的β-锂辉石固溶体,而玻璃表层冷却快,未出现明显的析晶,热处理后形成了无色透明的β-石英固溶体;熔体成型速率高(6cm·s-1)的玻璃内部冷却也快,热处理后表层与内部都转变为单一的β-石英固溶体。

关键词:成型速率;微晶玻璃;显微结构中图分类号:文献标志码:文章编号:Effects of Melt Forming Rate on Microstructure of Glass-Ceramics(1 .School of Materials Science and Engineering,Nanchang HangkongUniversity, Nanchang 330063,China;2.Ulass Science institute, China Building Materials Academy, Beijing 100024,China)Abstract:Lithium aluminosilicate glass with different melt forming rates were prepared by the melting method. he effect of forming rate on the microstructure of heat treated glass-ceramics was analyzed using XRD,D A,lR and SEM techniques.he results show that the replacement of some Al''+ for Si'+ occurred in the interior of glass with low forming rate in the process of slow cooling(1 cm·s),which led to the primary nuclei precipitated. The glass interior converted into a white spodumene structure after heat treatment. Meanwhile,because of rapid cooling of the glass surface, the nucleation did not occur obviously. A transparent and colorless quartz solid solution was formed after heat treatment. High melt forming rate(6 cm·s)led to rapid cooling in the interior of glass,too. A single quartz solid solution was formed on surface and in interior after heat trcament.0引言锂铝硅系(LAS)微晶玻璃具有高透明度和低热膨胀系数两大特点,广泛应用于高温观察窗、光学器件、激光陀螺等方面[1]。

熔融法制备LAS微晶玻璃需要进行玻璃料熔制、玻璃熔体成型以及玻璃晶化热处理等工艺步骤,玻璃成型过程中如果停留在有利于晶体形成和生长的温度区间,内部便会出现析晶,形成“析晶结石”缺陷[2-3]。

由于LAS玻璃熔制温度高(1600℃以上)、玻璃熔体黏度大,成型过程中玻璃表层冷却快,但内部散热慢,仍处于高温状态,容易形成高温析晶,从而破坏玻璃表层和内部组织结构的均匀性,导致热处理后的微晶玻璃内部可能出现乳浊,影响其光学性能。

为了防止玻璃熔体凝固成型时的高温析晶,需要提高熔体成型速率,以使玻璃内部温度尽快降至析晶温度以下。

目前有关玻璃熔体成型速率对相应微晶玻璃结构影响的研究工作未见公开报道,作者以LAS玻璃成型为例,确定玻璃熔体成型速率为熔体浇注速率,即单位时间内熔体在不锈钢板表面的浇注长度,研究了不同成型速率对微晶玻璃显微结构的影响及其机理,并提出了改善微晶玻璃结构均匀性的有效途径。

1试样制备与试验方法1.1试样制备玻璃原料主要成分为(质量分数/%,下同),同时引入4.5%的TiO2和ZrO2作为晶核剂,加入8.5%的Na2O、CaO、BaO、MgO和Sb2O3等作为助熔剂和澄清剂,以改善玻璃的熔制性能,所有原料均为分析纯。

使用陶瓷研钵研磨混合粉料0.5h,装入高纯氧化铝坩埚,在1650℃的高温熔化炉内恒温熔制4h。

熔制好的玻璃熔体分别以1,6cm·s-1的速率浇注于事先预热到550℃的不锈钢板上,并手动压成厚度为2mm的玻璃片,然后迅速置于550℃退火炉中退火2h,随炉冷却至室温,得到无色透明LAS玻璃,成型速率为1,6cm·s-1的玻璃试样编号分别为A、B。

玻璃试样在830℃热处理1,10h,得到相应的LAS微晶玻璃。

1.2试验方法采用DZ-3331型热分析仪(DTA)测定玻璃的晶化温度,升温速率为10℃·min-1;采用D8Ad-vance型X射线衍射仪(XRD)分析玻璃的晶体结构,工作电压和电流分别为40kV和40mA,扫描速率为5(°)/min;采用FTIRNicolet5700型傅里叶变换红光谱仪(IR)分析玻璃的结构,试样为粒径低于43μm的玻璃粉,测试波数范围为3502500cm-1;微晶玻璃试样经过磨抛,在体积分数为5%的氢氟酸水溶液中浸泡30s,然后用蒸馏水冲洗后吹干,采用JSM-5600F型扫描电镜(SEM)观察表面形貌;采用IE300X型能量色散光谱仪(EDS)分析不同区域的元素组成。

2试验结果与讨论2.1玻璃和微晶玻璃的相组成由图1可以看出,成型速率低的玻璃试样A的晶化峰温度(833℃)略高于成型速率高的试样B的(830℃),但晶化峰强度明显低于试样B的。

Gup-ta[4]研究认为,玻璃DTA曲线中晶化峰强度和晶化温度与试样中的晶核数目有关,它是判断玻璃形核和晶化的有力判据。

成型过程中如果玻璃熔体内部冷却慢,容易出现析晶现象[3],即成型后玻璃内部已有晶核生成。

热处理时已析晶的玻璃内部晶粒长大所释放的能量低于未析晶玻璃的,后者热处理过程中析晶和晶粒长大同时进行,故晶化放热峰强度更高为了进一步确定玻璃内部结构的变化,对试样A、B进行红外光谱分析,如图2所示。

在1381cm-1和1620cm-1处的红外吸收峰均为玻璃表面吸附的羟基振动吸收引起的;2360cm-1处的吸收峰为表面吸附的CO2引起的;1200~1000cm-1范围的红外吸收带是Si-O-Si键的反对称伸缩振动、O-Si-O键的伸缩振动引起的;在800~600cm-1范围的是Si-O-Al的振动吸收峰,460~420cm-1范围的为[AlO4]5-的振动吸收峰,试样A的这两个吸收峰波数明显增大,这是由于Al3+取代Si4+导致O-Al振动所引起的[5]。

与此相反,试样A在波数为1200~1000cm-1处的红外吸收带明显移向低波数,并且吸收带更宽,这是由于玻璃中的Al3+取代Si4+,使得Si-O键振动频率降低,吸收谱带向低波数方向移动,并导致吸收带宽化。

由于玻璃转变成微晶玻璃时,一部分Al3+和Li+会取代[SiO4]4-中的Si4+[6],从红外光谱可知成型速率低的试样A中部分Al3+取代了Si4+,Al-Si-O组分的初始晶核已经形成,进一步证实了图1中两种试样放热峰的差异是由试样A内部析晶引起的。

根据试样DTA曲线的晶化峰温度,将玻璃试样A和B在830℃处理1h[7]。

从热处理后两种试样的外观来看,试样A内部为白色,表层为无色透明,两者界面上出现大量裂纹;而试样B整体为无色透明。

对热处理前后的玻璃表面进行XRD分析,如图3所示。

不同成型速率玻璃试样的XRD谱均为典型的非晶态漫散射谱,热处理后微晶玻璃表面的透明区都为LixAlxSi1-2xO2(PDF:40-0073)结构的β-石英固溶体,但试样A内部的白色区为Li-AlSi2O6(PDF:71-2058)结构的β-锂辉石固溶体。

由此可以初步判定,试样A的微晶玻璃分层现象是由于玻璃内部已出现析晶,在该试样的热处理后表层和内部形成了不同晶相,两种晶相之间热膨胀系数失配,从而导致热处理过程中界面上产生大量裂纹。

Fig.3 XRD patterns of samples with different forming rates and states; (a) before thermal treatment;(b) the transparent part after thermal treatment and (c) the white part inside the sample A after thermal treatment2.2微晶玻璃的显微结构由图4可见,成型速率低的试样A内部白色区比较致密,而透明区明显存在一些长裂纹;表层透明区有棒状颗粒,长度约为300nm,宽度为50~100nm,颗粒表面分布着球状小晶粒;颗粒间存在大量玻璃相(氢氟酸腐蚀后留下的孔隙);白色区微观形貌比较单一,如图4(c)所示,由50nm左右的球状颗粒相互连接成珊瑚状,颗粒间隙很小(玻璃相少),比透明区致密,并出现颗粒粘连现象,阻挡了可见光的通过,而β-锂辉石固溶体不具有透光性,所以试样A的微晶玻璃内部呈现白色。

成型速率高的试样B热处理后晶粒均匀细小,晶粒尺寸为100nm左右。

Fig. 4 SEM morphology of LAS glass-ceramics; (a) interface between transparent and( b) transparent part of sample A; ( c) white part of sample A and ( d )white parts in sample A;sample B为了进一步确定成型速率低的微晶玻璃表层和内部结构的差别,对试样A的透明区和白色区分别进行EDS能谱分析,如图5所示,可知透明区的铝含量明显高于白色区的。

相关文档
最新文档