经典数学例题---充分必要条件

合集下载

高三数学充分条件与必要条件试题答案及解析

高三数学充分条件与必要条件试题答案及解析

高三数学充分条件与必要条件试题答案及解析1.设,则“”是“”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】C.【解析】若,①,则,即成立;②,则显然成立;③,则,即,∴成立;若,①,,则;②,,则显然成立;③,,则,故综上所述,“”是“”的充要条件.【考点】1.不等式的性质;2.充分必要条件.2.在△中,“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由已知,当A,B都为锐角,且A<B时,正弦函数在(0,90°)单调递增,所以,故;当A为锐角,B为钝角时,A+B<180°,所以,所以,故选:C.【考点】充要条件.3.已知a∈R,且a≠0,则是“a>1”的( ).A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】B【解析】由或.所以是“a>1”的必要不充分条件.故选B【考点】1.分式不等式的解法.2.充要条件.4.“”是“函数(且)在区间上存在零点”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】令,得,若,则,所以充分性成立;若函数在区间上存在零点时,则有,显然存在,且由不能得出,所以必要性不成立.故正确答案为A.【考点】1.充分条件;必要条件;充要条件;2.函数零点.5.“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当时,有,但当时,,故选A.【考点】充分与必要条件.6.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当a=1时,N={1},此时有N⊆M,则条件具有充分性;当N⊆M时,有a2=1或a2=2得到a1=1,a2=-1,a3=,a4=-,故不具有必要性,所以“a=1”是“N⊆M”的充分不必要条件,选A.7.已知a∈R,则“a>2”是“a2>2a”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.8.设a,b∈R,则“a>1且0<b<1”是“a-b>0且>1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】显然a>1且0<b<1⇒a-b>0且>1;反之,a-b>0且>1⇒a>b且>0⇒a>b且b>0,推不出a>1且0<b<1.故“a>1且0<b<1”是“a-b>0且>1”的充分而不必要条件.9.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3D.4【答案】B【解析】命题①在c=0时不正确,即“a=b”只是“ac=bc”的充分而不必要条件;注意到无理数的概念与实数的加法运算,可知命题②是真命题;命题③在a,b至少有一个是负数时不一定正确,命题③为假命题;由不等式的性质,若a<3,必有a<5,命题④是真命题.综上所述,命题②④是真命题,选B.10.设,,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】即又,,,即成立,相反,代入特殊值,当时,满足,但不成立.所以是充分不必要条件,故选A.【考点】充分必要条件的判定11.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】解不等式得;解不等式得;因为,而,所以“”是“”的必要不充分条件,故选B【考点】1、一元一次、二次不等式的解法;2、充要条件.12.己知实数满足,则“成立”是“成立”的().A.充分非必要条件.B.必要非充分条件.C.充要条件.D.既非充分又非必要条件.【答案】C【解析】这是考查不等式的性质,由于,因此不等式两边同乘以可得,即,同样在不等式两边同除以可得,即,因此应该选C.当然也可这样分析:说明同正同负,由于函数在和两个区间上都是减函数,因此“”与“”是等价的,即本题选C.【考点】不等式的性质,13.记实数…中的最大数为{…},最小数为min{…}.已知的三边边长为、、(),定义它的倾斜度为则“t=1”是“为等边三角形”的。

高三数学充分条件与必要条件试题答案及解析

高三数学充分条件与必要条件试题答案及解析

高三数学充分条件与必要条件试题答案及解析1.函数在处导数存在,若;是的极值点,则()A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件D.既不是的充分条件,也不是的必要条件【答案】C【解析】若是函数的极值点,则;若,则不一定是极值点,例如,当时,,但不是极值点,故是的必要条件,但不是的充分条件,选C .【考点】1、函数的极值点;2、充分必要条件.2.设,则|“”是“”的A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要又不必要条件【答案】C.【解析】设,则,∴是上的增函数,“”是“”的充要条件,故选C.【考点】1.充分条件、必要条件、充要条件的判断;2.不等式的性质.3.“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是()A.m>B.0<m<1C.m>0D.m>1【答案】C【解析】不等式x2-x+m>0在R上恒成立,则Δ=1-4m<0,∴m>.∴“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是m>0.4.中,角的对边分别为,则“”是“是等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当时,由余弦定理得,,故,即,所以是等腰三角形,反之,当是等腰三角形时等腰三角形时,不一定有,故“”是“是等腰三角形”的充分不必要条件.【考点】1、余弦定理;2、充分必要条件.5.“”是“直线与平行”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既充分而不必要条件【答案】【解析】因为直线与平行所以,得或由“”是“或”充分而不必要条件故选【考点】两直线平行的充要条件;充分性和必要性.6.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当φ=π时,y=sin(2x+φ)=sin(2x+π)=-sin 2x,此时曲线y=sin(2x+φ)必过原点,但曲线y=sin(2x+φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.7.若且,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】所以当时,所以“”是“”的充分不必要条件.故选【考点】充分条件和必要条件;三角恒等变换.8.“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当时,有,但当时,,故选A.【考点】充分与必要条件.9.命题甲:或;命题乙:,则甲是乙的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既不充分条件也不必要条件【答案】B【解析】该命题的逆否命题为:,则且,这显然不成立,从而原命题也不成立,所以不是充分条件;该命题的否命题为:且,则,这显然成立,从而逆命题也成立,所以是必要条件.【考点】逻辑与命题.10.“”是“函数存在零点”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A【解析】“函数存在零点”,的充要条件是“m≤0”,∴充分不必要条件.【考点】函数的零点.11.“”是“”的A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由显然可得,而当时,对应的角有无数多个,比如,所以答案是B.【考点】(1)充要条件;(2)三角函数.12.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3D.4【答案】B【解析】命题①在c=0时不正确,即“a=b”只是“ac=bc”的充分而不必要条件;注意到无理数的概念与实数的加法运算,可知命题②是真命题;命题③在a,b至少有一个是负数时不一定正确,命题③为假命题;由不等式的性质,若a<3,必有a<5,命题④是真命题.综上所述,命题②④是真命题,选B.13.已知空间三条直线a,b,m及平面α,且a,bα.条件甲:m⊥a,m⊥b;条件乙:m⊥α,则“条件乙成立”是“条件甲成立”的()A.充分非必要条件B.必要非充分条件C.充分且必要条件D.既非充分也非必要条件【答案】A【解析】m⊥α,m⊥a,m⊥b,而当a∥b时,不能反推,选A.14.已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是________.【答案】a<5【解析】命题“x∈A”是命题“x∈B”的充分不必要条件,∴A⊆B,∴a<5.15.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的 ().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当x=2且y=-1时,满足方程x+y-1=0,但方程x+y-1=0有无数多个解,不能确定x=2且y=-1,∴“x=2且y=-1”是“点P在直线l上”的充分不必要条件.16.“M>N”是“log2M>log2N”成立的______条件(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写).【答案】必要不充分【解析】“M>N”⇒/ log2M>log2N,”因为M,N小于零不成立;“log2M>log2N”⇒M>N.故“M>N”是“log2M>log2N”的必要不充分条件.17.设函数,则“为奇函数”是“”的条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)【答案】必要不充分【解析】必要性:当时,为奇函数;而当时,也为奇函数,所以充分性不成立.解答此类问题,需明确方向.肯定的要会证明,否定的要会举反例.【考点】充要关系.18.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】当时,,则;当时,,此时无法得出,当时不成立.【考点】充要条件的判断.19.“成立”是“成立”的().A.充分非必要条件.B.必要非充分条件.C.充要条件.D.既非充分又非必要条件.【答案】B【解析】把两个命题都化简,“成立”等价于“”,“成立”等价于“”,而,故选B.【考点】解不等式与充分必要条件.20.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要【答案】B.【解析】因,所以“”是“”必要不充分条件.【考点】充要条件.21.已知α,β为不重合的两个平面,直线mα,那么“m⊥β”是“α⊥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若直线mα,且“m⊥β”,则定有α⊥β,若直线mα,且α⊥β,则得不到m⊥β,所以直线mα,那么“m⊥β”是“α⊥β”的充分而不必要条件,选A.【考点】线面关系、充分必要条件.22.实数,条件: ,条件:,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由条件知,则,故由不等式的性质知,则能够推出成立;而:中还存在的情况,故不能推出成立,所以是的充分不必要条件.【考点】不等式性质的应用,充分不必要条件的判定.23.“x=3”是“x2=9”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【答案】A【解析】当时有,当时,故是的充分不必要条件,选A.【考点】充要条件24.“”是“直线与直线互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若直线与直线互相垂直,则,即,即,解得或,故“”是“直线与直线互相垂直”的充分不必要条件,故选A.【考点】1.两直线的位置关系;2.充分必要条件25.设,则“直线与直线平行”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】则直线与直线平行,但直线与直线平行,则,故“直线与直线平行”是“”的必要不充分条件.【考点】充要条件的判断.26.已知命题方程在上有解,命题函数的值域为,若命题“或”是假命题,求实数的取值范围.【答案】实数的取值范围是.【解析】先就命题为真和命题为真时求出相应的参数的值,然后就复合命题“或”为假命题对命题和命题的真假性进行分类讨论,从而得出参数的取值范围.试题解析:若命题为真,显然,或,故有或, 5分若命题为真,就有或命题“或”为假命题时, 12分【考点】1.一元二次方程;2.二次函数;3.复合命题27.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件【答案】A.【解析】当,若,则定有;当,若,不一定有,所以,当时,“”是“”的充分而不必要条件,选A.【考点】充分不必要条件.28.若命题:,:方程表示双曲线,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】方程表示双曲线,则满足或,解得或,因此是的充分不必要条件.【考点】1.充要条件;2.双曲线的方程.29.“”是“”成立的条件.(从“充要”,“充分不必要”,“必要不充分”中选择一个正确的填写)【答案】必要不充分【解析】若去此时无法推出,但是反之,根据对数函数单调递增可知成立,故填“必要不充分”.【考点】充分必要条件的判断.30.“”是“直线和直线互相垂直”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】根据题意,由于直线和直线互相垂直” 等价于1-m=0,则“”是““直线和直线互相垂直”的充要条件,故选C.【考点】充分条件点评:主要是考查了两直线垂直的充要条件的运用,属于基础题。

充分必要条件(35道小题+3道大题)

充分必要条件(35道小题+3道大题)

充分必要条件(35道小题+3道大题)一、选择题:(请将正确答案的代号填入下表)1.已知a,b 是实数,则“a>0且b>0”是“a+b>0且ab>0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.“ X>0”是“ x ≠0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.a+c>b+d 是a>b 且c>d 的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D. 既不充分也不必要条件4.下列命题是真命题的为( )A.若 1x =1y ,则x=yB.若 x ²-1. 则x =1C.若 x=y,则 √x =√yD.若 x<y,则 x ²<y ²5.设x ∈R,则“x=1”是 “x ³=xᵐ的( )A 充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知a,b,c,d 为实数,且c>d,则“a>b ”是“a-c>b-d ”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.下列 4个命题p 1:∃x ∈(0,+∞).(12)x <(13)xp 2:3⃗ x ∈(0,1),lnx >lnx p 3:∀x ∈(0,+∞),(12)x >kg =x p 4:∀x ∈(0,13),(12)x <lg =x 其中的真命题是( )A.P₁,P₂B.P₁,P₄C.P₂,P₃D.P₂,P₄8.命题“存在x₀∈R,2ⁿ≤0的否定是( )A. 不存在x0∈R.2x0>0B. 存在x0∈R,2N b≥0C. 对任意的 x∈R. 2ᵃ≤0D. 对任意的x∈R,2ᵘ>09.命题“若一个数是负数,则它的平方是正数”的适合题是( )A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”10.已知a,b 都是实数,那么a²>b²−z⁻ⁿa>b⁺的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件11.a<0是方程ax²+2x+1=0至少有一个负数根的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件12.a=1“是“直线 x+y=0和直线 x-ay=0互相靠近”的( )条件A.充分不必要B.必要不充分C.充要条件D.既不充分也不必要13.已知合题p.所有有理数都是实数,命题9:正数的对数都是负数。

第3课 充要条件(经典例题练习、附答案)

第3课  充要条件(经典例题练习、附答案)

第3课 充要条件◇考纲解读掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.◇知识梳理判断充要条件关系的三种方法:①定义法:若B A ⇒,则A 是B 的_______条件,B 是A 的_______条件;若B A ⇒,则A 是B 的_______条件,B 是A 的_______条件;若B A ⇔,则A 是B 的_______条件.②利用原命题和逆否命题的_______来确定.③利用集合的包含关系:若,B A ⊆则A 是B 的_______条件,B 是A 的_______条件;若A=B ,则A 是B 的_______条件.◇基础训练1.(2006安徽卷)“3x >”是24x >“的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 2“x 是2的倍数或是3的倍数”是“x 是6的倍数”的( ) A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分又不必要条件3.(2008中山一模)设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(2008佛山)“2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的( ). A .充分条件不必要 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 ◇典型例题例1.设集合{2},{3},M x x P x x =>=<""x M x P ∈ ∈那么或""x M P ∈ 是的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件 例2.已知p :-2≤x ≤10,q :x 2-2x +1-m 2≤0(m >0),若⌝p 是⌝q 的必要而不充分条件,求实数m 的取值范围.◇能力提升1.如果y x ,是实数,那么“0>xy ”是“y x y x +=+”的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件2.已知命题A,B ,如果⌝A 是⌝B 的充分而不必要条件,那么B 是A 的 ( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 非充分非必要条件3.若p :⎩⎨⎧>>+44αββα ,q :⎩⎨⎧>>22βα ,则p 是q 的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件4.(2008惠州一模) “p 或q 是假命题”是“非p 为真命题”的( )A .充分条件不必要B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 若c b a 、、是常数,则“0402<->c a b a 且”是“对任意R ∈x ,有02>++c x b x a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知真命题“a b c d ≥⇒>”和“a b e f <⇔≤”,那么“c d ≤”是“e f ≤”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第3课 充要条件◇知识梳理1.①充分,必要, 必要,充分,充要.② 逆否命题.③ 充分,必要,充要.◇基础训练1. B2. C3. B4. A◇典型例题例1.解:"}3{}2{"""R x x x x M P x N x M x =<>=∈∈∈ 即或M P x M P x x x x M P x ∈⇐∈<<∈∈显然即},32{"",所以选B例2.解:由题意知,命题若⌝p 是⌝q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件p :-2≤x ≤10q : x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 *∵p 是q 的充分不必要条件,∴不等式-2≤x ≤10的解集是x 2-2x +1-m 2≤0(m >0)解集的子集又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, 实数m 的取值范围是[9,+∞)◇能力提升1.A2. C3. B4.A5. A6.A。

充分必要条件的经典例题

充分必要条件的经典例题

充分必要条件的经典例题一、例题设命题p:实数x满足x^2-4ax + 3a^2<0,其中a>0;命题q:实数x满足<=ft{begin{array}{l}x^2-x - 6≤slant0 x^2+2x - 8>0end{array}right.(1)若a = 1,且pwedge q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围。

二、解析1. 对于命题p:- 由x^2-4ax + 3a^2<0,(x - a)(x - 3a)<0,因为a>0,所以a。

- 当a = 1时,命题p:1。

- 对于命题q:- 解不等式x^2-x - 6≤slant0,即(x - 3)(x+2)≤slant0,解得-2≤slant x≤slant3。

- 解不等式x^2+2x - 8>0,即(x + 4)(x - 2)>0,解得x>2或x<-4。

- 综合可得命题q:2。

- 因为pwedge q为真,则p真且q真。

- 所以<=ft{begin{array}{l}1 < x < 3 2 < x≤slant3end{array}right.,取交集得2。

2. 因为p是q的必要不充分条件,所以qRightarrow p,pnRightarrow q。

- 即q表示的集合是p表示的集合的真子集。

- 由p:a,q:2。

- 所以<=ft{begin{array}{l}a≤slant2 3a>3end{array}right. - 解3a>3得a > 1。

- 综上,1 < a≤slant2。

高中数学充分必要条件10例题

高中数学充分必要条件10例题

高中数学充分必要条件10例题例题1:命题:如果一个三角形是等边三角形,那么这个三角形的三个内角相等。

分析:- 充分性:如果三角形是等边三角形(条件),根据等边三角形的定义,三条边都相等,那么它的三个内角肯定都是60°,所以三个内角相等(结论),充分性成立。

- 必要性:如果一个三角形的三个内角相等(条件),根据三角形内角和是180°,每个角就是60°,这个三角形的三条边肯定相等,也就是等边三角形(结论),必要性成立。

所以“一个三角形是等边三角形”是“这个三角形的三个内角相等”的充分必要条件。

例题2:命题:若x > 5,则x > 3。

分析:- 充分性:当x > 5的时候(条件),5比3大,那肯定x > 3(结论),充分性是妥妥的。

- 必要性:当x > 3(条件),比如说x = 4,它满足x > 3,但不满足x > 5,所以必要性不成立。

所以“x > 5”是“x > 3”的充分不必要条件。

例题3:命题:若a = 0且b = 0,则ab = 0。

分析:- 充分性:要是a = 0并且b = 0(条件),那按照乘法规则,ab肯定等于0(结论),这充分性没毛病。

- 必要性:如果ab = 0(条件),有可能a = 0而b不等于0,或者b = 0而a 不等于0,或者a和b都等于0,所以由ab = 0不能必然推出a = 0且b = 0,必要性不成立。

所以“a = 0且b = 0”是“ab = 0”的充分不必要条件。

例题4:命题:若四边形是正方形,则四边形是矩形。

分析:- 充分性:正方形的四个角都是直角,对边平行且相等,这完全符合矩形的定义啊。

所以如果四边形是正方形(条件),那它肯定是矩形(结论),充分性成立。

- 必要性:四边形是矩形(条件),但是矩形不一定四条边都相等,也就是不一定是正方形(结论),必要性不成立。

所以“四边形是正方形”是“四边形是矩形”的充分不必要条件。

数学充分条件与必要条件试题答案及解析

数学充分条件与必要条件试题答案及解析1.“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】f(x)=|(ax-1)x|=|ax2-x|,若a=0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y=ax2-x的对称轴x=<0,且x=0时y=0,此时y=ax2-x在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax2-x|在区间(0,+∞)上单调递增,故a≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y=ax2-x的对称轴x=>0,且在区间0,上y<0,此时f(x)=|ax2-x|在区间0,上单调递增,在区间,上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.2.设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由已知中|a·b|=|a|·|b|可得,a与b同向或反向,所以a∥b.又因为由a∥b,可得|cos 〈a,b〉|=1,故|a·b|=|a|·|b||cos〈a,b〉|=|a|·|b|,故|a·b|=|a|·|b|是a∥b的充分必要条件.3.设a,b∈R,i是虚数单位,则“ab=0”是“复数a+为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】本小题主要考查充要条件的概念以及复数的相关知识,解题的突破口为弄清什么是纯虚数,然后根据充要条件的定义去判断.a+=a-bi,若a+为纯虚数,a=0且b≠0,所以ab=0不一定有a+为纯虚数,但a+为纯虚数,一定有ab=0,故“ab=0”是复数a+为纯虚数”的必要不充分条件,故选B.4.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】本题考查充分必要条件及函数的单调性,考查推理论证能力,容易题.当f(x)=a x为R上的减函数时,0<a<1,2-a>0,此时g(x)=(2-a)x3在R上为增函数成立;当g(x)=(2-a)x3为增函数时,2-a>0即a<2,但1<a<2时,f(x)=a x为R上的减函数不成立,故选A.5. 设a ,b ∈R ,“a =0”是“复数a +bi 是纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】∵若a =0,则复数a +bi 是实数(b =0)或纯虚数(b≠0).若复数a +bi 是纯虚数则a =0.综上,a ,b ∈R ,“a =0”是“复数a +bi 是纯虚数”的必要而不充分条件.6. 数列{x n }满足x 1=0,x n +1=-x n 2+x n +c(n ∈N *). (1)证明:{x n }是递减数列的充分必要条件是c<0; (2)求c 的取值范围,使{x n }是递增数列. 【答案】(1)见解析 (2)【解析】(1)证明:先证充分性,若c<0,由于x n +1=-x n 2+x n +c≤x n +c<x n ,故{x n }是递减数列; 再证必要性,若{x n }是递减数列, 则由x 2<x 1可得c<0.(2)(i)假设{x n }是递增数列,由x 1=0,得x 2=c ,x 3=-c 2+2c , 由x 1<x 2<x 3,得0<c<1.由x n <x n +1=-x n 2+x n +c 知, 对任意n≥1都有x n <.①注意到-x n +1=x n 2-x n -c +=(1--x n )(-x n ).② 由①式和②式可得1--x n >0即x n <1-. 由②式和x n ≥0还可得,对任意n≥1都有 -x n +1≤(1-)(-x n ).③ 反复运用③式,得-x n ≤(1-)n -1(-x 1)<(1-)n -1, x n <1-和-x n <(1-)n -1两式相加, 知2-1<(1-)n -1对任意n≥1成立. 根据指数函数y =(1-)x 的性质,得2-1≤0,c≤,故0<c≤.(ii)若0<c≤,要证数列{x n }为递增数列,即x n +1-x n =-x n 2+c>0. 即证x n <对任意n≥1成立.下面用数学归纳法证明当0<c≤时,x n <对任意n≥1成立.(1)当n =1时,x 1=0<≤,结论成立.(2)假设当n =k(k ∈N *)时结论成立,即:x k <.因为函数f(x)=-x 2+x +c 在区间内单调递增,所以x k +1=f(x k )<f()=,这就是说当n =k +1时,结论也成立.故x n <对任意n≥1成立. 因此,x n +1=x n -x n 2+c>x n ,即{x n }是递增数列. 由(i)(ii)知,使得数列{x n }单调递增的c 的范围是.7. 命题且满足.命题且满足.则是的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由得,,即,故,反之也成立,故是的充要条件.8.条件,条件;若p是q的充分而不必要条件,则的取值范围是()A.B.C.D.【答案】B【解析】由题意,只需满足,则,即,选B.9.对任意的实数,若表示不超过的最大整数,则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由题得,当时,满足,但是,所以.若,则,所以.综上,是的必要不充分条件,故选B.10.设则是“”成立的 ( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】C【解析】,,由于,因此应选C.11.已知集合,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】时,因为,所以;反之,若,则必有,所以或,故“”是“”的充分不必要条件.选.12.条件,条件,则是的()A.充分非必要条件B.必要不充分条件C.充要条件D.既不充分也不必要的条件【解析】不等式的解集为:或,不等式的解集为:,故为,为,则,则是的充分非必要条件.13.设,则“” 是“且”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件【答案】B【解析】由不能得到且,如也满足;由且一定可以得到,因为,故选B.14.已知,则是成立的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】当时,成立,而,所以,条件,由于,所以,则,所以是成立的必要不充分条件,故选C15.“”是“函数在区间内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】当时,,此时函数在区间内单调递增,当时,令,解得或,当时,结合图象可知,函数在区间内单调递增,当时,结合图象可知,函数在区间上单调递增,在区间上单调递减,在区间上单调递增,不合乎题意!因此“”是“函数在区间内单调递增”的充分必要条件,故选C.16.设且,则“函数在上是减函数”,是“函数在上是增函数”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】若函数在上是减函数,则这样函数在上单调递增;若函数在上是增函数,则【考点】本题结合函数的单调性考查充分必要条件的判定,从基础知识出发,通过最简单的指数函数入手,结合熟知的三次函数设计问题,考查了综合解决问题的能力17.“命题是假命题”是“或”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B【解析】由“命题是假命题”得“命题”是真命题,故,即或,记或,或,因为,所以“命题是假命题”是“或”的必要不充分条件.【命题意图】本题考查含一个量词命题的否定、充分条件和必要条件等基础知识,意在考查逻辑思维能力.18.已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】“”的充要条件是;“”的充要条件是,显然“”是“”的充分不必要条件,所以“”是“”的充分也不必要条件.故选A.【命题意图】本题主要考查充要条件的判断以及对数函数与指数函数的性质,意在考查学生基本的逻辑推理能力.19.“”是“数列为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A.【解析】设,由,得故能推出数列为递增数列,但数列为递增数列不能推出,故“”是“数列为递增数列”的充分而不必要条件,故选A.【命题意图】本题考查充分必要条件、数列的单调性等基础知识,意在考查基本运算能力、逻辑推理能力.20.已知,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题考查不等式性质以及充要条件的判定等基础知识,意在考查运算求解及逻辑推理能力.【答案】A.【解析】解得,,故可以推出,但不能推出,故选A.。

高一数学充分条件与必要条件练习题

高一数学充分条件与必要条件练习题高一数学充分条件与必要条件练题典例分析题型一:判断充分,必要条件例1:在空间中,“两条直线没有公共点”是“这两条直线平行”的充要条件。

例2:对任意实数a、b、c,在下列命题中,真命题是“ac>bc”是“a>b”的必要条件。

例3:若集合A={x|x^2-5x+4<0},B={x||x-a|<1},则“a∈(2,3)”是“B⊆A”的必要但不充分条件。

例4:若“a≥b⇒c>d”和“a<b⇒e≤f”都是真命题,其逆命题都是假命题,则“c≤d”是“e≤f”的充要条件。

例5:已知a,b,c,d为实数,且c>d。

则“a>b”是“a-c>b-d”的充要条件。

例6.“a=8x”是“对任意的正数x,2x+1/8≥1”的充要条件。

例7:a<0是方程ax^2+2x+1=至少有一个负数根的必要但不充分条件。

例8.“函数f(x)(x∈R)存在反函数”是“函数f(x)在R上为增函数”的充分必要条件。

例9:已知命题p:-4<k<0;命题q:函数y=kx^2-kx-1的值恒为负。

则命题p是命题q成立的充要条件。

例10.“m=1”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要但不充分条件。

例11.“a=1”是“函数f(x)=|x-a|在区间[1,+∞)上为增函数”的充要条件。

⑴x<5是x<10的充分不必要条件;x<10是x<5的必要不充分条件;⑵a=b是直线y=x+2与圆(x-a)²+(y-b)²=2相切的____________;a=b是直线y=x+2与圆(x-a)²+(y-b)²=2相切的必要不充分条件;⑶对于非零向量a,b,“a+b=0”是“a∥b”的____________;a+b=0”是“a∥b”的充分必要条件;⑷“α≠β”是“cosα≠cosβ”的____________;α≠β”是“cosα≠cosβ”的必要不充分条件;⑸“k>3”是“方程(x²/k²)-(y²/(k-3)(k+3))=1表示双曲线”的____________;k>3”是“方程(x²/k²)-(y²/(k-3)(k+3))=1表示双曲线”的充分不必要条件;⑹甲:A,B是互斥事件;乙:A,B是对立事件,那么下列说法正确的是____________。

高一数学典型例题分析充分条件与必要条件 (4)

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。

--泰戈尔充分条件与必要条件·典型例题能力素质例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔对.且,即,是的充要条件.选.D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解 ∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴C D ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴qp .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ]A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件. 分析2:画图观察之. 答:选A .说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

经典数学例题---充分必要条件

经典数学例题---充分必要条件例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔D p q q p p q p q D对.且,即,是的充要条件.选.说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔C B C B∵是成立的充要条件,∴③由①③得A C④由②④得A D .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A (B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|; (3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <b e ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典数学例题---充分必要条件例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔D p q q p p q p q D对.且,即,是的充要条件.选.说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔C B C B∵是成立的充要条件,∴③由①③得A C④由②④得AD .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件AB 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A (B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况. 例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|; (3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件 (4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零. 例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <b e ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题),∴c ≤d a <b(逆否命题).而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件.答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422a a2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442a a综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1. 说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s)r 是q 的充要条件;(r q ,qs r)p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式 |x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13 B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x yx y y x xy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy0⎧⎨⎩2x y xy 0x y x 0y 0x yx 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x y x y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需 要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

相关文档
最新文档