流体流动 Fluid Flow

合集下载

流体流动英语

流体流动英语

流体流动英语Fluid flow refers to the movement of a liquid or gas. It is a fundamental concept in physics, and it has many applications in engineering and science. There are many different types of fluid flow, and they are all characterized by their speed, direction, and other properties.Fluid flow can be divided into two main categories: laminar and turbulent. Laminar flow refers to the type of flow in which the fluid moves in parallel lines. This type of flow is characterized by its low speed and high viscosity. On the other hand, turbulent flow is characterized by irregular eddies and currents in the fluid. This type of flow is characterized by its high speed and low viscosity.There are several factors that affect fluid flow, such as the pressure gradient, fluid density, and viscosity. The pressure gradient is the driving force that causes the fluid to flow, and it is typically expressed in terms of the pressure difference between two points. The fluid density is the mass per unit volume of the fluid, and it affects the fluid flow by causing it to resist changes in velocity. Thefluid viscosity is a measure of its resistance to deformation, and it affects the fluid flow by determining how easily it can be moved.Fluid flow is an important concept in engineering and science. It is used to design and optimize many different types of systems, such as pipelines, turbines, and heat exchangers. Engineers and scientists use mathematical models to predict the behavior of fluids in different situations, and these models are used to design and improve systems. Likewise, understanding fluid flow is critical for many scientific investigations, such as studies of atmospheric phenomena, ocean currents, and blood flow in the human body.流体流动指液体或气体的运动。

化工原理-1章流体流动

化工原理-1章流体流动

yi为各物质的摩尔分数,对于理想气体,体积分数与摩尔分数相等。
②混合液体密度计算
假设液体混合物由n种物质组成,混合前后体积
不变,各物质的质量百分比分别为ωi,密度分 别为ρi
n 1 2 混 1 2 n
1
例题1-1 求甲烷在320 K和500 kPa时的密度。
第一节 概述
流体: 指具有流动性的物体,包括液体和气体。
液体:易流动、不可压缩。 气体:易流动、可压缩。 不可压缩流体:流体的体积不随压力及温度变化。
特点:(a) 具有流动性 (b) 受外力作用时内部产生相对运动
流动现象:
① 日常生活中
② 工业生产过程中
煤气
填料塔 孔板流量计
煤气
水封
泵 水池

煤 气 洗 涤 塔
组分黏度见---附录9、附录10
1.2.1 流体的压力(Pressure) 一.定义
流体垂直作用于单位面积上的力,称为流体 的压强,工程上一般称压力。
F [N/m2] 或[Pa] P A
式中 P──压力,N/m2即Pa(帕斯卡);
F──垂直作用在面积A上的力,N;
A──作用面积,m2。
工程单位制中,压力的单位是at(工程大气压)或kgf/cm2。 其它常用的压力表示方法还有如下几种: 标准大气压(物理大气压)atm;米水柱 mH2O; 毫米汞柱mmHg; 流体压力特性: (1)流体压力处处与它的作用面垂直,并总是指向流体 的作用面。
液体:T↑,μ↓(T↑,分子间距↑,范德华力↓,内摩擦力↓) 气体:T↑,μ↑(T↑,分子间距有所增大,但对μ影响不大, 但T↑,分子运动速度↑,内摩擦力↑)
压力P 对气体粘度的影响一般不予考虑,只有在极高或极 低的压力下才考虑压力对气体粘度的影响。

第一章 流体流动2..

第一章 流体流动2..


盐城师范学院
---化工原理---
1.4.2 流体在圆管内的速度分布 速度分布:流体在圆管内流动时,管截面上 质点的速度随半径的变化关系。 无论是滞流或湍流,在管道任意截面上,流体质点的速度 沿管径而变化,管壁处速度为零,离开管壁以后速度渐增, 到管中心处速度最大。速度在管道截面上的分布规律因流 型而异。
层流边界层 湍流边界层
u∞
u∞
u∞
δ
A x0
层流内层
平板上的流动边界层
盐城师范学院
转折点:
Re x
u x
---化工原理---

5 105 ~ 2 106
边界层厚度δ随x增加而增加
层流: 4.64 x (Rex )0.5
层流边界层
湍流边界层
x
x
0.5
u∞
u∞
u∞
湍流: 0.376 0.2
(a)
过渡流
(b)
湍流 (Turbulent flow)
(c)
两种稳定的流动状态:层流、湍流。
盐城师范学院
---化工原理---
层流:
* 流体质点做直线运动;
* 流体分层流动,层间不相混合、不碰撞; * 流动阻力来源于层间粘性摩擦力。 湍流: 主体做轴向运动,同时有径向脉动;
特征:流体质点的脉动 。
r2 u umax 1 R 2
盐城师范学院
---化工原理---
r2 dVs umax 2r 1 R 2 dr
积分此式可得
2 r r R Vs 2umax r 0 r 1 R 2 dr R 2 4 r r 2umax 2 R 2u / 2 max 2 4R 0

流体的特性

流体的特性

pB=pB’ pB=1 gH1+ 2 gH2+p0 pB’= 2 g h+p0
故: 2 g h+p0= 1 gH1+ 2 gH2+p0
h 1gH1 2 gH2 2g
Z1
对于微元垂直液柱(如左 图)其受力情况
上表面作用力:
F1= p1 A 下表面作用力:
F2= p2 A 重力:
G = g A (Z1 - Z2)
26
二、流体静力学基本方程式
p1 G
Z1
p2 Z2
F1= p1 A F2= p2 A G= g A( Z1 - Z2 )
F1 + G = F2
p1 A + g A ( Z1 - Z2 ) = p2 A
当压力不太高,温度不太低的情况下,气体一般可 近似的按理想气体处理,理想气体的密度计算:
PM
RT
P—气体的绝对压强,kPa;
T —气体的绝对温度,K;
M —气体的摩尔质量,kg/kmol;
R —气体状态常数,R=8.314kJ/kmol.K
2020/3/6
12
二、比容
比容是指单位质量流体所具有的体积,多用于气 体。用v表示:
N.m J / kg kg
gz=m/s2.m=m2/s2=J/kg
由上式可知,在静止流体中,不同位置上流体具
有的静压能与位能的值不同,但是两项之和恒为常数, 这说明静止流体中能量守恒且可以相互转换。
2020/3/6
30
三、讨论
1、静力学基本方程式的应用条件:重力场中,静
止的连续的同一种流体;
2020/3/6
32
[例2-2](1)判断下面各式是否成立

化工单元操作英文教材-流体流动现象Fluid-flow phenomena

化工单元操作英文教材-流体流动现象Fluid-flow phenomena

Bingham plastic
The rheological behavior of liquids called non-Newtonian.
o
du/dy
Figure 3 Shear stress versus velocity gradient for non-Newtonian fluids.
turbulent flow: The fluid moves erratically in form of crosscurrents and eddies.
Gas :
kinematic viscosities increase more rapidly with temperature than does the absolute viscosity.
Turbulence
It has long been known that a fluid can flow through a pipe or conduit in two different ways:
One-dimensional flow
Velocity is a vector, but only one velocity component is required. This simple situation is called Onedimensional flow.
Example: steady flow through straight pipe.
The assumptions of steady one-dimensional flow is the basis of following discussion. All we will talk about in this course belong to one dimensional steady flow

第 一 章 流体流动fluid flow

第 一 章  流体流动fluid flow

第一章流体流动fluid flow本章要点★ 学习流体力学原理的目的在于分析与解决化工生产中大量存在的流体流动问题,并为各单元操作的学习提供理论基础。

流体流动原理是物理力学对流体流动现象的应用和发展。

★ 与位能基准一样,静压强也有基准。

工程上常用绝对零压线和大气压线两种基准。

在同一计算中,应注意用统一的压强基准。

★ U形测压管或U形压差计的依据是流体静力学原理。

应用静力学的要点是正确选取等压面。

★连续性方程与机械能衡算方程是描述流体流动过程的基本方程,是分析与计算流体流动过程的基本工具,它们分别是质量守恒定律和热力学第一定律用于流体流动过程的结果。

1.物料衡算---连续性方程一维稳定流动的连续性方程使用条件:将流体视为由无数质点彼此紧靠着而构成的连续体,如果用于管内流动时,流体必须充满全管,不能有间断之处。

2.机械能衡算---柏努力方程流体在流动时要作功克服流动的阻力,其机械能有所消耗,消耗了的机械能转化为热,将流体的温度略为升高,既增加流体的内能。

使用条件:假设流体是不可压缩的;流动系统中无热交换器;流体温度不变;并且流体在某种程度上可视为没有阻力的理想流体。

★流体按其流动状态有层流与湍流两种流型,这是有本质区别的流动现象。

在流体流动、传热及传质过程的工程计算中,往往必须先确定之。

流型判断依据是Re的数值。

★流体在管路中的流动阻力损失包括直管摩擦阻力损失和局部摩擦阻力损失,这是两种有本质区别的阻力损失。

前者主要是表面摩擦,而后者主要是涡流造成的形体阻力损失。

3.管内流动的阻力损失计算直管摩擦损失-----范宁公式实际流体在流动过程中因克服内摩擦而消耗机械能,故衡算式中要增加损失项,才能使输入与输出平衡。

使用条件:范宁公式是计算管内摩擦损失的通用算式,适用于不可压缩流体的稳定流动,此公式对于层流和湍流都适用。

第一节概述1、流体—液体和气体的总称。

流体具有三个特点:①流动性,即抗剪抗张能力都很小。

流体力学中英文术语

流体力学中英文术语Index 翻译(Fluid Mechanics)Absolute pressure,绝对压力(压强)Absolute temperature scales, 绝对温标Absolute viscosity, 绝对粘度Acceleration加速度centripetal, 向心的convective, 对流的Coriolis, 科氏的field of a fluid, 流场force and,作用力与……local, 局部的Uniform linear, 均一线性的Acceleration field加速度场Ackeret theory, 阿克莱特定理Active flow control, 主动流动控制Actuator disk, 促动盘Added mass, 附加质量Adiabatic flow绝热流with friction,考虑摩擦的isentropic,等熵的air, 气体with area changes, 伴有空间转换Bemoullii’s equation and, 伯努利方程Mach number relations,马赫数关系式,pressure and density relations, 压力-速度关系式sonic point,critical values, 音速点,临界值,stagnation enthalpy, 滞止焓Adiabatic processes, 绝热过程Adiabatic relations, 绝热关系Adverse pressure gradient, 逆压力梯度Aerodynamic forces, on road vehicles, 交通工具,空气动力Aerodynamics, 空气动力学Aeronautics, new trends in, 航空学,新趋势Air空气testing/modeling in, 对……实验/建模useful numbers for, 关于……的有用数字Airbus Industrie, 空中客车产业Aircraft航行器airfoils机翼new designs, 新型设计Airfoils, 翼型aspect ratio (AR), 展弦比cambered, 弧形的drag coefficient of , 阻力系数early, 早期的Kline-Fogleman, 克莱恩-佛莱曼lift coefficient, 升力系数NACA,(美国) 国家航空咨询委员会separation bubble, 分离泡stalls and, 失速stall speed, 失速速度starting vortex, 起动涡stopping vortex, 终止涡Airfoil theory, 翼型理论flat-plate vortex sheet theory, 平板面涡理论Kutta condition, 库塔条件Kutta-Joukowski theorem, 库塔-儒科夫斯基定理1thick cambered airfoils, 厚弧面翼型thin-airfoils, 薄翼型wings of finite span, 有限展宽的翼型A-380 jumbo jet, 大型喷气式客机Alternate states, 交替状态American multiblade farm HA WT, 美式农庄多叶水平轴风机Angle of attack, 攻角Angle valve, 角阀Angular momentum角动量differential equation of , 关于…的微分方程relation/theorem, 联系/理论Annular strips, 环形带Applied forces, linear momentum, 外加力,线性冲力Apron,of a dam, 大坝的护坦Arbitrarily moving/deformable control volume, 任意运动/可变形控制体Arbitrary fixed control volume, 任意固定控制体Arbitrary viscous motion, 随机粘性运动Archimedes, 阿基米德Area changes, isentropic flow. 域变换,等熵流Aspect ratio (AR), 展弦比Automobiles, aerodynamic forces on, 汽车,气动力A verage velocity, 平均速度Axial-flow pumps. 轴流泵Axisymmetric flow, stream function 轴对称流,流函数Axisymmetric Potential flow, 轴对称有势流hydrodynamic mass, 水力学质量Point doublet, 点偶极子point source or sink, 点源与点汇spherical Polar coordinates and, 球极坐标uniform stream in the x direction, x方向的均匀流uniform stream plus a point doublet, 均匀流附加点偶极子uniform stream plus a point source, 均匀流附加点源BBackward-curved impeller blades, 后向曲叶轮片,Backwater curves, 回水曲线Basic equations, non dimensional, 基本方程,无量纲的Bernoulli obstruction theory, 伯努利障碍理论Bernoulli's equation, 伯努利方程with adiabatic and isentropic steady flow, as绝热、等熵稳态流frictionless flow, 无摩擦流assumptions/restrictions for, 假想/约束HGLs and EGLs, 水力坡度线和能量梯度线steady flow energy and, 定常流动能量in rotating coordinates. 在旋转坐标下,Best efficiency point (BEP), pumps, 最佳效率点,Betz number, 贝兹数Bingham plastic idealization, 宾汉塑性理想化,Biological drag reduction, 生物学阻力衰减Blade angle effects, on pump head, 叶片安装角效率,泵头处Blasius equation, 布拉修斯方程Body drag, at high Mach numbers, 机体阻力,在高马赫数下Body forces, 体力Boeing Corp., 波音公司Boundaries, of systems, 边界,系统Boundary conditions. 边界条件,differential relations for fluid flow, 流体的微分关系nondimensionalizalion and, 无量纲化Boundary element method (BEM), 边界元方法2Boundary layer (BL) analysis, 边界层分析boundary layer flows, 边界层流动boundary layer separation on a half body, 边界层半体分离displacement thickness, 位移厚度drag force and, 阻力equations, 方程flat-plate. 平板,Karman's analysis, 卡门分析momentum integral estimates, 动量积分估计momentum integral relation. 动量积分关系momentum integral theory, 动量积分理论pressure gradient 压力梯度separation on a half body, 半模分离skin friction coefficient, 表面摩擦系数two-dimensional flow derivation, 二维流推导Boundary layers with Pressure gradient, 边界层压力梯度adverse gradient, 反梯度favorable gradient, 正梯度laminar integral theory, 层流积分理论,nozzle-diffuser example,喷口扩散算例Bourdon tube, 波登管Bow shock wave, 弓形激波Brake horsepower,制动马力Broad-crested weirs, 宽顶堰Buckingham Pi Theorem, 白金汉定理Bulb Protrusion, 球形突出物(船头)Bulk modulus. 体积模量Buoyancy, 浮力Buoyant particles, local velocity and, 悬浮颗粒,局部速度Buoyant rising light spheres, 浮力作用下自由上升的球体Butterfly valve, 蝶形阀CCambered airfoils, 弓型翼Cauchy-Riemann equations, 柯西-黎曼方程Cavitation/Cavitation number, 气穴/气蚀数Celsius temperature scales, 摄氏温标Center of buoyancy, 浮心Center of Pressure (CP),压力中心,压强中心Centrifugal pumps, 离心泵backward-curved impeller blades, 后曲叶轮片blade angle effects on pump head, 泵头处叶片安装角效率brake horsepower, 制动马力circulation losses, 环量损失closed blades, 闭叶片efficiency of, 效率的elementary pump theory. 基泵理论Euler turbomachine equations, 欧拉涡轮机方程eye of the casing, 泵体通风口friction losses, 摩擦损失hydraulic efficiency, 水力[液压]效率mechanical efficiency.机械效率open blades, 开放式叶片output parameters, 输出参数power, delivered, 功率,传递pump surge, 泵涌,scroll section of casing, 卷形截面,泵体,shock losses, 激波损失vaneless, 无叶片的3volumetric efficiency, 容积效率[系数]water horsepower, 水马力Centripetal acceleration, 向心加速度Channel control Point, 传送控制点Characteristic area. external flows, 特征区域,外流Chezy coefficient, 薛齐系数Chezy formula, 薛齐公式Chezy coefficient,薛齐系数flow in a Partly full circular pipe, 流体非充满的圆管流Manning roughness correlation. 曼宁粗糙度关系,normal depth estimates, 法向深度估计Choking, 壅塞;堵塞of compressors, 压缩机的due to friction, compressible duct and, 由于摩擦,可压缩管的isentropic flow with area changes, 变横截面积等熵流simple heating and, 单纯加热Circular cylinder, flow with circulation. 圆柱体,Circulation环量and flow past circular cylinder, 流体经过圆柱体losses, in centrifugal pumps, 损失,离心泵potential flow and, 有势流Circumferential pumps, 环型泵Classical venturi, 标准文氏管Closed blades, centrifugal pumps. 闭叶片,离心泵Closed-body shapes, 闭体外形,circular cylinder, with circulation, 圆柱体,环量Kelvin oval, 开尔文椭圆,Kutta-Joukowski lift theorem,库塔-儒科夫斯基升力定理,Potential flow analogs, 有势流模拟Rankine oval, 兰金椭圆rotating cylinders. lift and drag, 旋转柱体,升力与阻力Coanda effect, 柯恩达效应( 沿物体表面的高速气流在Cobra P-530 supersonic interceptor, 眼镜蛇超音速拦截机Coefficient matrix. 系数矩阵Coefficient of surface tension, 表面张力系数Coefficient of viscosity, 粘滞系数Commercial CFD codes, viscous flow, 商业的计算流体力学代码,粘流Commercial ducts, roughness values for, 商业管道Composite-flow, open channels, 合成流,开槽道Compressibility, non dimensional. 压缩性,无量纲Compressibility effects, 压缩效果Compressible duct flow with friction, 伴有摩擦的可压缩管流adiabatic, 绝热的, 隔热的choking and, 壅塞;堵塞isothermal flow in long pipelines, 管线中的等温流动,long pipelines, isothermal flow in, 管线,等温流动,mass flow for a given pressure drop, 给定压降下质量流动minor losses in, 最小损失subsonic inlet, choking due to friction, 亚音速进口,摩擦引发阻塞,supersonic inlet, choking due to friction, 超音速进口,摩擦引发阻塞,Compressible flow, 可压缩流flow with friction摩擦流choking and, 壅塞;堵塞converging-diverging nozzles, 拉瓦尔喷管converging nozzles, 收缩喷嘴Fanno flow, 法诺流动,gas flow correction factor, 气流校正参数hypersonic flow, 高超音速气流4incompressible flow, 不可压缩流isentropic.等熵的isentropic Process, 等熵过程,Mach number, 马赫数normal shock wave. 正激波the perfect gas, 理想气体Prandtl-Meyer waves. 普朗特-麦耶膨胀波shock waves. 激波specific-heat ratio, 比热比speed of sound and,声速subsonic, 亚音速的supersonic,超音速的transonic, 跨音速的two-dimensional supersonic, 二维超音速的Compressible gas flow correction factor, 可压缩气流校正因数Compressors, 压缩机Computational fluid dynamics (CFD), 计算流体力学pump simulations, 泵模拟viscous flow. 粘流Concentric annulus, viscous flows in, 同心环Cone flows, 锥体绕流Conformal mapping, 保角映射[变换] Conservation of energy, 能量守恒定律Conservation of mass. 质量守恒定律Consistent units, 相容单元Constants, 常量dimensional, 空间的pure, 纯粹的Constant velocity, fluid flow at, 常速度, 等速度Constructs, 结构Contact angle, 交会角Continuity, 连续性,equation of ,方程nondimensionalization and, 无量纲的Continuum, fluid as, 连续流体Contraction flow, 收缩流动Control Point, channel, 控制点,管道Control volume analysis,控制体分析angular momentum theorem. 角动量定理,arbitrarily moving/deformable CV,任意运动/可变形控制体arbitrarily fixed control volume, 任意固定控制体conservation of mass, 质量守恒定律control volume moving at constant velocity, 控制体以等速运动control volume of constant shape but variable velocity作变速运动的刚性控制体energy equation. 能量方程introductory definitions, 介绍性定义linear momentum equation. 线性动量方程,one-dimensional fixed control volume, 一维固定控制体,one-dimensional flux term approximations, 一维通量项近似Physical laws. 物理定律。

化工原理完整教材课件


(下标"0"表示标准状态)
(1-3a)
1.2.1.2 气体的密度

1.2.2 流体的压强及其特性
垂直作用于单位面积上的表面力称为流体的静压强,简称压强。流体的压强具有点特性。工程上习惯上将压强称之为压力。 在SI中,压强的单位是帕斯卡,以Pa表示。但习惯上还采用其它单位,它们之间的换算关系为: (2) 压强的基准 压强有不同的计量基准:绝对压强、表压强、真空度。
1.1.2 流体流动的考察方法
流体是由大量的彼此间有一定间隙的单个分子所组成。在物理化学(气体分子运动论)重要考察单个分子的微观运动,分子的运动是随机的、不规则的混乱运动。这种考察方法认为流体是不连续的介质,所需处理的运动是一种随机的运动,问题将非常复杂。 1.1.2.1 连续性假设(Continuum hypotheses) 在化工原理中研究流体在静止和流动状态下的规律性时,常将流体视为由无数质点组成的连续介质。 连续性假设:假定流体是有大量质点组成、彼此间没有间隙、完全充满所占空间连续介质,流体的物性及运动参数在空间作连续分布,从而可以使用连续函数的数学工具加以描述。
图1-2压强的基准和量度
1.2.1.2 流体压强的特性
流体压强具有以下两个重要特性: ①流体压力处处与它的作用面垂直,并且总是指向流体的作用面; ②流体中任一点压力的大小与所选定的作用面在空间的方位无关。
熟悉压力的各种计量单位与基准及换算关系,对于以后的学习和实际工程计算是十分重要的。
2 本章应掌握的内容 (1) 流体静力学基本方程式的应用; (2) 连续性方程、柏努利方程的物理意义、适用条件、解题要点; (3) 两种流型的比较和工程处理方法; (4) 流动阻力的计算; (5) 管路计算。 3. 本章学时安排 授课14学时,习题课4学时。

FLUID FLOW化工原理英文 单元操作 流体


Total Friction in the Bernoulli equation
Metering of fluid use bernoulli eqution :
Ptiot tube :
p1 p1
p2
p1
So
Orifice meter:
p
1
2
d0
&
d
Rotameter meter:
2
2 m 1
2 m 2
Dividing the equation by qm,gives
u p1 u p2 gz1 H e gz2 hf 2 2
2 1
2 2
Skin friction and form friction
• Friction generated in unseparated boundary layers is called skin friction • When boundary layers separate and form wakes, additional energy dissipation appears within the wake, and friction of this type is called form friction.
FLUID-FLOW FRICTION
Friction of Straight Pipe: We get:
u
p1
1
d
2
p2
x
l
Because of the balance the direction of X :

then :
Make
be the factor of friction:

1.流体流动(FluidFlow)


牛顿型流体:
du
dy
u = 0 τ=0
非牛顿型流体:

(0

)
du dy
u = 0 τ = τ0
1.1.l 流体流动的考察方法
1.1.2 流体流动中的作用力
1.1.3 流体流动中的机械能
1.流体流动( Fluid Flow )
1.l 概 述
1.1.l 流体流动的考察方法 一、 连续性假定 1、质点 : 2、连续性假定: 二、流体运动的描述方法 拉格朗日法
五、流体的粘度μ ( Pa.s) 粘度:是流体的重要物性参数。但是只有在流体流动 过程中才具有存在的意义。
气体:粘度μ 随温度 T上升而升高 ; 液体:粘度μ 随温度 T上升而下降 粘度μ 单位换算:
P(泊)(达因.秒/厘米2) = 100 CP(厘泊) Pa.s = 10 P
1 Cp (厘泊) = 10-3 Pa.s
1.流体流动( Fluid Flowபைடு நூலகம்)
流体 fluid
气体 gases 液体 liquids
蒸汽 vapors
化工生产涉及的物料大部分是流体 的原因:
流体便于输送
流体便于检测和控制 绝大多数的化工过程是在流体流动过程进行的
涉及流体流动规律的主要方面:
流动阻力及流量计量 流动对传热、传质及化学反应的影响 流体的混合
1.1.l 流体流动的考察方法
1.1.2 流体流动中的作用力 六、流体的运动粘度ν ( m2/s )
ν =μ /ρ 七、理想流体与非理想流体
理想流体: μ ≈ 0 ;忽略管壁对流体的阻力
非理想流体: μ ≠ 0
1.1.l 流体流动的考察方法
1.1.2 流体流动中的作用力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 欧拉法 在固定的空间位置上观察 流体质点 的运动情况,直接描述各有关参数在空间各点的分布 情况合随时间的变化,例如对速度u,可作如下描述:
ux fx (x, y, z,t),uy f y (x, y, z,t),uz fz (x, y, z,t)
1.1.3 流体流动中的作用力
任取一微元体积流体作为研究对象,进行受力 分析,它受到的力有质量力(体积力)和表面力两类。
(1)质量力(体积力) 与流体的质量成正比, 质量力对于均质流体也称为体积力。如流体在重力场中所
受到的重力和在离心力场所受到的离心力,都是质量力。
(2)表面力 表面力与作用的表面积成正比。单
位面积上的表面力称之为应力。
①垂直于表面的力p,称为压力(法向力)。
单位面积上所受的压力称为压强p。 ② 平行于表面的力F,称为剪力(切力)。
基本原理及其流动规律解决关问题。以
图1-1为煤气洗涤装置为例来说明: 流体动力学问题:流体(水和煤气)
在泵(或鼓风机)、流量计以及管道中 流动等;
流体静力学问题:压差计中流体、 水封箱中的水
图1-1 煤气洗涤装置
1.1 概述
确定流体输送管路的直径, 计算流动过程产生的阻力和 输送流体所需的动力。
根据阻力与流量等参数 选择输送设备的类型和型号, 以及测定流体的流量和压强 等。
(2) 压强的基准 压强有不同的计量基准:绝对压强、表压强、真空度。
1.2.1.1 流体的压强 绝对压强 以绝对零压作起点计算的压强,是流
体的真实压强。 表压强 压强表上的读数,表示被测流体的绝对压
流体流动
Fluid
Flow 流体的基本概念 静力学方程及其应用 机械能衡算式及柏努 利方程 流体流动的现象
流动阻力的计算、管路计算
1.1 概述
流体流动规律是本门课程的重要基础,主要原因有以下三个方面: (1)流动阻力及流量计算 (2)流动对传热、传质及化学反应的影响 (3)流体的混合效果
化工生产中,经常应用流体流动的
学(气体分子运动论)重要考察单个分子的微观运动,分子的运动是 随机的、不规则的混乱运动。这种考察方法认为流体是不连续的介质 ,所需处理的运动是一种随机的运动,问题将非常复杂。
1.1.2.1 连续性假设(Continuum hypotheses)
在化工原理中研究流体在静止和流动状态下的规律性时,常将流 体视为由无数质点组成的连续介质。
流体流动将影响过程系 统中的传热、传质过程等, 是其他单元操作的主要基础。
图1-1 煤气洗涤装置
1.1.1 流体的分类和特性
气体和流体统称流体。流体有多种分类方法: (1)按状态分为气体、液体和超临界流体等; (2)按可压缩性分为不可压流体和可压缩流体; (3)按是否可忽略分子之间作用力分为理想流体与粘
1.2.1 流体的密度
1.2.1.2 气体的密度 气体是可压缩的流体,其密度随压强和温度而变化。
气体的密度必须标明其状态。 纯气体的密度一般可从手册中查取或计算得到。当压
强不太高、温度不太低时,可按理想气体来换算:
(1-3)
式中
p ── 气体的绝对压强, Pa(或采用其它单位) M ── 气体的摩尔质量, kg/kmol;
R ──气体常数,其值为8.315;
T ──气体的绝对温度, K。
1.2.1.2 气体的密度

(
"0" 表示
标准状态)
(1-3a)
对于混合气体,可用平均摩尔质量Mm代替M。
(1-4)
式中yi ---各组分的摩尔分率(体积分率或压强分率)。
1.2.2 流体的压强及其特性
1.2.2.1 流体的压强 (1) 定义和单位 .
1.2.1 流体的密度
1.2.1.1 液体的密度 液体的密度几乎不随压强而变化,随温度略有改变,
可视为不可压缩流体。 纯液体的密度可由实验测定或用查找手册计算的方法获
取。 混合液体的密度,在忽略混合体积变化条件下,
可用下式估算(以1kg混合液为基准),即
(1-2)
式中ρi ---液体混合物中各纯组分的密度,kg/m3; αi ---液体混合物中各纯组分的质量分率。
1.2 流体静力学基本方程
流体静力学主要研究流体流体静止时其内部压强变
化的规律。用描述这一规律的数学表达式,称为流体静
力学基本方程式。先介绍有关概念:
1.2.1 流体的密度
单位体积流体所具有的质量称为流体的密度。以ρ表示,单位为 kg/m3。
(1-1)
式中ρ---流体的密度,kg/m3 ; m---流体的质量,kg; V---流体的体积,m3。 当ΔV→0时,Δm/ΔV 的极限值称为流体内部的某点密度。
连续性假设:假定流体是有大量质点组成、彼此间没有 间隙、完全充满所占空间连续介质,流体的物性及运动参数 在空间作连续分布,从而可以使用连续函数的数学工具加以 描述。
1.1.2 流体流动的考察方法 1.1.2.2 流体流动的考察方法
① 拉格朗日法 选定一个流体质点,对其跟踪观 察,描述其运动参数(位移、数度等)与时间的关系。 可见,拉格朗日法描述的是同一质点在不同时刻的状 态。
单位面积上所受的剪力称为应力τ。
1.2.流体静力学基本方程( Basic equations of fluid
statics )
* 本节主要内容 流体的密度和压强的概念、单位及换算等;
在重力场中的静止流体内部压强的变化规律及其 工程应用。 * 本节的重点 重点掌握流体静力学基本方程式的适用条件 及工程应用实例。 * 本节的难点 本节点无难点。
垂直作用于单位面积上的表面力称为流体的静压强,简称 压强。流体的压强具有点特性。工程上习惯上将压强称之为 压力。
在SI中,压强的单位是帕斯卡,以Pa表示。但习惯上还 采用其它单位,它们之间的换算关系为:
1atm=1.033 kgf/cm2 =760mmHg=10.33mH2O =1.0133 bar =1.0133×105Pa
性流体(或实际流体); (4)按流变特性可分为牛顿型和非牛倾型流体;
流体区别于固体的主要特征是具有流动性,其形状随容器形状而变化;受 外力作用时内部产生相对运动。流动时产生内摩擦从而构成了流体力学原理研 究的复杂内容之一
1.1.2流流体体是由流大动量的的彼考此察间方有法一定间隙的单个分子所组成。在物理化
相关文档
最新文档