变频器的基本应用

合集下载

低压变频器应用领域有哪些低压变频器的应用介绍

低压变频器应用领域有哪些低压变频器的应用介绍

低压变频器应用领域有哪些低压变频器的应用介绍1.工业领域:低压变频器常用于电机调速控制,可应用于风机、泵、压缩机、输送机等各种设备中。

通过调整电机的转速,实现对设备的精确控制,提高生产效率和自动化水平。

例如,在制造业中,低压变频器可用于控制生产线上的输送带和机械臂的运动速度,实现生产过程的精确控制。

2.建筑领域:低压变频器可用于建筑物的暖通设备,如风机、水泵等。

通过调整设备的运行速度,可以实现对室内温度和湿度的精确控制,提高舒适度和节能效果。

同时,在电梯和自动门等设备中,低压变频器可以实现对运行速度和停靠位置的精确控制,提高安全性和使用便利性。

3.汽车制造业:在汽车制造业中,低压变频器常用于汽车生产线上的输送带、焊接机器人、激光切割设备等。

通过调整设备的运行速度,可以实现对生产过程的精确控制,提高生产效率和产品质量。

此外,低压变频器还可以在汽车的动力传动系统中应用,实现对电动汽车电机的调速控制,提高动力性能和能源利用效率。

4.农业领域:低压变频器可应用于农业机械设备,如灌溉系统、饲料机、风机等。

通过调整设备的运行速度,可以实现对水流、饲料和空气流通等的精确控制,提高农作物的生长质量和养殖效果。

此外,低压变频器还可以应用于农机车辆的电机驱动系统,实现对马达的精确控制,提高车辆的行驶性能和操作安全性。

5.医疗领域:低压变频器常用于医疗设备中,如医用离心机、医用泵等。

通过调整设备的运行速度,可以实现对医疗过程的精确控制,提高医疗效果和安全性。

例如,在手术室中,低压变频器可用于控制手术灯和手术台的运动速度和位置,帮助医生进行手术操作。

综上所述,低压变频器在各个领域有着广泛的应用。

通过调整电机的转速,可以实现对设备的精确控制,提高生产效率、节能降耗和产品质量。

随着科技的不断进步,低压变频器的应用领域还将继续扩大,为各行各业带来更多的创新和便利。

变频器的应用实例

变频器的应用实例

变频器的应用实例变频器是一种能够调节电机转速的电力设备,广泛应用于各个领域。

下面将介绍几个变频器的应用实例。

1. 工业生产中的泵站控制在工业生产过程中,常常需要使用泵站来输送液体或气体。

传统的泵站控制方式通常是通过手动操作或者采用恒速电机来实现。

然而,这种方式存在能源浪费和操作不灵活的问题。

通过使用变频器,可以根据实际需要调节泵站的转速,从而实现节能效果和灵活控制。

2. 电梯系统中的驱动控制电梯作为现代建筑中不可或缺的设施,其安全性和稳定性要求非常高。

变频器在电梯系统中的应用主要体现在电梯的驱动控制上。

传统的电梯系统通常采用恒速驱动方式,这种方式存在能源浪费和运行不平稳的问题。

而采用变频器可以根据载重情况和乘客需求动态调节电梯的速度,从而提高运行效率和乘坐舒适度。

3. HVAC系统中的风机控制暖通空调系统(HVAC)中的风机控制是一个非常重要的环节。

传统的风机控制系统通常采用恒速运行方式,无法根据实际需要进行调整,造成能源浪费和运行效率低下。

而使用变频器可以根据室内温度和需求实时调节风机的转速,提高空气流通效率,实现节能效果。

4. 机械加工中的数控设备在机械加工领域,数控设备的应用越来越普遍。

数控设备的运行通常需要精确控制电机的转速和位置。

传统的数控设备通常采用直流电机或者恒速交流电机,无法满足精确控制的需求。

而采用变频器可以根据数控程序要求实时调节电机的转速和位置,提高加工精度和效率。

5. 新能源领域中的风力发电控制风力发电是一种清洁能源,具有广阔的发展前景。

在风力发电系统中,变频器主要应用于风机的控制。

通过采用变频器可以根据风速的变化调节风机的转速,实现最大化的能量转化效率。

此外,变频器还可以对风力发电机组进行监控和故障诊断,提高运维效率。

变频器在工业生产、电梯系统、HVAC系统、机械加工和新能源领域等方面都有广泛的应用。

通过使用变频器,可以实现节能效果、提高运行效率和加工精度,从而为各个行业带来更好的发展前景。

[全]变频器的基本用途及功能

[全]变频器的基本用途及功能

变频器的基本用途及功能变频器是将工频交流电源变换为频率和电压可调的交流电源,实现交流电动机调速的电气装置,已广泛应用于工农业生产的各个领域。

因此,变频器的应用知识已是机电工程技术人员必备的技能之一。

变频器,采用高性能的U/f控制和矢量控制技术,提供低速高转矩输出,具有良好的动态特性、超强的过载能力,创新的内部互联功能更具有无可比拟的灵活性。

变频器可工作于缺省的工厂设置状态下,是为数量众多的简单电动机变速驱动系统供电的理想变频驱动装置。

用户可以根据需要设置相关参数,充分利用变频器所具有的全面、完善的控制功能,为需要多种功能的复杂电动机控制系统服务。

1.1 、变频器的概念变频器是将工频交流电源变换为频率和电压可调的三相交流电源的电气装置,用以驱动交流异步电动机实现变频调速,如图1所示。

图1根据交流异步电动机的转速表达式:图21.2、电动机变频传动(1)利用变频器可实现交流电动机调速。

由于变频器可以看作一个频率可调的交流电源,对于现有恒速运转的电动机,只要在电源和电动机之间接入变频器和相应设备,就可对电动机实现调速控制,而无需对电动机和系统进行设备改造。

(2)具有较宽的调速范围和较高的调速精度。

通用变频器的调速范围可以达到1:10以上,而高性能的矢量型变频器的调速范围可达1:1000。

而且采用矢量控制方式的变频器对异步电动机进行调速控制时,还可控制电动机的输出转矩。

(3)可减小电动机的启动电流。

电动机工频电源直接启动时,启动电流是额定电流的4到7倍,这个电流将大大增加电动机绕组的电应力并产生热量,从而降低电动机的使用寿命。

而变频器调速时则可从零转速零电压启动,按斜坡函数的规律进行加速,从而限制了电动机的启动电流。

(4)可实现高转速、高电压、大电流控制。

目前高频变频器的输出频率可以达到3000KHz,当利用这种高速变频器对2极异步电动机进行驱动时,可以得到180000转/分的高转速。

随着变频技术的不断发展,高频变频器的输出频率也在不断提高,高速驱动也是变频器调速控制的一个重要优势。

变频器在风机控制中的应用

变频器在风机控制中的应用

变频器在风机控制中的应用随着科技的不断发展,变频器在工业控制领域中的应用越来越广泛。

在风机控制方面,变频器的应用可以提供更好的能效、精确的控制和稳定的运行。

本文将详细介绍变频器在风机控制中的应用。

一、变频器的基本原理变频器是电力电子器件的一种,它可以通过改变电源输入电压的频率和幅值,来调节电机的转速。

通过变频器可以实现电机的无级调速,从而使风机的转速可以根据需求随时调整。

二、风机控制的需求在许多工业领域中,风机的控制需求非常重要。

比如在通风系统中,需要根据室内温度和湿度的变化来调整风机的运行状态;在空调系统中,需要根据房间负荷的大小来调整风机的风量。

传统的风机控制方法往往采用阀门的开闭来控制风量,但这种方法调节范围有限、能效低下。

而变频器的应用可以解决这些问题,提供更好的控制性能和能效。

三、变频器在风机控制中的优势1. 节能效果显著:变频器通过调整电机的转速,可以根据实际需求精确控制风机的风量。

与传统的调压阀方法相比,变频器可以根据实时负荷需求来调整电机的转速,避免能量的浪费,大幅提高能效。

2. 精确控制:变频器具有高精度的控制特性,可以实现风机转速的无级调节,从而精确控制风机的风速和风量。

这对于一些对风速要求较高的场合非常重要,比如实验室、医院手术室等。

3. 稳定运行:传统的调压阀方法存在压力波动的问题,容易导致风机的运行不稳定。

而变频器能够根据负荷需求精确调整转速,使风机运行平稳,不易出现波动。

四、变频器在风机控制中的应用案例1. 通风系统中的变频器应用:在大型建筑物的通风系统中,通过变频器可以根据不同时间段和不同区域的负荷需求,精确调整风机的运行状态,从而提供更好的室内舒适度和能效。

2. 空调系统中的变频器应用:在空调系统中,通过变频器可以根据房间的热负荷变化,调整风机的风量,实现节能运行。

同时,变频器还可以实现空调系统的精确控制,提供更好的温度和湿度控制效果。

3. 工业生产中的变频器应用:在一些工业生产过程中,需要通过风机来实现物料的输送、处理和干燥等操作。

变频器工作原理及应用-PPT

变频器工作原理及应用-PPT

变频器选型—选型原则
确定负载可能出现的最大电流,以此电流作为待选变频器的额定电流。如果该
电流小于适配电机额定电流,则按适配电机选择对应变频器,考虑成本因素, 如
选用的是通用变频器,则可以选择P型机
以下情况要考虑容量放大一档:
1、长期高温大负荷
2、异常或故障停机会出现灾难性后果的现场
3、目标负载波动大
4、现场电网长期偏低而负载接近额定
5、绕线电机、同步电机或多极电机(6极以上)
变频器选型—选型原则
充分了解各变频器支持的选配件是正确选配的基础。 对于变频器的选配件选配,必须要把握以下几个原则: 以下情况要选用交流输入电抗器、直流电抗器
民用场合,如:宾馆中央空调、电机功率大于55KW以上 电网品质恶劣或容量偏小的场合 如不选用可能会造成干扰、三相电流偏差大,变频器频繁炸机 以下情况要选用交流输出电抗器 变频器到电机线路超过100米(一般原则) 以下情况一般要选用制动单元和制动电阻 提升负载 频繁快速加减速 大惯量(自由停车需要1min以上,恒速运行电流小于加速电流的设备)
变频器保护功能
由于变频器大量的使用了各种半导体器件,如整流桥、IGBT、电解电容等, 要想保证变频器长期稳定工作,则必须保证各器件工作在其允许条件下。 超出条件则必须立刻或延时停止变频器工作,待异常条件消失后才能重 新开始工作,如保护失效或动作延迟将导致变频器出现不可恢复性损害。
变频器的保护功能
T电机转矩
T负载转矩
T电机转矩>T负载转矩---加速运行 T电机转矩<T负载转矩---减速运行 T电机转矩=T负载转矩---恒速运行
电机转矩控制性能是影响电气传动系统性能高低的最重要因素 加减速时间和电机转矩、负载转矩以及系统惯量有关

变频器在工业生产中的应用

变频器在工业生产中的应用

变频器在工业生产中的应用现代工业生产对于电机的控制与调节需求越来越高,而变频器作为一种重要的电力控制器件,在工业生产中得到广泛应用。

本文将介绍变频器在工业生产中的应用情况,并分析其在提高生产效率、节能减排、降低成本等方面所起到的重要作用。

1. 变频器的定义和原理变频器,也被称为变频调速器,是一种能够控制交流电机转速的电力器件。

它通过改变电机输入电源的频率和电压来实现对电机的调速控制。

其原理是将交流电通过整流、滤波、逆变等电路转换成直流电,再通过逆变器将直流电转换成可调频率和可调电压的交流电。

2. 变频器在工业生产中的应用2.1 生产线控制:在自动化生产线中,变频器广泛应用于对电机转速的精确控制。

通过调整变频器的频率和电压,能够实现对生产线上各个设备和工艺的精细控制,提高生产效率和产品质量。

2.2 电力控制:在许多工业领域,如钢铁、水泥、石化等,变频器被用于电机起动和电力控制。

利用变频器的调速功能,可以减小电机起动时的冲击电流,延长电机寿命。

同时,通过变频器对电机的调速控制,可以根据实际需求调整电机的运行状态,降低电能消耗,实现节能减排的目标。

2.3 传动系统:变频器在各种传动系统中起到了关键作用。

例如,在轨道交通和电梯等系统中,变频器能够实现对电机的无级调速,提高减速机传动系统的运行效率;在矿山和石油钻井等重载工况中,变频器能够实现对电机的高扭矩输出,提高传动系统的负载能力。

2.4 机械设备:在机械设备中,变频器能够实现对电机转矩和速度的精确控制,提高设备的运行精度和生产效率。

例如,在纺织、印刷、造纸等行业,变频器被广泛应用于纺纱机、织布机、印刷机等电机驱动系统中,实现对纱线张力、布匹张力、印刷速度等参数的精确控制。

3. 变频器在工业生产中的优势3.1 提高生产效率:变频器能够实现电机的精确控制和调速,使得生产设备在不同负载和工艺要求下都能够保持最优的运行状态,从而提高生产效率。

3.2 节能减排:通过变频器对电机的调速控制,可以降低电机的能耗,减少电能损耗,实现节能减排的目标。

变频器32个应用领域

变频器32个应用领域1、空调负载类写字楼、商场和一些超市、厂房都有中心空调,在夏季的用电高峰,空调的用电量很大。

在炎热天气,北京、上海、深圳空调的用电量均占峰电40%以上。

因而用变频装置,拖动空调系统的冷冻泵、冷水泵、风机是一项非常好的节电技术。

日前,全国出现不少专做空调节电的企业,其中主要技术是变频调速节电。

2、破碎机类负载冶金矿山、建材应用不少破碎机、球磨机,该类负载采纳变频后效果显著。

3、大型窑炉煅烧炉类负载冶金、建材、烧碱等大型工业转窑(转炉)以前大部分采纳直流、整流子电机、滑差电机、串级调速或中频机组调速。

由于这些调速方式或有滑环或效率低,近年来,不少单位采纳变频操纵,效果极好。

4、压缩机类负载压缩机也属于应用广泛类负载。

低压的压缩机在各工业部门都普遍应用,高压大容量压缩机在钢铁(如制氧机)、矿山、化肥、乙烯都有较多应用。

采纳变频调速,均带来启动电流小、节电、优化设备使用寿命等优点。

5、轧机类负载在冶金行业,过去大型轧机多用交-交变频器,近年来采纳交-直-交变频器,轧机交流化已是一种趋势,尤其在轻负载轧机,如宁夏民族铝制品厂的多机架铝轧机组采纳通用变频器,满足低频带载启动,机架间同步运行,恒张力操纵,操作简单可靠。

6、卷扬机类负载卷扬机类负载采纳变频调速,稳定、可靠。

铁厂的高炉卷扬设备是主要的炼铁原料输送设备。

它要求启、制动平稳,加减速均匀,可靠性高。

原多采纳串级、直流或转子串电阻调速方式,效率低、可靠性差。

用交流变频器替代上述调速方式,可以取得理想的效果。

7、转炉类负载转炉类负载,用交流变频替代直流机组简单可靠,运行稳定。

8、辊道类负载辊道类负载,多在钢铁冶金行业,采纳交流电机变频操纵,可提高设备可靠性和稳定性。

9、泵类负载泵类负载,量大面广,包罗水泵、油泵、化工泵、泥浆泵、砂泵等,有低压中小容量泵,也有高压大容量泵。

很多自来水企业的水泵、化工和化肥行业的化工泵、往复泵、有色金属等行业的泥浆泵等采纳变频调速,均产生非常好的效果。

常见变频器的运用方法有

常见变频器的运用方法有变频器是一种电子设备,能够调节电机的转速和输出频率,广泛应用于工业生产和家庭设备中。

下面将介绍常见的变频器的运用方法。

1. 工业生产中的应用:变频器在工业生产中有广泛的应用,最常见的是用于控制电机的转速和输出频率。

在自动化生产线中,变频器可以根据生产需要,对电机进行精确的调速控制,实现多种不同的生产要求。

例如,在食品加工生产线中,变频器可以根据不同的卷揉和混合工艺,调整搅拌机和搅拌机的转速,使得加工的食品质量更加稳定。

在纺织工业中,变频器可以根据不同的织物规格和织物工艺,调整织机的转速和织机的频率,以达到更好的织物质量和生产效率。

2. 电梯和升降机中的应用:在电梯和升降机中,变频器主要用于控制电梯或升降机的运行速度和平稳性。

电梯和升降机的运行速度受到很多因素的影响,如果速度不稳定或者过快过慢,会给乘坐者带来不良体验和安全隐患。

变频器可以通过精确控制电机的转速和输出频率,使得电梯和升降机的运行速度更加平稳和可控。

同时,变频器还可以根据电梯或升降机运行的实际需求,调整电机的负载和效率,提高能源利用效率。

3. 水泵和风机中的应用:在水泵和风机系统中,变频器主要应用于调节水泵和风机的转速,以满足不同的需求。

在农田灌溉系统中,变频器可以监测土壤的湿度和气象条件,根据实时数据,自动调整水泵的转速,以达到最佳的灌溉效果和节约水资源。

在工业中,变频器可以根据生产线的需求,调整风机的转速和输出频率,实现空气流动的精确控制。

这不仅能够提高生产效率,还可以节约能源和减少运行成本。

4. HVAC系统中的应用:变频器在暖通空调系统(HVAC)中有着广泛的应用。

在大型商业建筑中,HVAC 系统占据着相当大的能源消耗和运行成本。

变频器可以根据建筑物的实际需求,调整空调和供暖设备的转速和输出频率,以实现精确的温度控制和能源节约。

同时,变频器还可以通过精确控制风机和水泵的转速,提高空调和供暖系统的效率和稳定性。

变频器在工作机械中的应用

变频器在工作机械中的应用随着科技的迅速发展,现代工业领域中各种机械设备也在不断更新换代。

变频器作为一种能够实现电动机调速的装置,被广泛地应用于工业自动化的生产中。

本文将探讨变频器在工作机械中的应用,以及其在机械控制方面所起的重要作用。

一、变频器的基本工作原理变频器是一种将电源交流电转变成直流电,再通过变频电路将直流电转换成不同频率的交流电,进而控制三相异步电动机转速的装置。

它通过改变驱动电动机的输出频率和电压,达到实现电动机调速的目的。

变频器的基本组成元件包括直流电源、中间电路、逆变电路和控制电路四部分。

二、变频器在机械控制中的生产应用1.风机和水泵在一些大型机械中,如工业风机和水泵,由于生产过程的复杂性和安全性,需要不同的速度来保持稳定的输出。

通过变频器控制电机的转速,能够调整设备的运行效率,实现控制精度和节能效果的提高。

2.压缩机压缩机是一种用于空气和油气的过滤、分离、压缩和输送的重要设备。

通过变频器的控制作用,电机输出的功率和转速可以根据生产设备的实际需求进行调整和控制。

相较于传统的定频控制系统,利用变频器技术能够达到更加精细灵活的控制操作。

3.卷绕机卷绕机是一种在生产生活中广泛应用的机械设备。

掌握变频技术的控制方法能够有效地解决它们在生产实践中遇到的难题,如过程控制、速度自适应和质量控制等方面。

利用变频器控制技术,可以使卷绕产品的质量有所提高,也可以极大地提高自动化程度,提升生产线的效率。

4.机床在现代制造业中,对机床的要求越来越高。

利用变频器可以有效地改善机床的调速性能,提高加工精度和性能。

实现数控机床运行全程调速,提高生产效率和产品质量。

三、总结变频控制技术作为现代工业的一个重要分支技术,已经得到了广泛的应用和发展。

在工业控制中,变频器的应用越来越受到人们的重视,尤其是在机械控制领域中。

随着制造业的不断更新升级,使用变频器技术的生产设备将会越来越多,它们将会成为更有效的、可持续、高效和环保的选择。

变频器的工作原理及应用

变频器的工作原理及应用随着电子技术的快速发展和智能化程度的提高,变频器在各行各业中得到了广泛的应用。

作为一种能改变电机输送能量状态的调节装置,变频器在工业领域、交通运输、轨道交通以及家用电器等领域都有着广泛的应用。

本文将从变频器的基本工作原理展开,分析变频器的应用场景以及相关技术和安装注意事项。

一、变频器的基本工作原理变频器,简而言之就是电机的调速器。

它是通过改变电压的频率和大小来改变电机的输出功率,随着不同工作负载的变化使电机稳定、高效、精准地运转。

变频器的基本工作原理可以归纳为三个部分:整流、滤波和逆变。

其中,整流是将交流电转化为直流电,再通过滤波消除掉不必要的高频波,最后逆变将直流电转换为可调的交流电输出到电机上,变频器的输出电压和频率会根据电机负载和运行情况进行调整,实现电机的变频调速。

二、变频器的应用场景1. 工业领域:变频器在机床、冶金、矿山、化工、钢铁等多种制造业领域具有广泛应用。

它能够实现电机的动力系统的可调节、更安全、高效、精确、稳定的工作状态,确保设备在更广泛的负载条件下正常工作。

2. 交通运输:在铁路和公路交通设施中,变频器可以起到更加精确的匹配控制电机轨道车辆和自动控制系统的功效,为人们的交通也带来更高的安全性和舒适性。

3. 轨道交通:变频器在轨道交通系统中也有着广泛的应用。

在城市轨道交通自动化系统中,变频器能有效地降低电机启动时的冲击电流,减少列车的震动干扰,从而提高牵引系统的效率和平稳性。

4. 家用电器:随着智能家居的迅速发展,变频器作为改善电能利用的调节装置,被广泛应用于家用电器。

比如电视机、压缩机、电机等的检测与控制系统中,调整精确,更加能满足人们的个性化需求。

三、变频器相关技术和安装注意事项1. 稳定性:鉴于不同的应用环境,变频器应当保持稳定性,以确保正常工作。

如果在有需求的环境中使用变频器,应当注意其稳定性,避免跳变和不稳定的情况。

2. 效率:在应用变频器技术时,我们需要确保其效率,可以通过了解选定的变频器参数或制度去更好地了解和控制其效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器的基本应用(一)1 变频plc控制系统的硬件结构1.1 概况在工业自动化控制系统中,比较常见的是变频器和plc的组合应用,并且产生了多种多样的plc控制变频器的方法,构成了不同类型的变频plc控制系统。

可编程控制器(plc)是一种数字运算与操作的控制装置,它作为传统继电器的替代产品,广泛应用于工业控制的各个领域。

由于plc可以用软件来改变控制过程,并有体积小,组装灵活,编程简单,抗干扰能力强及可靠性高等特点,特别适用于恶劣环境下运行。

由此可见,变频plc 控制系统在变频器相关的控制中属于最通用的一种控制系统。

一个变频plc控制系统通常由三部分组成,即变频器本体、可编程控制器plc部分、变频器与plc的接口部分。

1.2 接口部分变频plc控制系统的硬件结构中最重要的就是接口部分,根据不同的信号连接,其接口部分也相应改变。

接口部分主要有以下几种类型:(1) 开关指令信号的输入变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。

变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与plc相连,从而获取运行状态指令,如图1所示。

图1 运行信号的连接方式在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。

在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。

例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。

图2与图3a)给出了正确与错误的接线例子。

图2 变频器输入信号接入方式a) 输入信号的错误接法b) 输入信号防干扰的接法图3 输入信号的错误接法和防干扰接法当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(dc24v)之间的串扰。

正确地连接是利用plc电源,将外部晶体管的集电极经过二极管接到plc。

如图3b)所示。

(2) 模拟数值信号的输入变频器中也存在一些数值型(如频率、电压等)指令信号的输入,可分为数字输入和模拟输入两种。

数字输入多采用变频器面板上的键盘操作和串行接口来给定;模拟输入则通过接线端子由外部给定,通常通过0~10v/5v的电压信号或0/4~20ma的电流信号输入。

由于接口电路因输入信号而异,因此必须根据变频器的输入阻抗选择plc的输出模块。

当变频器和plc的电压信号范围不同时,如变频器的输入信号为0~10v,而plc的输出电压信号范围为0~5v时;或plc的一侧的输出信号电压范围为0~10v而变频器的输入电压信号范围为0~5v时,由于变频器和晶体管的允许电压、电流等因素的限制,需用串联的方式接入限流电阻及分压方式,以保证进行开闭时不超过plc和变频器相应的容量。

此外,在连线时还应注意将布线分开,保证主电路一侧的噪音不传到控制电路。

通常变频器也通过接线端子向外部输出相应的监测模拟信号。

电信号的范围通常为0~10v/5v及0/4~20ma电流信号。

无论哪种情况,都应注意:plc一侧的输入阻抗的大小要保证电路中电压和电流不超过电路的允许值,以保证系统的可靠性和减少误差。

另外,由于这些监测系统的组成互不相同,有不清楚的地方应向变频器厂家咨询。

(3) rs-485通讯方式变频器与plc之间通过rs-485通讯方式实施控制的方案得到广泛的应用,因为它抗干扰能力强、传输速率高、传输距离远且造价低廉,如图4所示。

图4 变频plc控制系统的通讯rs-485方式rs-485的通讯必须解决数据编码、求取校验和、成帧、发送数据、接收数据的奇偶校验、超时处理和出错重发等一系列技术问题,一条简单的变频器操作指令,有时要编写数十条plc梯形图指令才能实现,编程工作量大而且繁琐,令设计者望而生畏。

随着数字技术的发展和计算机日益广泛的应用,现在一个系统往往由多台计算机组成,需要解决多站、远距离通信的问题。

在要求通信距离为几十米到上千米时,广泛采用rs-485收发器。

rs-485收发器采用平衡发送和差分接收,因此具有抑制共模干扰的能力,加上接收器具有高的灵敏度,能检测低达200mv的电压,故传输信号能在千米以外得到恢复。

使用rs-485总线,一对双绞线就能实现多站联网,构成分布式系统,设备简单、价格低廉、能进行长距离通信的优点使其得到了广泛应用。

变频plc控制系统必须注意下述问题:(1) rs-485接地问题仅仅用一对双绞线将各个接口的a、b端连接起来,而不对rs-485通信链路的信号接地,在某些情况下也可以工作,但给系统埋下了隐患。

rs-485接口采用差分方式传输信号并不需要对于某个参照点来检测信号系统,只需检测两线之间的电位差就可以了。

但应该注意的是收发器只有在共模电压不超出一定范围(-7v至+12v)的条件下才能正常工作。

当共模电压超出此范围,就会影响通信的可靠直至损坏接口。

当发送器a向接收器b发送数据时,发送器a的输出共模电压为vos,由于两个系统具有各自独立的接地系统存在着地电位差vgpd,那么接收器输入端的共模电压就会达到vcm= vos+vgpd。

rs-485标准规定vos≤3v,但vgpd可能会有很大幅度(十几伏甚至数十伏),并可能伴有强干扰信号致使接收器共模输入vcm超出正常范围,在信号线上产生干扰电流轻则影响正常通信,重则损坏设备。

(2) rs-485的总线结构及传输距离rs-485支持半双工或全双工模式。

网络拓扑一般采用终端匹配的总线型结构,不支持环形或星形网络,最好采用一条总线将各个节点串接起来。

从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响最低。

在使用rs-485接口时,对于特定的传输路径,从发生器到负载其数据信号传输所允许的最大电缆长度是数据信号速率的函数,这个长度数据主要是受信号失真及噪声等影响所限制。

当数据信号速率降低到90kbit/s以下时,假定最大允许的信号损失为6dbv时,则电缆长度被限制在1200m。

1.3 硬件连接时的注意事项因为变频器在运行中会产生较强的电磁干扰,为保证plc不因为变频器主电路断路器及开关器件等产生的噪音而出现故障,所以将变频器与plc相连接组成变频plc控制系统时应该注意以下几点:(1) 对plc本身应按规定的接线标准和接地条件进行接地,而且应注意避免和变频器使用共同的接地线,且在接地时使二者尽可能分开;(2) 当电源条件不太好时,应在plc的电源模块及输入/输出模块的电源线上接入噪音滤波器和降低噪音用的变压器等,另外,若有必要,在变频器一侧也应采取相应的措施;(3) 当把变频器和plc安装于同一操作柜中时,应尽可能使与变频器有关的电线和与plc有关的电线分开;(4) 通过使用屏蔽线和双绞线达到提高噪音干扰的水平。

plc和变频器连接应用时,由于二者涉及到用弱电控制强电,因此,应该注意连接时出现的干扰,避免由于干扰造成变频器的误动作,或者由于连接不当导致plc或变频器的损坏。

2 变频plc控制系统的软件结构2.1软件设计原则变频plc控制系统在使用plc进行顺序控制时,由于其cpu进行数据处理需要时间,存在一定的时间延迟,故在较精确的控制时应予以考虑其滞后性,在通讯控制时尤其如此。

一般情况下plc编程简单、使用方便,目前大多数plc采用继电器控制形式的梯形图编程方式,很容易被操作人员接受,因此变频plc控制系统具有设计容易、维护工作量少的优点。

变频plc 控制系统还可根据具体问题设计了如步进梯形指令等,可以进一步简化编程。

在变频plc控制系统设计时,其软件结构应遵循以下的基本原则,才能保证系统工作的稳定:(1) 最大限度地满足被控对象的控制要求;(2) 系统结构力求简单;(3) 系统工作要稳定、可靠;(4) 控制系统能方便的进行功能扩展、升级;(5) 人机界面友好。

2.2 软件结构案例现有如图5所示的一plc变频控制系统要实现液位自动控制,要求:图5 系统结构图(1) 系统要求用户能够的直观了解现场设备的工作状态及水位的变化;(2) 要求用户能够远程控制变频器的启动和停止;(3) 用户可自行设置水位的高低,以控制变频器的起停;(4) 变频器及其他设备的故障信息能够及时反映在远程plc上;(5) 具有水位过高、过低报警和提示用户功能。

由于现场有一台电机作为被控对象,可以使用单台plc进行单个对象的控制,只要适当的选用高性能的plc,完全能够胜任此功能。

在本系统中,plc采集传感器、监控电机及变频器等有关的各类对象的信息,其输出的模拟量信号作为变频器的控制端输入信号,从而控制电机转速大小,并且反馈变频器的工作状态信号。

系统设计流程如图6所示,内容包括:图6 plc水位控制流程图(1) 程序设计前准备工作:了解系统概况,形成整体概念,熟悉被控对象、编制出高质量的程序,充分利用手头的硬件和软件工具。

(2) 程序框图设计:这步的主要工作是根据软件设计规格书的总体要求和控制系统具体要求,确定应用程序的基本结构、按程序设计标准绘制出程序结构框图,然后在根据工艺要求,绘制出各功能单元的详细功能框图。

(3)编写程序:编写程序就是根据设计出的框图逐条地编写控制程序,这是整个程序设计工作的核心部分。

(4) 程序测试和调试:程序测试和调试不同,软件测试的目的是尽可能多地发现软件中的错误,软件调试的任务是进一步诊断和改正软件中的错误。

(5) 编写程序说明书:程序说明书是对程序的综合说明,是整个程序设计工作的总结。

变频器的基本应用(二)1 变频工艺控制系统的应用背景目前,中国的设备控制水平与发达国家相比还比较低,制造工艺和效率都不高。

但随着中国加入wto,产品质量和生产效率都需要面临国际竞争,因此提高设备控制水平至关重要。

由于变频调速具有调速范围广、调速精度高、动态响应好等优点,在许多需要精确速度控制的应用中,变频器正在发挥着提升工艺质量和生产效率的显著作用。

应用变频器可以提高工艺要求、提升产品质量,同时减轻了人工的劳动强度、提高了生产效率,可以说,变频器在纺织、食品、饮料、包装、造纸、机床、电梯等行业的应用前景和发展潜力都不可小觑。

比如下面一个例子是应用在传送带上的变频工艺控制系统,如图1所示,它采用一台变频器驱动生产线上的多台传送带电机,根据所生产的产品,通过调整传送带的速度来提高生产率。

图1 传送带的变频器工艺控制由此可以看出,在传送带上应用变频工艺控制系统具有以下三个优点:(1) 提高生产率通过设定变频器的频率,可控制传送带生产线的速度,从而达到了提高生产率的目的。

(2) 可利用现有设备可利用现有传送带上的齿轮马达和现有的传送带进行改动。

(3) 可用一台变频器来控制多数电动机的驱动这些电动机均并接到一台变频器上,通过变频器的频率设定可以保证多台电动机的同步运行。

相关文档
最新文档