山东省枣庄市第六中学2014-2015学年高一上学期期末考试数学试题
高一数学上学期期末考试试题含解析

【分析】
先由奇函数的性质,得到 ,求出 ;再由二次函数的单调性,以及奇函数的性质,得到函数 在区间 上单调递减,进而可求出结果。
【详解】因为函数 是奇函数,
所以 ,即 ,解得: ;
因此
根据二次函数的性质,可得,当 时,函数 在区间 上单调递减,在区间 上单调递增;
又因为 ,所以由奇函数的性质可得:函数 在区间 上单调递减;
,即至少遇到4个红灯的概率为0。33。
(3)设事件 为遇到6个及6个以上红灯,则至多遇到5个红灯为事件 .
则 。
【点睛】本题主要考查互斥事件的概率计算,以及概率的性质的应用,熟记概率计算公式,以及概率的性质即可,属于常考题型。
19。一商场对5年来春节期间服装类商品的优惠金额 (单位:万元)与销售额 (单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.
【分析】
根据奇偶性的概念,判断函数 的奇偶性,再结合函数单调性,即可解所求不等式。
【详解】因为 的定义域为 ,
由 可得,函数 是奇函数;
根据幂函数单调性可得, 单调递增;所以函数 是增函数;
所以不等式 可化为 ,
因此 ,解得: 。
故选:D
【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性的概念,会根据函数解析式判定单调性即可,属于常考题型.
【解析】
【分析】
(1)根据换元法,令 ,即可结合已知条件求出结果;
(2)根据指数函数单调性,即可得出单调区间.
【详解】(1)令 ,即 ,
代入 ,可得 ,
所以
(2)因为 ,根据指数函数单调性,可得:
函数 的单调增区间是 ,单调减区间是 。
【点睛】本题主要考查求函数解析式,以及求指数型函数的单调区间,灵活运用换元法求解析式,熟记指数函数的单调性即可,属于常考题型.
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
指数对数运算练习题40道(附答案)

每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。
2014年山东省枣庄市中考数学试卷(含解析版)

2014年东省枣庄市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•枣庄)2的算术平方根是()A .±B.C.±4 D.42.(3分)(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万名观众提供安保.将14000000000用科学记数法表示为()A .140×108B.14.0×109C.1.4×1010D.1.4×10113.(3分)(2014•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为()A .17°B.34°C.56°D.124°4.(3分)(2014•枣庄)下列说法正确的是()A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2甲=1.25,s2乙=0.96,则说明乙组数据比甲组数据稳定5.(3分)(2014•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则两圆的位置关系是()A .外离B.外切C.相交D.内切6.(3分)(2014•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A .350元B.400元C.450元D.500元7.(3分)(2014•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A .22 B.18 C.14 D.118.(3分)(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A .x>4 B.x>﹣4 C.x>2 D.x>﹣29.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A .a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣210.(3分)(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于311.(3分)(2014•枣庄)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为()A .y轴B.直线x=C.直线x=2 D.直线x=12.(3分)(2014•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A .B.1C.D.7二、填空题(共6小题,每小题4,满分24分)13.(4分)(2014•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.(4分)(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.15.(4分)(2014•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.16.(4分)(2014•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为cm2.17.(4分)(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F 处.若AE=BE,则长AD与宽AB的比值是.18.(4分)(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.三、解答题(共7小题,满分60分)19.(8分)(2014•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)化简:(﹣)÷.20.(8分)(2014•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.21.(8分)(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D 到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参照数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)22.(8分)(2014•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC 的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.23.(8分)(2014•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB 于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.24.(10分)(2014•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.25.(10分)(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x 轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.2014年东省枣庄市中考数学试卷参照解答与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•枣庄)2的算术平方根是()A .±B.C.±4 D.4考点:算术平方根.解析:根据开方运算,可得算术平方根.解答:解:2的算术平方根是,故选;B.点评:本题考查了算术平方根,开方运算是解题关键.2.(3分)(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万名观众提供安保.将14000000000用科学记数法表示为()A .140×108B.14.0×109C.1.4×1010D.1.4×1011考点:科学记数法—表示较大的数解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:14 000 000 000=1.4×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为()A .17°B.34°C.56°D.124°考点:平行线的性质;直角三角形的性质解析:根据两直线平行,同位角相等可得∠DCE=∠A,再根据直角三角形两锐角互余列式计算即可得解.解答:解:∵AB∥CD,∴∠DCE=∠A=34°,∵∠DEC=90°,∴∠D=90°﹣∠DCE=90°﹣34°=56°.故选C.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.4.(3分)(2014•枣庄)下列说法正确的是()A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2甲=1.25,s2乙=0.96,则说明乙组数据比甲组数据稳定考点:概率的意义;全面调查与抽样调查;中位数;众数;方差解析:根据概率的意义,众数、中位数的定义,以及全面调查与抽样调查的选择,方差的意义对各选项解析判断利用排除法求解.解答:解:A、“明天降雨的概率是50%”表示明天降雨和不降雨的可能性相等,不表示半天都在降雨,故本选项错误;B、数据4,4,5,5,0的中位数是4,众数是4和5,故本选项错误;C、要了解一批钢化玻璃的最少允许碎片数,应采用抽样调查的方式,故本选项错误;D、∵方差s2甲>s2乙,∴乙组数据比甲组数据稳定正确,故本选项正确.故选D.点评:本题解决的关键是理解概率的意义以及必然事件的概念;用到的知识点为:不太容易做到的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等.5.(3分)(2014•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则A .外离B.外切C.相交D.内切考点:圆与圆的位置关系解析:由⊙O1、⊙O2的直径分别为8和6,圆心距O1O2=2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得两圆位置关系.解答:解:∵⊙O1、⊙O2的直径分别为6cm和8cm,∴⊙O1、⊙O2的半径分别为3cm和4cm,∴1<d<7,∵圆心距O1O2=2,∴⊙O1与⊙O2的位置关系是相交.故选C.点评:此题考查了圆与圆的位置关系.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.6.(3分)(2014•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A .350元B.400元C.450元D.500元考点:一元一次方程的应用解析:设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解答:解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.答:该服装标价为400元.故选B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.7.(3分)(2014•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A .22 B.18 C.14 D.11考点:菱形的性质解析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.解答:解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选A.点评:本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.8.(3分)(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A .x>4 B.x>﹣4 C.x>2 D.x>﹣2考点:一次函数图象与几何变换解析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围.解答:解:∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0,则x=﹣4,x=0时,y=2,如图:∴y>0,则x的取值范围是:x>﹣4,故选:B.点评:此题主要考查了一次函数图象与几何变换以及图象画法,得出函数图象进而判断x的取值范围是解题关键.9.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A .a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2考点:平方差公式的几何背景解析:根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.10.(3分)(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A .x1小于﹣1,x2大于3B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3考点:解一元二次方程-直接开平方法;估算无理数的大小解析:利用直接开平方法解方程得出两根进而估计无理数的大小得出解答.解答:解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x1=1+>3,x2=1﹣<﹣1,故选:A.点评:此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键.11.(3分)(2014•枣庄)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为()A .y轴B.直线x=C.直线x=2 D.直线x=考点:二次函数的性质解析:由于x=1、2时的函数值相等,然后根据二次函数的对称性列式计算即可得解.解答:解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选D.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,比较简单.12.(3分)(2014•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A .B.1C.D.7考点:三角形中位线定理;等腰三角形的判定与性质解析:由等腰三角形的判定方法可知三角形AGC是等腰三角形,所以F 为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.解答:解:∵AD是其角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC,∵AB=4,AC=3,∴BG=1,∵AE是中线,∴BD=CD,∴EF为△CBG的中位线,∴EF=BG=,故选A.点评:本题考查了等腰三角形的判定和性质、三角形的中位线性质定理:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(共6小题,每小题4,满分24分)13.(4分)(2014•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有3种.考点:利用轴对称设计图案解析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解答:解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故解答为:3.点评:考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形.14.(4分)(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.考点:二元一次方程组的解;因式分解-运用公式法解析:根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得解答.解答:解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故解答为:.点评:本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.15.(4分)(2014•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.考点:列表法与树状图法专题:计算题.解析:列表得出所有等可能的情况数,找出差为负数的情况数,即可求出所求的概率.解答:解:列表得:2 3 43 (2,3)(3,3)(4,3)4 (2,4)(3,4)(4,4)5 (2,5)(3,5)(4,5)所有等可能的情况有9种,其中差为负数的情况有5种,则P=.故解答为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2014•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为4﹣πcm2.考点:扇形面积的计算;相切两圆的性质解析:根据题意可知图中阴影部分的面积=边长为2的正方形面积﹣一个圆的面积.解答:解:∵半径为1cm的四个圆两两相切,∴四边形是边长为2cm的正方形,圆的面积为πcm2,阴影部分的面积=2×2﹣π=4﹣π(cm2),故解答为:4﹣π.点评:此题主要考查了圆与圆的位置关系和扇形的面积公式.本题的解题关键是能看出阴影部分的面积为边长为2的正方形面积减去4个扇形的面积(一个圆的面积).17.(4分)(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F 处.若AE=BE,则长AD与宽AB的比值是.考点:翻折变换(折叠问题)解析:由AE=BE,可设AE=2k,则BE=3k,AB=5k.由四边形ABCD是矩形,可得∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.由折叠的性质可得∠EFC=∠B=90°,EF=EB=3k,CF=BC,由同角的余角相等,即可得∠DCF=∠AFE.在Rt△AEF中,根据勾股定理求出AF==k,由cos∠AFE=cos∠DCF得出CF=3k,即AD=3k,进而求解即可.解答:解:∵AE=BE,∴设AE=2k,则BE=3k,AB=5k.∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.∵将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处,∴∠EFC=∠B=90°,EF=EB=3k,CF=BC,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∴cos∠AFE=cos∠DCF.在Rt△AEF中,∵∠A=90°,AE=2k,EF=3k,∴AF==k,∴=,即=,∴CF=3k,∴AD=BC=CF=3k,∴长AD与宽AB的比值是=.故解答为.点评:此题考查了折叠的性质,矩形的性质,勾股定理以及三角函数的定义.解此题的关键是数形结合思想与转化思想的应用.18.(4分)(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.考点:平面展开-最短路径问题;截一个几何体解析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故解答为:(3+3).点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.三、解答题(共7小题,满分60分)19.(8分)(2014•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)化简:(﹣)÷.考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂专题:计算题.解析:(1)原式第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=﹣8+3﹣5+1=﹣9;(2)原式=•(x﹣1)=•(x﹣1)=﹣.点评:此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则解本题的关键.20.(8分)(2014•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.考点:条形统计图;扇形统计图;模拟实验解析:(1)用摸到红色球的次数除以占的百分比即是实验总次数,用总次数减去红黄绿球的次数即为摸蓝球的次数,再补全条形统计图即可;(2)用摸到黄色小球次数除以实验总次数,再乘以360°即可得摸到黄色小球次数所在扇形的圆心角度数;(3)先得出摸到绿色小球次数所占的百分比,再用口袋中有10个红球除以红球所占的百分比得出口袋中小球的总数,最后乘以绿色小球所占的百分比即可.解答:解:(1)50÷25%=200(次),所以实验总次数为200次,条形统计图如下:(2)=144°;(3)10÷25%×=2(个),答:口袋中绿球有2个.点评:本题主要考查了条形统计图,用样本估计总体,弄清题意是解本题的关键.21.(8分)(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D 到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参照数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)考点:解直角三角形的应用解析:(1)根据三角函数分别表示出OE和DE,再根据点D到点O的距离为30cm可列方程求解;(2)在Rt△BDE中,根据三角函数即可得到滑动支架的长.解答:解:(1)在Rt△BOE中,OE=,在Rt△BDE中,DE=,则+=30,解得BE≈10.6cm.故B点到OP的距离大约为10.6cm;(2)在Rt△BDE中,BD=≈25.3cm.故滑动支架的长25.3cm.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.22.(8分)(2014•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC 的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.考点:全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定专题:计算题.解析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.解答:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,即OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.点评:此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.23.(8分)(2014•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB 于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.考点:切线的性质专题:计算题.解析:(1)设⊙O的半径为R,根据切线定理得OB⊥AB,则在Rt△ABO中,利用勾股定理得到R2+122=(R+8)2,解得R=5,即OD的长为5;(2)根据垂径定理由CD⊥OB得DE=CE,再证明△OEC∽△OBA,利用相似比可计算出CE=,所以CD=2CE=.解答:解:(1)设⊙O的半径为R,∵AB切⊙O于点B,∴OB⊥AB,在Rt△ABO中,OB=R,AO=OC+AC=R+8,AB=12,∵OB2+AB2=OA2,∴R2+122=(R+8)2,解得R=5,∴OD的长为5;(2)∵CD⊥OB,∴DE=CE,而OB⊥AB,∴CE∥AB,∴△OEC∽△OBA,∴=,即=,∴CE=,∴CD=2CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、垂径定理和相似三角形的判定与性质.24.(10分)(2014•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.考点:反比例函数与一次函数的交点问题解析:(10根据正切值,可得OE的长,可得A点坐标,根据待定系数法,可得反比例函数解析式,根据点的坐标满足函数解析式,可得B点坐标,根据待定系数法,可得一次函数解析式;(2)根据面积的和差,可得解答.解答:解:(1)如图:,tan∠AOE=,OE=6,A(6,2),y=的图象过A(6,2),∴,k=12,反比例函数的解析式为y=,B(﹣4,n)在y=的图象上,n==﹣3,B(﹣4,﹣3),一次函数y=ax+b过A、B点,,解得,一次函数解析式为y=﹣1;(2)当x=0时,y=﹣1,C(0,﹣1),当y=﹣1时,﹣1=,x=﹣12,D(﹣12,﹣1),s OCDB=S△ODC+S△BDC=+|﹣12|×|﹣2|=6+12=18.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法求解析式的关键,利用面积的和差求解四边形的面积.25.(10分)(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x 轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.考点:二次函数综合题解析:(1)由抛物线已知,则可求三角形OBC的各个顶点,易知三角形形状及内角.(2)因为抛物线已固定,则S四边形OCDB固定,对于坐标系中的不规则图形常用分割求和、填补求差等方法求面积,本图形过顶点作x轴的垂线及可将其分为直角梯形及直角三角形,面积易得.由此可得E点坐标,进而可求ED直线方程,与抛物线解析式联立求解即得P点坐标.(3)PF的长度即为y F﹣y P.由P、F的横坐标相同,则可直接利用解析式作差.由所得函数为二次函数,则可用二次函数性质讨论最值,解法常规.解答:解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+2),∴由题意得,A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4).在Rt△OBC中,∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.(2)如图1,过点D作DH⊥x轴于H,此时S四边形OCDB=S梯形OCDH+S△HBD,∵OH=1,OC=3,HD=4,HB=2,∴S梯形OCDH=•(OC+HD)•OH=,S△HBD=•HD•HB=4,∴S四边形OCDB=.∴S△OCE=S四边形OCDB==,∴OE=5,∴E(5,0).设l DE:y=kx+b,∵D(1,﹣4),E(5,0),∴,解得,∴l DE:y=x﹣5.∵DE交抛物线于P,设P(x,y),∴x2﹣2x﹣3=x﹣5,解得x=2 或x=1(D点,舍去),∴x P=2,代入l DE:y=x﹣5,∴P(2,﹣3).(3)如图2,设l BC:y=kx+b,∵B(3,0),C(0,﹣3),∴,解得,∴l BC:y=x﹣3.∵F在BC上,∴y F=x F﹣3,∵P在抛物线上,∴y P=x P2﹣2x P﹣3,∴线段PF长度=y F﹣y P=x F﹣3﹣(x P2﹣2x P﹣3),∵x P=x F,∴线段PF长度=﹣x P2+3x P=﹣(x P﹣)2+,(1<x P≤3),∴当x P=时,线段PF长度最大为.点评:本题考查了抛物线图象性质、已知两点求直线解析式、直角三角形性质及二次函数最值等基础知识点,题目难度适中,适合学生加强练习.。
人教版数学高三第一章解三角形单元测试精选(含答案)1

(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6
XXX2014-2015学年上学期高一年级期末考试历史试卷后有答案

XXX2014-2015学年上学期高一年级期末考试历史试卷后有答案XXX2014-2015学年上学期高一年级期末考试历史试卷满分为100分。
考试时间为60分钟。
第I卷一、单项选择题(共32小题,每小题2分,共64分。
)1.对下图所示书籍的正确评价是A.反映了农民要求土地的迫切愿望B.是中国发展资本主义的最早方案C.具有强烈的反帝爱国色彩D.首倡在中国实行民主革命2.“再现历史场景,弘扬民族精神”是历史影视剧的主题。
若要再现XXX率领中国海军抗击日本侵略者的悲壮场景,应该选择的素材是A.辽东战役B.平壤战役C.黄海战役D.威海卫战役3.中国古代以干支纪年,天干是“甲、乙、丙、丁、丁、戊、己、庚、辛、壬、癸”,地支是“子、丑、寅、卯、辰、巳、午、未、申、酉、戌。
亥”。
甲午战争发生于1894年,八国联军侵华的。
1900年应是A.庚子年B.己亥年C.辛丑年D.壬寅年4.近代中国第一个统一的资产阶级革命政党是A.光复会B.XXXD.XXX5.辛亥革命首先取得成功的是A.武昌B.XXX.上海6.以下图是保存在上海的中国近代史上一次爱国是件的档案材料,其中有“欧战和会,外交失败”、“要除卖国贼,要救北京学生”等文字。
这些档案材料反映的历史是A.虎门销烟B.戊戌变法C.辛亥革命D.五四运动7.“打倒列强,打倒列强,除军阀,除军阀。
努力国民革命,努力国民革命,齐奋斗”这首军歌撒布于A.保路运动期间B.秋收起义期间C.北伐战争期间D.南昌起义期间8.下图中数字符号标明的地点,都是XXX十年对峙时期重大事件的发生地,长征的重要转折点发生在A.①B.②C.③D.④9.1936年三大主力红军胜利会师,标志着长征的胜利。
会师是在A.江西瑞金B.贵州遵义C.陕北吴起镇D.甘肃会宁10.“中国不会亡,你看那民族豪杰谢团长;中国一定强,中国一定强,你看那八百壮士孤军奋守东战场;……”歌词所反映的变乱A.卢沟桥事变B.淞沪会战C.国民革命军北伐D.辽沈战役11.解放战争时期,XXX说:“XXX两个拳头这么一伸,他的胸膛就露出来了。
2024-2025学年山东省枣庄市高一上学期期中数学质量检测试题(含解析)
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求2024-2025学年山东省枣庄市高一上学期期中数学质量检测试题.1. 已知集合{}3,2,1,0A =---,12,1,0,2B ⎧⎫=--⎨⎬⎩⎭,则A B ⋂的非空子集个数为( )A. 7B. 8C. 15D. 16【答案】A【解析】【分析】求出交集再根据子集的概念得出结论.【详解】由题意{2,1,0}A B =-- ,因此它有8个子集,其中非空子集有7个.故选:A .2. 命题.“230,1x x x ∃<+>”的否定是( )A. 230,1x x x ∀≥+≤ B. 230,1x x x ∀<+≤ C. 230,1x x x ∃<+≤ D. 230,1x x x ∃≥+≤【答案】B【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3. 对于实数x ,“1x <”是“1x <”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要【答案】A【解析】【分析】根据充分、必要条件的知识确定正确答案.【详解】当1x <时,显然有1x <成立,但是由1x <,未必有1x <,如21x =-<,但1x >,故前者是后者的充分不必要条件.故选:A4. 下列函数中,在定义域上既是奇函数又是减函数的为( )A. 1y x =+ B. 1y x =C. []()31,2y x x =-∈- D. y x x=-【答案】D【解析】【分析】根据奇偶函数的定义及单调性的定义逐项判断即可.【详解】对于A ,对于()1y f x x ==+,()1()f x x f x -=-≠,且()1()f x x f x -=-≠-,故函数1y x =+是非奇非偶函数,不满足题意;对于B ,函数()1y f x x ==,满足()()f x f x -=-是奇函数,但在定义域内不具有单调性,不满足条件;对于C ,函数的定义域为[1,2]-,不具有对称性,故不具有奇偶性,不满足题意;对于D ,对于函数()y f x x x ==-,定义域为R ,满足()()f x f x -=-,是奇函数,当0x >时,()2f x x =-,则()f x 在()0,∞+上单调递减;当0x <时,()2f x x =,则()f x 在(),0-∞上单调递减;又当0x =时,22x x -=,所以()f x 在R 上单调递减,满足题意.故选:D.5. 已知幂函数()()223m m f x xm +-=∈Z 是偶函数,且()f x 在(),0∞-上是增函数,则m =( )A. 2- B. 1- C. 0 D. 3【答案】B【解析】【分析】由函数()f x 是偶函数且在(),0∞-上是增函数,可知函数()f x 在(0,+∞)上单调递减,由幂函数的性质可得2230m m +-<,结合m ∈Z ,即可解出2m =-或1m =-或0m =,分别代入函数()f x ,结合()f x 是偶函数即可得出答案.【详解】因为函数()f x 是偶函数且在(),0∞-上是增函数,所以函数()f x 在(0,+∞)上单调递减,所以2230m m +-<,即(1)(3)0m m -+<,解得31m -<<,又因为m ∈Z ,所以2m =-或1m =-或0m =,当0m =或2m =-时,()3f x x -=,此时()f x 为奇函数,不满足题意;当1m =-时,()4f x x -=,此时()f x 为偶函数,满足题意;所以1m =-.故选:B6. 若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是( )A. {31}mm -<<∣ B. {3mm <-∣或1}m > C. {13}m m -<<∣ D. {1m m <-∣或3}m >【答案】C【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.7. 已知()()()1f x x x b =+-是偶函数,且其定义域为[]21,a a -,则a b +的值是 ( )A. 13- B. 43 C. 23 D. 23-【答案】B【解析】【分析】利用偶函数的定义和性质,即可求得,a b 的值.【详解】()()21f x x b x b =+--,因为函数是偶函数,所以满足()()f x f x -=,得1b =,偶函数的定义域关于原点对称,所以210a a -+=,得13a =,所以43a b +=.故选:B8. 某位同学经常会和爸爸妈妈一起去加油,经过观察他发现了一个有趣的现象:爸爸和妈妈的加油习惯是不同的.爸爸每次加油都说:“师傅,给我加250元的油”,而妈妈则说“师傅帮我把油箱加满”.这位同学若有所思,如果爸爸、妈妈都加油两次,两次的加油价格不同,妈妈每次加满油箱;爸爸每次加250元的油,我们规定谁的平均单价低谁就合算,那么请问爸爸、妈妈谁更合算呢?( )A. 妈妈B. 爸爸C. 一样D. 不确定【答案】B【解析】【分析】由题意,先计算爸爸和妈妈两次加油的平均单价,再作差法比较大小,即可得解.【详解】由题意,设第一次加油单价为x 元,第二次为y 元,油箱加满为a 升,则妈妈两次加油共需付款()a x y +元,爸爸两次能加250250250()x y x y xy++=升油,设爸爸两次加油的平均单价为M 元/升,妈妈两次加油的平均单价为N 元/升,则5002(),250()22xy a x y x y M N x y x y a xy++====++,且x y ≠,,0x y >,所以22()022()x y xy x y N M x y x y +--=-=>++,即N M >,所以爸爸的加油方式更合算.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 十六世纪中叶,英国数学家雷科德在《励智石》一书中首先把“=”作为等号使用,后来英国数学家哈里奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若R a b c ∈,,,则下列说法不成立的是( )A. 若0ab ≠且a b <,则11a b > B. 若01a <<,则3a a <C. 若0a b >>,则11b b a a+<+ D. 若c b a <<且0ac <,则22cb ab <【答案】ACD【解析】【分析】A 项,通过设出a 和b 的值,即可得出结论;B 项,通过作差后与0比较,即可得出结论;C 项,通过作差后与0比较,即可得出结论;D 项,通过分析已知条件得出a 和c 与0的关系,讨论b 的取值,即可得出结论.【详解】由题意,A 项,当2a =-,1b =时,满足a b <,但11a b <,∴A 错误,B 项,∵01a <<,∴()()()321110a a a a a a a -=-=+-<,∴3a a <,∴B 正确,C 项,∵0a b >>,∴()1011b b a b a a a a +--=>++,∴C 错误,D 项,∵c b a <<,0ac <,∴0a >,0c <,b ∈R ,当0b =时,则22cb ab =,∴D 错误,故选:ACD.10. 已知函数21,0()2,0x x f x x x ⎧+≤=⎨>⎩,若()10f x =,则x 的取值可以是( )A. 3B. 20C. 3-D. 5【答案】CD【解析】【分析】讨论0x ≤和0x >两种情况利用解析式即可求出.【详解】当0x ≤时,2()110f x x =+=,解得3x =(舍去)或3x =-,当0x >时,()210f x x ==,解得5x =,符合,综上,3x =-或5.故选:CD.11. 已知函数()y f x =是定义在R 上的偶函数,当0x ≤时,()()1f x x x =+,则下列说法正确的是( )A. 函数()f x 有3个单调区间B. 当0x >时,()()1f x x x =-C. 函数()f x 有最小值14-D. 不等式()0f x <的解集是()1,1-【答案】BC【解析】【分析】利用奇偶性求出()y f x =的表达式,再逐项求出单调区间、最值以及不等式的解集即可判断.【详解】解:当0x >时,0x -<,因为0x ≤时,()()1f x x x =+所以()()1f x x x -=--+,又因为()y f x =是定义在R 上的偶函数所以0x >时,()()21f x x x x x=--+=-即()()()2200x x x f x x x x ⎧->⎪=⎨+≤⎪⎩如图所示:对A ,由图知,函数()f x 有4个单调区间,故A 错误;对B ,由上述分析知,当0x >时,()2=-f x x x ,故B 正确;对C ,由图知,当11212x =-=-⨯或11212x -=-=⨯时,函数()f x 取得最小值()111224min f x f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭-,故C 正确;对D ,由图知,不等式()0f x <的解集是()()1,00,1-U ,故D 错误.故选:BC.三、填空题:本题共3小题,每小题5分,共15分12. 树德中学对高一强基班的学科培优进行了调查.调查结果显示:参加物理培优的有60人,参加数学培优的有80人,参加化学培优的有50人,三科培优都参加的有24人,只选择两科培优参加的有22人,不参加其中任何一科培优的有15人,则接受调查的高一强基班学生共有_____________人.【答案】135【解析】【详解】利用文恩图的辅助求解即可.【分析】由文恩图可得;参加培优的人数为()60+80+5022224120--⨯=,又不参加其中任何一科培优的有15人,所以接受调查的高一强基班学生共有12015135+=.故答案为:135.13. 函数()f x =______.【答案】(]3,00,12⎡⎫-⎪⎢⎣⎭【解析】分析】依题意可得230100x x x +≥⎧⎪-≥⎨⎪≠⎩,求解即可.【详解】依题意可得230100x x x +≥⎧⎪-≥⎨⎪≠⎩,解得312x -≤≤且0x ≠.所以函数()f x 的定义域为(]3,00,12⎡⎫-⎪⎢⎣⎭.故答案为:(]3,00,12⎡⎫-⎪⎢⎣⎭.14. 若02a <<,则122a a a +-的最小值是__________【答案】54【解析】【分析】将122a a a +-变形,得到141122422a a a a a+=-++--,利用基本不等式“1”的妙用,求解最小值.【详解】因为02a <<,所以420a ->,(42)24a a -+=,所以12141112222422a a a a a a a+=-++=-++---41(42)21()4224a a a a -+=-++⨯-14281514115424244a a a a ⎛-⎛⎫=-++++-++= ⎪ -⎝⎭⎝…,当且仅当428242a a a a -=-,即23a =时等号成立.故答案为:54.四.解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15. 设全集R ,集合{}36A x x =≤<,{}29B x x =<<.(1)分别求A B ⋂,R ()B A ð;(2)已知{}1C x a x a =<<+,若C B B = ,求实数a 的取值范围.【答案】(1){|36}A B x x =≤< ,R ()B A = ð{|2x x ≤或36x <≤或9}x ≥; (2)28a ≤≤.【解析】【分析】(1)应用集合交并补运算求集合;(2)根据题设有C B ⊆且集合C 非空,进而列不等式组求参数范围.【小问1详解】由题设{|36}A B x x =≤< ,且R {|2B x x =≤ð或9}x ≥,所以R ()B A = ð{|2x x ≤或36x <≤或9}x ≥.【小问2详解】由题意C B ⊆,显然集合C 非空,所以219a a ≥⎧⎨+≤⎩,可得28a ≤≤.16. (1)已知54x <,求函数14145y x x =-+-的最大值,并求出此时x 的值;(2)已知,0x y >,且191x y+=,求x y +的最小值,并求出此时,x y 的值;(3)已知0,0a b >>,且2212b a +=,求的最大值,并求出此时,a b 的值.【答案】(1)1x =时函数有最大值为2;(2)4,12x y ==时目标式最小值为16;(3)a =b =.【解析】【分析】(1)根据对勾函数最值的求法求函数最大值,并确定取值条件;(2)应用基本不等式“1”的代换求目标式的最小值,并确定取值条件;(3)由222(1)b a -=代入目标式,结合基本不等式求最大值,并确定取值条件.为【详解】(1)由题意540x ->,则11454[(54)]44554y x x x x =-++=--++--42≤-+=,当且仅当1x =时等号成立,所以1x =时函数有最大值为2;(2)199()()101016y x x y x y x y x y +=++=++≥+=,当且仅当3y x =,即4,12x y ==时取等号,所以4,12x y ==时目标式最小值为16;(3)由222(1)b a -=,则01a <<,所以222322a a +-=≤=,a =⇒=b =所以a =b =.17. 已知二次函数()f x 满足()()142f x f x x +=-+,且()01f =.(1)求()f x 的解析式;(2)若两个不相等的正数m ,n 满足()()f m f n =,求41m n +的最小值.【答案】(1)2()241,R f x x x x =-++∈ (2)9.2【解析】【分析】(1)设出二次函数()f x 的解析式,运用待定系数法容易得到答案;(2)根据对称性先求出正数m ,n 的关系,然后运用“1”的妙用求41m n+的最小值.【小问1详解】设二次函数()()20f x ax bx c a =++≠,因为()01f c ==,所以2()1f x ax bx =++..由()()142f x f x x +=-+,得()22(1)11142a x b x ax bx x ++++=++-+,得22(2)1(4)3ax a b x a b ax b x +++++=+-+,所以24,13a b b a b +=-⎧⎨++=⎩得24a b =-⎧⎨=⎩,故2()241,R f x x x x =-++∈.【小问2详解】因为()f x 图象的对称轴为直线()4122x =-=´-,所以由()()f m f n =,得2m n +=,即()112m n +=,又0,0,m n >>所以()411411419552222m n m n m n m n n m ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4m n n m =,即423m n ==时,等号成立.故41m n +的最小值为9.218. 某乡镇为了打造“网红”城镇发展经济,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约15元/千克,且销售畅通供不应求,记该水果单株利润为()f x (单位:元)(1)写单株利润()f x (元)关于施用肥料x (千克)的关系式;(2)当施用肥料为多少千克时,该水果单株利润最大?最大利润是多少?【答案】(1)27530225,02()75030,251x x x f x x x x x ⎧-+≤≤⎪=⎨-<≤⎪+⎩; (2)当施用肥料为4千克时,单株利润最大,最大利润是480元.【解析】【分析】(1)根据给定的函数关系,直接求出()f x 的解析式.(2)结合二次函数最值、基本不等式求最值,分段求出函数()f x 的最大值,再比较大小即可.【小问1详解】依题意,()15()1020f x W x x x =--,又()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,所以27530225,02()75030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩.【小问2详解】当02x ≤≤时,2()7530225f x x x =-+,其图象开口向上,对称轴为15x =,因此()f x 在1[0,5上单调递减,在1[,2]5上单调递增,()f x 在[0,2]上最大值为()2465f =;当25x <≤时,()()()7501750750307503013011x f x x x x x+-=-=--++++25780301780304801x x ⎛⎫=-++≤-⨯= ⎪+⎝⎭,当且仅当2511x x=++时,即4x =时等号成立,而465480<,则当4x =时,max ()480f x =,所以当施用肥料为4千克时,单株利润最大,最大利润是480元.19. 已知函数()21x f x bx a+=+是奇函数,且()12f -=-,()22g x x x -=+.(1)求函数()f x 的解析式;(2)判断并证明函数()f x 在()0,∞+上的单调性;(3)令()()()()2,0h x g x mf x m =-<,若对任意的121,,22x x ⎡⎤∈⎢⎥⎣⎦都有()()12114h x h x -≤,求实数m 的取值范围.【答案】(1)1()f x x x=+ (2)()f x ()0,1上单调递减,()1,+∞上单调递增,证明见解析(3)1,02⎡⎫-⎪⎢⎣⎭【解析】的在【分析】(1)由()f x 是奇函数,可知()12f -=-,()12f =,进而列出关系式,求出,a b ,即可得到函数()f x 的解析式;(2)根据题意,利用定义法,可判断并证明函数()f x 在()0,∞+上的单调性;(3)由对任意的1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12114h x h x -≤恒成立,可得()()max min 114h x h x -≤,求出()()max min ,h x h x ,进而可求出m 的取值范围.【小问1详解】()12f -=- ,且()f x 是奇函数,()12f ∴=,2222b a b a⎧=-⎪⎪-+∴⎨⎪=⎪+⎩,解得01a b =⎧⎨=⎩,()1xf x x ∴=+.【小问2详解】证明如下:任取1x ,()20,1x ∈,且12x x <,则()()()121212*********x x f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()12,0,1x x ∈ ,且12x x <,120x x ∴-<,1201x x <<,∴1210x x -<,()()120f x f x ∴->,即()()12f x f x >,函数()f x 在()0,1上单调递减.同理可证明函数()f x 在()1,+∞上单调递增.【小问3详解】由题意知()22112h x x m x x x ⎛⎫ ⎪=⎝++⎭-,令1z x x=+,222y z mz =--,由(1)可知函数1z x x =+在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,52,2z ⎡⎤∴∈⎢⎥⎣⎦,函数222y z mz =--的对称轴方程为0z m =<,函数222y z mz =--在52,2⎡⎤⎢⎥⎣⎦上单调递增,当2z =时,222y z mz =--取得最小值,min 42y m =-+;当52z =时,222y z mz =--取得最大值,max 1754y m =-+.所以()min 42h x m =-+,()max 1754h x m =-+,又对任意的1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12114h x h x -≤恒成立,()()max min 114h x h x ∴-≤,即()171154244m m -+--+≤,解得12m ≥-,又0m < ,m ∴的取值范围是102m -≤<.。
人教版数学高一第二章点,直线,平面之间的位置关系单元测试精选(含答案)2
【答案】A
15.如图,在三棱柱 ABC-A′B′C′中,点 E、F、H、K 分别为 AC′、CB′、A′B、B′C′
的中点,G 为△ABC 的重心,从 K、H、G、B′中取一点作为 P,使得该三棱柱恰有 2
条棱与平面 PEF 平行,则点 P 为 ( )
A.K
B.H
C.G
D.B′
【来源】人教 A 版高中数学必修二第 2 章 章末综合测评 3
A.30°
B.60°
C.90°
D.120°
【来源】人教 A 版高中数学必修二第二章 章末检测卷
【答案】C
19.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B 到 l 的距离分别是 a 和 b,AB 与α、β
试卷第 5页,总 17页
所成的角分别是θ和φ,AB 在α、β内的射影长分别是 m 和 n,若 a>b,则 ( )
【来源】2013-2014 学年福建省清流一中高一下学期第二次阶段考数学试卷(带解析) 【答案】①②
30.如图所示,在正方体 ABCD A1B1C1D1 中, M,N 分别是棱 AA1 和 AB 上的点, 若 B1MN 是直角,则 C1MN ________.
试卷第 8页,总 17页
【来源】人教 A 版 2017-2018 学年必修二第 2 章 章末综合测评 1 数学试题 【答案】90°
29.如图,将边长为1的正方形 ABCD 沿对角线 AC 折起,使得平面 ADC 平面 ABC , 在折起后形成的三棱锥 D ABC 中,给出下列三个命题: ① DBC 是等边三角形; ② AC BD ; ③三棱锥 D ABC 的体积是 2 .
6
其中正确命题的序号是* * * .(写出所有正确命题的序号)
试卷第 1页,总 17页
2021-2022学年山东省枣庄市第九中学高一年级上册学期期末数学试题【含答案】
2021-2022学年山东省枣庄市第九中学高一上学期期末数学试题一、单选题1.已知集合,,则( ){1,0,1,2}A =-{|lg(1)}B x y x ==+A B = A .B .C .D .{1,0,1,2}-{0,1,2}{1,2}{2}【答案】B【解析】求出函数的定义域确定集合,然后由交集定义计算.B 【详解】,∴.{1,0,1,2},{|1}A B x x =-=>-{0,1,2}A B ⋂=故选:B .2.命题“,”的否定是 [)x 0,∞∀∈+22x x 0-≥()A .,B .,[)x 0,∞∀∉+22x x 0-<[)x 0,∞∀∉+22x x 0-≥C .,D .,[)x 0,∞∃∈+22x x 0-<[)x 0,∞∃∈+22x x 0-≥【答案】C【分析】根据全称命题的否定是特称命题进行判断即可.【详解】命题是全称命题,则命题的否定是特称命题,据此可得命题“,”的否定是,,[)0,x ∞∀∈+220x x -≥[)0,x ∃∈+∞220x x -<故选C .【点睛】本题主要考查全称命题的否定,属于基础题.3.下列函数中,既是其定义域上的单调函数,又是奇函数的是( ).A .B .C .D .tan y x =3xy =y =3y x=【答案】D【分析】根据函数的解析式直接判断函数的奇偶性和单调性即可.【详解】对A: 它是奇函数,它在区间上递增,但在定义域上不是tan y x =(,)()22k k k Z ππππ-+∈单调函数;对B: 是非奇非偶函数;3xy =对C: y =对D:是奇函数,在定义域内是增函数.3y x =4. 设则“且”是“”的,,x y R ∈2x ≥2y ≥224x y +≥A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件【答案】A【详解】试题分析:若x≥2且y≥2,则x 2≥4,y 2≥4,所以x 2+y 2≥8,即x 2+y 2≥4;若x 2+y 2≥4,则如(-2,-2)满足条件,但不满足x≥2且y≥2.所以“x≥2且y≥2”是“x 2+y 2≥4”的充分而不必要条件.故选A .【解析】本题考查充分、必要、冲要条件.点评:本题也可以利用几何意义来做:“”表示为以原点为圆心,2为半径的圆外的点,224x y +≥包括圆周上的点,“且”表示横坐标和纵坐标都不小于2的点.显然,后者是前者的一部分,2x ≥2y ≥所以选A .这种做法比分析中的做法更形象、更直观.5.若,,,则( )202112020a ⎛⎫= ⎪⎝⎭120202021b =20201log 2021c =A .B .C .D .a b c >>a c b >>c a b >>b a c>>【答案】D【分析】根据对数函数、指数函数的单调性比较大小即可.【详解】由函数,,的单调性可知,12020x y ⎛⎫= ⎪⎝⎭2021xy =2020log y x =20211012020a ⎛⎫<=< ⎪⎝⎭,,故.1202020211b =>20201log 02021c =<b a c >>故选:D6.函数在区间的图象大致是()sin cos xxy x+=[]2,2ππ-A .B .C .D .【解析】判断函数非奇非偶函数,排除选项A 、B ,在计算时的函数值可排除选项D ,进而x π=-可得正确选项.【详解】因为,且,()sin cos x xf x x-+-=()()f x f x -≠-()()f x f x -≠所以既不是奇函数也不是偶函数,排除选项A 、B ,sin cos x xy x+=因为,排除选项D ,()()()sin cos 10f πππππ-+---==<-故选:C【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.7.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC 、直角边AB 、AC ,已知以直角边AC 、AB 为直径的半圆的面积之比为,记,则的值为( )14ABC θ∠=sin 2cos cos sin θθθθ-+A .-1B .-2C .0D .1【答案】A【分析】由圆的面积公式及半圆面积比可得,即有,将目标式由弦化切求值即可.12AC AB =1tan 2θ=【详解】以直角边AC ,AB 为直径的半圆的面积分别为:,()221228AC AC ππ⋅⎛⎫⨯⨯=⎪⎝⎭,()221228AB AB ππ⋅⎛⎫⨯⨯= ⎪⎝⎭由面积之比为,得:,即,14()()2214AC AB =12AC AB =在中,,则,Rt ABC 1tan tan 2AC ABC AB θ=∠==12sin 2cos tan 2211cos sin 1tan 12θθθθθθ---===-+++故选:A.8.已知函数是定义在上的偶函数,且当时, ()f x (,0)(0,)-∞+∞ 0x >()()()22,0414,42x x f x f x x ⎧-<≤⎪=⎨->⎪⎩,则方程解的个数为( )()1f x =A .B .C .D .46810【答案】D【分析】当时,作出函数的图象,把方程解的个数,转化为函数与0x >()f x ()1f x =()y f x =的图象交点的个数,结合图象和函数的奇偶性,得到图象交点的个数,即可求解.1y =【详解】由题意,函数当时,,0x >()()()22,0414,42x x f x f x x ⎧-<≤⎪=⎨->⎪⎩作出函数的图象,如图所示,()f x 又由方程解的个数,即为函数与的图象交点的个数,()1f x =()y f x =1y =当时,结合图象,两函数与的图象有5个交点,0x >()y f x =1y =又由函数为偶函数,图象关于轴对称,()y f x =y 所以当时,结合图象,两函数与的图象也有5个交点,0x <()y f x =1y =综上可得,函数与的图象有10个交点,()y f x =1y =即方程解的个数为10.()1f x =故选:D.二、多选题9.设、、为实数且,则下列不等式一定成立的是( )a b c a b >A .B .11a b >ln ln a b>C .D .()20221a b ->()()2211a c b c +>+【答案】CD【分析】取,可判断A 选项;利用对数函数的基本性质可判断B 选项;利用指数函数0a b >>的单调性可判断C 选项;利用不等式的基本性质可判断D 选项.【详解】对于A ,若,则,所以A 错误;0a b >>11a b <对于B ,函数的定义域为,而、不一定是正数,所以B 错误;ln y x =()0,∞+a b 对于C ,因为,所以,所以C 正确;0a b ->()20221a b ->对于D ,因为,所以,所以D 正确.210c +>()()2211a c b c +>+故选:CD10.设函数的图象为曲线,则下列结论中正确的是( )π()sin 23f x x ⎛⎫=- ⎪⎝⎭E A .是曲线的一个对称中心π(,0)12-E B .若,且,则的最小值为12x x ≠12()()0f x f x ==12||x x -2πC .将曲线向右平移个单位长度,与曲线重合sin 2y x =π3E D .将曲线上各点的横坐标缩短到原来的,纵坐标不变,与曲线重合πsin 3y x ⎛⎫=- ⎪⎝⎭12E 【答案】BD【分析】由题意利用函数的图象变换规律,正弦函数的图象和性质,得出结论.sin()y A x ωϕ=+【详解】函数的图象为曲线,π()sin 23f x x ⎛⎫=- ⎪⎝⎭E 令,求得,为最小值,故的图象关于直线对称,故A 错误;12x π=-()1f x =-()f x 12x π=-若,且,则的最小值为,故B 正确;12x x ≠12()()0f x f x ==12||x x -122222T ππ=⨯=将曲线向右平移个单位长度,可得的图象,故C 错误;sin 2y x =π32sin 23y x π⎛⎫=-⎪⎝⎭将曲线上各点的横坐标缩短到原来的,纵坐标不变,可得的图象,πsin 3y x ⎛⎫=- ⎪⎝⎭12sin 23y x π⎛⎫=- ⎪⎝⎭与曲线E 重合,故D 正确,故选:BD.11.已知函数,关于函数的结论正确的是( )()22,1,12x x f x x x +≤-⎧=⎨-<<⎩()f x A .B .的值域为()13f =()f x (),4-∞C .的解集为D .若,则()1f x <()1,1-()3f x =x 【答案】BD【分析】将代入可知A 错误;分别在和的情况下,结合一次函数和1x =()2f x x =1x ≤-12x -<<二次函数的值域求法可知B 正确;分别在和的情况下,根据解析式构造不等式和1x ≤-12x -<<方程求得CD 正误.【详解】对于A ,,A 错误;()2111f ==对于B ,当时,;当时,;1x ≤-()2121f x x =+≤-+=12x -<<()[)20,4f x x =∈的值域为,B 正确;()f x \(),4-∞对于C ,当时,,解得:;1x ≤-()21f x x =+<-3x <-当时,,解得:;12x -<<()21f x x =<11x -<<的解集为,C 错误;()1f x ∴<()(),31,1-∞-- 对于D ,当时,,解得:(舍);1x ≤-()23f x x =+=1x =当时,,解得:12x -<<()23f x x ==x =x =的解为D 正确.()3f x ∴=x =故选:BD.12.已知函数,且,则( )()221xf x a =-+()113f =A .1a =B .为非奇非偶函数()f x C .函数的值域为()f x ()1,1-D .不等式的解集为()()23130f x f x -+-<4,13⎛⎫- ⎪⎝⎭【答案】ACD 【分析】由求得可判断A ;利用奇偶性定义可判断B ;由的范围可得的范围,()113f =a x 2121-++x可判断C ;利用的单调性可判断D.()f x 【详解】,求得,A 正确;()211213f a =-=+1a =时,,1a =()22112121x x x f x -=-=++∵,∴为奇函数,B 不正确;()()21122112x x x x f x f x -----===-++x R ∈()f x ∵,∴,∴,,20x >211x+>10121x <<+22021x --<<+∴,C 正确;211121x --<+<+,因为是上单调递增函数,是上单调递减函数,()2121x f x =-+21xy =+R 221x y =+R 所以是上单调递增函数,()2121xf x =-+R ∴,()()()()()2231303133f x f x f x f x f x -+-<⇒-<--=-∴,∴,∴解集为,D 正确.2313x x -<-2340x x +-<4,13⎛⎫- ⎪⎝⎭故选:ACD.三、填空题13.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.π24π3【答案】π6【分析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r ,由扇形的面积公式得:,解得,该扇形的弧长为2π1π3224r =⨯4r =.ππ4246⨯=故答案为:.π614.已知log 7[log 3(log 2x )]=0,那么=________.12x -【分析】从外向里一层一层的求出对数的真数,求出x 的值【详解】∵log 7[log 3(log 2x )]=0,∴log 3(log 2x )=1,∴log 2x =3,∴23=x ,∴()113222x --===【点睛】利用对数式与指数式的相互转化从外向里求出真数,属于基础题.15.已知(,为常实数),若,则())2021log sin 8f x a x b x =--a a ()54f -=___________.()5f =【答案】20-【分析】由得出,进而得出.()()16f x f x -+=-()()5516f f -+=-()5f【详解】,()()2021log sin 8f x a x b x ⎫-=----⎪⎭,())2021log sin 8f x a x b x -=-++-∴,∴,()()16f x f x -+=-()()5516f f -+=-∵,∴.()54f -=()520f =-故答案为:20-四、双空题16.已知正实数满足,则当__________时,的最小值是,x y 22412x y xy +=+x =121x y xy ++__________.【答案】 612【解析】利用基本不等式可知,当且仅当“”时取等号.而运用基本不等式12xy ≤122y x ==121x y xy ++后,结合二次函数的性质可知恰在时取得最小值,由此得解.122y x ==【详解】解:由题意可知:,即,当且仅当“”224124x y xy xy+=+≥=12xy ≤122y x ==时取等号,,当且仅2121112x yxy xy xy++≥=+=-∴226≥-=当“”时取等号.122y x ==故答案为:,6.12【点睛】本题考查基本不等式的应用,同时也考查了配方法及二次函数的图像及性质,属于基础题.五、解答题17.已知集合,,,全集{A x y =={}260B x x x =--<{}C x x a =<U =R(1)求,;A B ⋃()U A B⋂ (2)若,求实数的取值范围.A C ⋂≠∅a 【答案】(1);(]2,8A B =- ()()2,2U A B =- (2)()2,+∞【分析】(1)根据偶次根式被开方数大于等于零,进而解一元二次不等式分别求得集合,由并,A B 集、补集和交集的定义可得结果;(2)由可得的范围,取补集即可得到时的范围.A C ⋂=∅a A C ⋂≠∅a 【详解】(1)由得:,即;210160x x -+-≥28x ≤≤[]2,8A =由得:,即,;260x x --<23x -<<()2,3B =-(]2,8A B ∴=- ,.()(),28,U A =-∞+∞ ()()2,2U A B ∴=-(2)由题意知:;(),C a =-∞若,则,时,的取值范围为.A C ⋂=∅2a ≤A C ∴≠∅ a ()2,+∞18.已知函数(且).()()()log 2log 2a a x x f x =+--0a >1a ≠(1)判断的奇偶性并予以证明;()f x (2)若一元二次不等式的解集为,求不等式的解集.20x ax c -+≤10,2⎡⎤⎢⎥⎣⎦()f x c >【答案】(1)奇函数,证明见解析(2){}20x x -<<【分析】(1)先求定义域,再由奇偶性定义证明即可;(2)根据解集得出,,再利用对数函数的单调性解不等式即可.12a =0c =【详解】(1)要使有意义,必须且,()f x 20x +>20x ->解得,所以的定义域为.22x -<<()f x ()2,2-是奇函数.()f x 证明如下:的定义域为,关于原点对称,()f x ()2,2-∵,()()()()()()log 2log 2log 2log 2a a a a f x x x x x f x -=-+-+=-+--=-⎡⎤⎣⎦∴为奇函数.()f x (2)由不等式的解集为,20x ax c -+≤10,2⎡⎤⎢⎥⎣⎦∴得,,10,210,2c a ⎧⨯=⎪⎪⎨⎪+=⎪⎩12a =0c =∴,得,()()()1122log 2log 20f x x x =+-->()()1122log 2log 2x x +>-∵为减函数,12log y x =∴20,20,22,x x x x +>⎧⎪->⎨⎪+<-⎩解得:,所以解集为.20x -<<{}20x x -<<19.已知.3sin cos αα=(1)若为锐角,求的值;αcos 3πα⎛⎫+ ⎪⎝⎭(2)求的值.tan 24πα⎛⎫+ ⎪⎝⎭【答案】(2)7【分析】(1)由已知结合同角三角函数的平方关系可解得,然后由余弦的两角和可得;sin ,cos αα(2)由已知可得,由二倍角公式可得,最后由正切的两角和可得.tan αtan 2α【详解】(1)由,为锐角223sin cos sin cos 1αααα=⎧⎨+=⎩α解得sin αcos α=∴cos 3πα⎛⎫+ ⎪⎝⎭cos cos sin sin 33ππαα=-12==(2)由3sin cos αα=得1tan 3α=则22122tan α33tan2α1tan α4113⨯===-⎛⎫- ⎪⎝⎭31πtan2α14tan 2α7341tan2α14++⎛⎫∴+=== ⎪-⎝⎭-20.目前全球新冠疫情严重,核酸检测结果成为是否感染新型冠状病毒的重要依据,某核酸检测机构,为了快速及时地进行核酸检测,花费36万元购进核酸检测设备.若该设备预计从第1个月到第个月的检测费用和设备维护费用总计为万元,该设备每月检测收入为20万元.n ()*n ∈N ()25n n +(1)该设备投入使用后,从第几个月开始盈利?(即总收入减去成本及所有支出费用之差为正值);(2)若该设备使用若干月后,处理方案有两种:①月平均盈利达到最大值时,以20万元的价格卖出;②盈利总额达到最大值时,以16万元的价格卖出.哪一种方案较为合算?请说明理由.【答案】(1)第4个月开始盈利(2)方案①较为合算,理由见解析【分析】(1)求出利润表达式然后解不等式可得答案;(2)分别计算出两种方案的利润比较可得答案.【详解】(1)由题意得,即,()2203650n n n --+>215360n n -+<解得,∴.312n <<()*3n n >∈N ∴该设备从第4个月开始盈利.(2)该设备若干月后,处理方案有两种:①当月平均盈利达到最大值时,以20万元的价格卖出,.()22036536153n n n n n n --+⎛⎫=-+≤ ⎪⎝⎭当且仅当时,取等号,月平均盈利达到最大,6n =∴方案①的利润为:(万元).()2063636302038⨯--++=②当盈利总额达到最大值时,以16万元的价格卖出.,()222158120365153624y n n n n n n ⎛⎫=--+=-+-=--+ ⎪⎝⎭∴或时,盈利总额最大,7n =8n =∴方案②的利润为20+16=36(万元),∵38>36,∴方案①较为合算.21.已知函数的图像向右平移个单位长度得到的图像, ()()2sin 0,22x f x ωϕωπϕ=≥<⎛⎫+ ⎪⎝⎭6π()g x 图像关于原点对称,的相邻两条对称轴的距离是.()g x ()f x 2π(1)求在上的增区间;()f x []0,π(2)若在上有两解,求实数的取值范围.()230f x m -=+0,2x π⎡⎤∈⎢⎥⎣⎦m【答案】(1);(2).70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦12⎛ ⎝【解析】(1)由的相邻两条对称轴的距离是,可得函数的周期,从而得出的值,由平移()f x 2πω得出的解析式,根据图像关于原点对称,可求出的值,从而可求单调增区间,得出()g x ()g x ϕ()f x 答案.(2)令 则,则,根据有两解,即23t x π=+4,33t ππ⎡⎤∈⎢⎥⎣⎦[2s n 2]i t ∈()230f x m -=+有两解,从而可得答案.2sin 32t m =-【详解】解:由的相邻两条对称轴的距离是,则,()f x 2π22T ππω==1,ω∴=()()2sin 2f x x ϕ∴=+()2sin 2sin 2326x g x x ππϕϕ⎡⎤⎛⎫-+ ⎪⎢⎛⎫==-+ ⎪⎝⎥⎝⎣⎦⎭⎭函数的图像关于原点对称,, ()g x 3k πϕπ-+= ,2πϕ< 所以3πϕ=()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭(1)由, 222232k x k πππππ-≤+≤+Z k ∈得,51212k x k ππππ-≤≤+Z k ∈令得0k =51212x ππ-≤≤得1k =7131212x ππ≤≤在增区间是()f x \[]0,π70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦令,则()223t x π=+0,,2x π⎡⎤∈⎢⎥⎣⎦ 4,33t ππ⎡⎤∴∈⎢⎥⎣⎦所以[2s n 2]i t ∈若有两解,即在上有两解,()230f x m -=+2sin 32t m =-4,33t ππ⎡⎤∈⎢⎥⎣⎦由,即2sin y t =322m ≤-<123m <≤12m ∴<≤的取值范围是m ∴12⎛ ⎝【点睛】关键点睛:本题考查求正弦型函数的单调增区间和根据方程的解个数求参数的范围问题,解答本题的关键是设,由则所以若23t x π=+0,,2x π⎡⎤∈⎢⎥⎣⎦4,33t ππ⎡⎤∈⎢⎥⎣⎦[2s n 2]i t ∈有两解,即在上有两解,然后数形结合求解,属于中档()230f x m -=+2sin 32t m =-4,33t ππ⎡⎤∈⎢⎥⎣⎦题.22.对于函数,若的图象上存在关于原点对称的点,则称为定义域上的“伪奇函数”.()f x ()f x ()f x (1)试判断是否为“伪奇函数”,简要说明理由;()|cos |f x x =(2)若是定义在区间上的“伪奇函数”,求实数的取值范围;2()log (sin )1f x x m =++[,]33ππ-m (3)试讨论在上是否为“伪奇函数”?并说明理由.22()4243x x f x m m +=-+- R【答案】(1)是“伪奇函数”,理由见解析;(2;(3)答案见解析.1m <≤【分析】(1)由“伪奇函数”的定义判断即可;(2)由题意可知,,22log (sin )1log (sin )10x m x m +++-++=即在有解,结合三角函数的性质即可求解;221sin 4m x -=[,]33ππ-(3)由题意可知,在上有解,2444(22)860x x x x m m --+-++-=R 令,则,从而在有解,22x x t -=+22,442x x t t -≥+=-224880t mt m -+-=[2,)+∞再分类讨论即可得出结果【详解】(1) ,()0()22f f ππ-==.((022f f ππ∴-+=是“伪奇函数”.()|cos |f x x ∴=(2)为“伪奇函数”,()f x ,()()0f x f x ∴+-=即,22log (sin )1log (sin )10x m x m +++-++=即在有解.221sin 4m x -=[,]33ππ-,sin [x ∈ .2211sin [,1]44m x ∴=+∈又在恒成立,sin 0m x +> [,33ππ-max (sin )m x ∴>-=.1m <≤(3)当为定义域上的“伪奇函数”时,22()4243x x f x m m +=-+- R 则在上有解,()()f x f x -=-R 可化为在上有解,2444(22)860x x x x m m --+-++-=R 令,则,22x x t -=+22,442x x t t -≥+=-从而在有解,224880t mt m -+-=[2,)+∞即可保证为“伪奇函数”,()f x 令,22()488F t t mt m =-+-则当时,在有解,①(2)0F ≤224880t mt m -+-=[2,)+∞即,22210m m --≤m ≤≤当时,在有解等价于②(2)0F >224880t mt m -+-=[2,)+∞22164(88)0,22,(2)0,m m m F ⎧∆=--≥⎪>⎨⎪>⎩m <时,为定义域上的“伪奇函数”,否则不是.m ≤≤22()4243x x f x m m +=-+- R。
-高一上学期物理期末试卷
-高一上学期物理期末试卷2014-2015高一上学期物理期末试卷一、选择题(本题共17小题,每小题4分,共68分;1到12题,只有一个选项符合题意,有选错或不答的得0分。
13到17题为多选多选漏选不给分】1. 在研究下列问题中,能够把研究对象看作质点的是( )A.研究地球的自转B.研究地球绕太阳的公转C.研究一列火车通过某一路标所用的时间D.研究乒乓球的旋转2. 如图所示为某校学生开展无线电定位“搜狐”比赛,甲、乙两人从O点同时出发,并同时到达A点搜到狐狸,两人的搜狐路径已在图中标出,则( )A. 甲的平均速度大于乙的平均速度B. 两人运动的平均速度相等C. 甲的位移大于乙的位移D. 甲的路程等于乙的路程3. 单位制是由基本单位和导出单位所组成的一系列完整的单位体制。
在以下所给出的力学单位中,属于国际单位制中的基本单位是( )A. mB. m/sC. m/s2D. N4. 关于速度与加速度的关系,下列说法中正确的是( )A. 物体的速度改变越快,其加速度也越大B. 物体的速度越大,其加速度也越大C. 物体的速度改变量越大,其加速度也越大D. 物体的速度为零,其加速度一定为零5. 关于惯性和牛顿第一定律,下列说法中正确的是( )A. 静止的物体可能没有惯性B. 速度越大的物体惯性越大C. 同一物体在地球上和月球上惯性不同D. 伽利略的斜槽实验以可靠的事实为基础并把实验探究和逻辑推理和谐地结合在一起6. 力是矢量,它的合成与分解遵守平行四边形定则,以下关于大小分别为7N和9N的两个力的合力正确的有( )A. 合力不可能为3NB. 合力不可能为9NC. 合力一定为16ND. 合力可能为2N7. 关于自由落体运动,下列说法正确的是 ( )A.自由落体运动是一种匀速直线运动B.物体刚下落时,速度和加速度都为零C.物体在下落的过程中,每秒速度都增加9.8m/sD.物体的质量越大,下落时加速度就越大8. 金属小桶侧面有一小孔A,当桶内盛水时,水会从小孔A中流出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省枣庄市第六中学2014-2015学年高一上学期期末考试数学试题注意事项:1.请在答题纸上作答,在试卷上作答无效。
2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷 选择题 (共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B ⋂=A .{}0B .{}0,1C .{}0,2D .{}0,1,22.函数5log (23)x y x -=-的定义域为 A .3(,5)2B .3(,4)2C .(4,5)D .3(,4)2(4,5)3.动点P 在直线x+y-4=0上,O 为原点,则|OP|的最小值为AB . CD .24.直线0ax by c ++=经过第一、第二、第四象限,则,,a b c 应满足( )A .ab >0,bc >0B .ab >0,bc <0C .ab <0,bc >0D .ab <0,bc <05.两条平行线1l :3x -4y -1=0,与2l :6x -8y -7=0间的距离为( )A .12B .35 C .65 D .16.若一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比是( )A .ππ241+ B .ππ421+ C .ππ21+ D .ππ221+ 7.若0.52a =,log 3b π=,2log 0.3c =,则( )A .b c a >>B .b a c >>C .c a b >>D .a b c >>8.若一个水平放置的图形的斜二测直观图是一个底角为45°且腰和上底均为1的等腰梯形,则原平面图形的面积是( )A .22+ B .12+ C .2+D .19.已知圆C :2210,x y +=过点P (1,3)作圆C 的切线,则切线方程为( )A .3100x y +-=B .380x y -+=C .360x y +-=D .3100x y -+=10.如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 -ABC 1的体积为( )A B C D 11.已知函数2(x)32,(x)x ,f x g =-=构造函数(),()()(x),(),()()g x f x g x F f x g x f x ≥⎧=⎨≥⎩那么函数(x)y F =( )A .有最大值1,最小值1-B .有最小值1-,无最大值C .有最大值1,无最小值D .有最大值3,最小值112.若半径均为2的四个球,每个球都与其他三个球外切,另有一个小球与这四个球都外切,则这个小球的半径为( )AB 2C 3D .2第Ⅱ卷 非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答卷卡的相应位置上) 13.计算()=⋅+5120lg 2lg 2g .14.一个几何体的三视图如图所示,俯视图为等边三角形,若其体积为a = .15.已知两圆相交于两点(1,3)和(m ,1),两圆圆心都在直线02cx y -+=上,则m c += .16.过点(2,3)与圆(x -1)2+y 2=1相切的直线方程为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)如图,平面α⊥平面β,在α与β的交线l 上取线段AB =4,AC 、BD 分别在平面α和平面β内,它们都垂直于交线l ,并且AC =3,BD =12,求CD 的长.18.(本小题满分12分)设122+-=x a )x (f ,∈x R .(其中a 为常数) (1)若)(x f 为奇函数,求a 的值;(2)若不等式0)(>+a x f 恒成立,求实数a 的取值范围. 19.(本小题满分12分)圆C 过点A (6,0),B (1,5),且圆心在直线:2780l x y -+=上. (1)求圆C 的方程;(2)P 为圆C 上的任意一点,定点Q (8,0),求线段PQ 中点M 的轨迹方程. 20.(本小题满分12分)如图,菱形ABCD 的边长为6,∠BAD=60︒,对角线AC,BD 相交于点O ,将菱形ABCD沿对角线AC 折起,得到三棱锥B-ACD,点M 是棱BC 的中点, DM=.求证:(1)OM ∥平面ABD ; (2)平面ABC ⊥平面MDO . 21.(本小题满分12分)已知函数24()log (23)f x ax x =++ (∈a R ). (1)若(1)1f =,求()f x 的单调区间;(2)是否存在实数a ,使()f x 的最小值为0.若存在, 求出a 的值; 若不存在, 说明理由. 22.(本小题满分12分)在平面直角坐标系xOy 中,点()0,3A ,直线l :y =2x -4.(1)求以点A l 相交所得弦长;(2)设圆C 的半径为1,圆心在l 上.若圆C 上存在点M ,使2M A M O =,求圆心C 的横坐标a 的取值范围.2014-2015学年度山东省枣庄市枣庄六中第一学期高一期末考试数学试题参考答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、选择题1.C ;2.D ;3.B ;4.B ;5.A ;6.D ;7.D ;8.C ;9.A ;10.A ;11.C ;12.B . 12.提示:四个大球两两外切,四个大球的球心连线构成边长为4的正四面体A BCD -,小球与四个大球都外切,小球的球心到四个大球的球心的距离为2+r ,所以小球的球心为正四面体A BCD -的外接球的球心(即为正四面体的中心)。
二、填空题13.1;14.2;15.3;16.x=2或4x-3y+1=0. 三、解答题17.解 连接BC .∵AC ⊥l ,∴BC =AC 2+AB 2=32+42=5. ----------------------------3分 又∵BD ⊥l ,α⊥β,α∩β=l ,∴BD ⊥α. ----------------------------6分 又∵BC ⊂α,∴BD ⊥BC . ----------------------------8分 ∴CD =CB 2+BD 2=52+122=13.∴CD 长为13 cm . ---------------------------10分 18.解:(1)因为,x R ∈所以(0)01f a ==得. ---------------------------4分 (2)122)(+-=x a x f 因为()0f x a +>恒成立,即2221x a >+恒成立. ----------------------------6分 因为211x+>,所以20221x<<+. ------------------10分 所以22a ≥,即1a ≥. -------------------12分 19.解:(1)解法1:直线AB 的斜率50116k -==--, 所以AB 的垂直平分线m 的斜率为1. ---------------------------2分 AB 的中点的横坐标和纵坐标分别为617055,2222x y ++==== . 因此,直线m 的方程为571(x )22y -=-.即10x y --=. --------------------4分 又圆心在直线l 上,所以圆心是直线m 与直线l 的交点。
联立方程组102780x y x y --=⎧⎨-+=⎩ 解得32x y =⎧⎨=⎩--------------------------6分 所以圆心坐标为C (3,2),又半径r CA ==则所求圆的方程是22(x 3)(y 2)13-+-=. ----------------------------8分 解法2:设所求圆的方程为222(x )(y )a b r -+-=.由题意得222222(6a)(0b)(1a)(5b)2780r r a b ⎧-+-=⎪-+-=⎨⎪-+=⎩----------------------------3分 解得23213a b r ⎧=⎪=⎨⎪=⎩----------------------------6分所以所求圆的方程是22(x 3)(y 2)13-+-=. ----------------------------8分 (2)设线段PQ 的中点M (x,y ),P 00,y )x (M 为线段PQ 的中点,则00+8=202x y ⎧⎪⎪⎨+⎪=⎪⎩x y , -----------------------------9分解得00282x x y y=-⎧⎨=⎩ .(28,2)P x y -代入圆C 中得22(283)(2y 2)13x --+-=,即线段PQ 中点M 的轨迹方程为221113()(y 1)24x -+-=. -----------12分 20.(1)证明:由题意知,O 为AC 的中点, ∵M 是BC 的中点, ∴OM//AB又∵OM ⊄平面ABD ,BC ⊂平面ABD ∴OM//平面ABD(2)证明:由题意知,OM=OD=3,DM=23 ∴OM 2+OD 2=DM 2 ∴∠DOM=90° 即OD ⊥OM又∵四边形ABCD 是菱形,∴OD ⊥AC ∵OM O AC = ,OM ,AC ⊂平面ABC ∴OD ⊥平面ABC ∵OD ⊂平面MDO ∴平面ABC ⊥平面MDO 21.解:(1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,a =-1, ----------------------------2分 这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x<3,函数定义域为(-1,3). ---------------------------4分 所以f (x )的单调递增区间是(-1,1),递减区间是(1,3).------------------6分 (2)假设存在实数a 使f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1, --------------------8分 因此应有⎩⎪⎨⎪⎧a>0,12a -44a=1, ----------------------------10分解得a =12.故存在实数a =12使f (x )的最小值等于0. -------------------12分22.解:(1)设直线:24l y x =-与圆A 相交的弦为线段BC则圆心到直线l 的距离d === ---------------------------2分由题意知2222BC d ⎛⎫+= ⎪⎝⎭, ---------------------------4分解得BC = --------------------6分 (2)因为圆心在直线y =2x -4上,所以圆C 的方程为222()[1]2).(x a y a -+--= 设点M (x ,y ),因为2MA MO =,22230x y y ++-=,即22()14x y ++=,所以点M 在以D (0,-1)为圆心,2为半径的圆上. ---------------------------8分 由题意,点M (x ,y )在圆C 上,所以M 是圆C 与圆D 的公共点,则|2-1|≤CD ≤2+1,所以 1 3.≤≤ ---------------------------10分即22512805120a a a a ⎧-+≥⎪⎨-≤⎪⎩得1205a ≤≤所以点C 的横坐标a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. ----------------12分。