热力学四大定律

合集下载

物理热学知识点总结简洁

物理热学知识点总结简洁

物理热学知识点总结简洁
1. 热能和热量
热能是物质内部由于分子、原子运动而具有的能量,它是热量的一种形式。

热量是由于物
体内部微观粒子的热运动而表现出来的能量。

热能和热量的传递可以通过传导、对流和辐
射等方式进行。

2. 热力学定律
热力学的基本定律包括:热力学第一定律:能量守恒定律,热力学第二定律:熵增定律,
热力学第三定律:绝对零度不可能达到定律。

3. 热容和比热
热容是物质单位质量在单位温度变化时吸收或释放的热量。

比热是单位质量物质温度升高
1摄氏度所需吸收的热量。

4. 热力学循环
热力学循环是指一定物质在一定压力下,在物理条件不变的情况下,经历一系列状态变化
后又回到起始状态的过程。

常见的热力学循环包括卡诺循环、斯特林循环、布雷顿循环等。

5. 热力学效率
热力学效率是指热机从热源吸收热量并转化为有用功的比率。

热力学效率通常用于衡量热
机性能的好坏,提高热机效率对于节能减排具有重要意义。

6. 热传导
热传导是指物体内部由高温区域向低温区域传递热量的过程。

导热系数是描述热传导性能
的物理量,不同物质的导热系数不同。

7. 对流和辐射
对流是指热量通过物质流动的方式传递,如空气对流、水对流等。

辐射是指热量通过电磁
波的辐射传递,如太阳的辐射。

8. 传热方程
传热方程描述了热量在物体内部传递的规律,通常采用傅立叶定律描述传热过程。

以上是热学的一些基本知识点总结,热学是物理学中非常重要的一个分支,对于理解能量、热力学过程等内容具有重要的意义。

人类最伟大的十个科学发现之九:热力学四大定律

人类最伟大的十个科学发现之九:热力学四大定律

人类最伟大的十个科学发现之九:热力学四大定律18世纪,卡诺等科学家发现在诸如机车、人体、太阳系和宇宙等系统中,从能量转变成“功”的四大定律。

没有这四大定律的知识,很多工程技术和发明就不会诞生。

热力学的四大定律简述如下:
热力学第零定律——如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

热力学第一定律——能量守恒定律在热学形式的表现。

热力学第二定律——力学能可全部转换成热能,但是热能却不能以有限次的实验操作全部转换成功(热机不可得)。

热力学第三定律——绝对零度不可达到但可以无限趋近。

热学基本知识点汇总

热学基本知识点汇总

热学是研究热力学现象和热力学规律的学科,是物理学的一个重要分支。

下面是热学基本知识点的汇总:一、温度和热量1.温度:物体的温度是指物体内部分子的平均动能大小,通常用摄氏度或开尔文度表示。

2.热量:物体内部分子之间的相互作用能量,通常用焦耳(J)或卡路里(cal)表示。

热量可以传递,可以使物体的温度发生变化。

二、热力学定律1.热力学第一定律:能量守恒定律,即能量不会凭空消失,也不会凭空产生,只能从一种形式转化为另一种形式,总能量守恒。

2.热力学第二定律:热量不可能自发地从低温物体传递到高温物体,热量只能从高温物体传递到低温物体,且在传递过程中必然伴随着熵的增加。

3.热力学第三定律:当温度趋于绝对零度时,所有物质的熵趋于一个常数值,即绝对零度时的熵为零。

三、热力学过程1.等温过程:在等温过程中,物体的温度保持不变,热量和功相等。

2.绝热过程:在绝热过程中,物体没有与外界交换热量,只有通过功来改变内能。

3.等压过程:在等压过程中,物体的压强保持不变,热量和焓相等。

4.等体过程:在等体过程中,物体的体积保持不变,热量和内能相等。

四、热力学循环热力学循环是指在一定条件下,经过一系列热力学过程后,使物体回到原来的状态的过程。

常见的热力学循环有卡诺循环、斯特林循环、布雷顿循环等。

五、热力学量1.熵(S):热力学系统的无序程度,是热力学基本量之一,通常用焦耳/开尔文(J/K)表示。

2.内能(U):热力学系统的总能量,包括其分子内能和势能,通常用焦耳(J)表示。

3.焓(H):热力学系统的总能量加上其对外界做功所消耗的能量,通常用焦耳(J)表示。

4.自由能(F):热力学系统可能产生的最大功,通常用焦耳(J)表示。

热力学定律

热力学定律

热力学定律热力学,全称热动力学是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与准平衡态的物理、化学过程。

热力学定义许多宏观的变量(像温度、内能、熵、压强等),描述各变量之间的关系。

热力学描述数量非常多的微观粒子的平均行为,其定律可以用统计力学推导而得。

热力学可以总结为四条定律。

热力学第零定律定义了温度这一物理量,指出了相互接触的两个系统,热流的方向。

热力学第一定律指出内能这一物理量的存在,并且与系统整体运动的动能和系统与环境相互作用的势能是不同的,区分出热与功的转换。

热力学第二定律涉及的物理量是温度和熵。

熵是研究不可逆过程引入的物理量,表征系统通过热力学过程向外界最多可以做多少热力学功。

热力学第三定律认为,不可能透过有限过程使系统冷却到绝对零度。

热力学可以应用在许多科学及工程的领域中,例如引擎、相变化、化学反应、输运现象甚至是黑洞。

热力学计算的结果不但对物理的其他领域很重要,对化学、化学工程、航太工程、机械工程、细胞生物学、生物医学工程及材料科学等科学技术领域也很重要,甚至也可以应用在经济学中。

热力学是从18世纪末期发展起来的理论,主要是研究功与热量之间的能量转换;在此功定义为力与位移的内积;而热则定义为在热力系统边界中,由温度之差所造成的能量传递。

两者都不是存在于热力系统内的性质,而是在热力过程中所产生的。

热力学的研究一开始是为了提升蒸汽引擎的效率,早期卡诺有许多的贡献,他认为若引擎效率提升,法国是有可能赢得拿破仑战争。

出生于爱尔兰的英国科学家开尔文在1854年首次提出了热力学明确的定义:“热力学是一门描述热和物体中各部份之间作用力的关系,以及描述热和电器之间关系的学科。

”一开始热力学研究关注在热机中工质(如蒸气)的热力学性质,后来延伸到化学过程中的能量转移,例如在1840年科学家盖斯提出,有关化学反应的能量转移的研究。

化学热力学中研究熵对化学反应的影响。

统计热力学也称为统计力学,利用根据微观粒子力学性质的统计学预测来解释宏观的热力学性质。

简述你所了解的热力学定律

简述你所了解的热力学定律

简述你所了解的热力学定律热力学有四大定律,即第一、第二、第三、第零定律首先是热力学第一定律:热力学第一定律(即能量守恒定律)的书面定义是:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。

人类在近代对于永动机的研究与追求非常狂热,将早期的永动机(不需要耗费能量就能无止境运动)归为第一类永动机。

所以,热力学第一定律从永动机的角度表述为:第一类永动机不可能制成。

需要说明的是,热力学第一定律是在大量实践的基础上总结出来的,并不是严格证明出来的,更像是一种假定,只不过这种假定在大量的充分的实践中被认为是正确的(其实所有的定律都是这种套路——先有假定,再有实践,再有证明,这其实也是自然科学发展的基础)。

早期的热力学研究因为是处于刚开始大大解放人类生产力的资本主义发展早期,那时候热机的研究与发展还很不成熟,因此只限于热和功(指的是体积功,即机械能,不包括电功等非体积功)的相互转化问题。

因此,热力学第一定律基于热机的表述是:热可以变为功,功也可变为热,但它们的总量是不变的。

表征热力学系统能量的是内能。

因此,热一(热力学第一定律,下同)的数学表达式为:△U(内能变化量)=Q(吸热量)+W(吸收体积功的量)考虑到内能是整个系统的能量,难于测定,而吸热量可测,所以公式移项变为:Q=△U-W因为W被规定为外界对系统的体积功,所以可以表示为W=-△(pV),p即体系压强,V即体积;因为一般的化学反应都是在恒压状态下(都是敞口的容器,密闭容器技术含量高,危险性大,比较不常见),所以p是定值,这时候W即转化为V的差值△V。

所以Q=△U+p△V。

这个时候为了表达式的完美(Q最好是某个量的差值实际才会比较方便计算)进一步变形为:Q=(U2-U1)+p(V2-V1)=(U2+pV2)-(U1+pV1)=(U2+p2V2)-(U1+p1V1),很显然,我们需要定义一个物理量表示(U+PV),最终将此定义为焓(用H表示)。

热力学四大定律被证伪

热力学四大定律被证伪

热力学四大定律被证伪热力学是研究能量转化和能量流动规律的科学。

在热力学的发展过程中,形成了四大定律,被广泛应用于物理、化学、工程等领域。

然而,随着科学技术的发展和实验技术的进步,一些实验证据逐渐出现,挑战了热力学四大定律。

本文将从热力学四大定律的定义和问题出发,详细探讨这些定律被证伪的情况。

第一定律:能量守恒定律能量守恒定律是热力学的基本法则之一,指出能量在系统中的总量不变。

一般来说,能量可以以不同形式存在,包括热能、机械能、电能等。

然而,现实中的一些现象表明,能量并非总是守恒的。

首先,热能的转化过程中存在能量的损失。

例如,在能量转化为热能的过程中,会有一部分能量以其他形式散失,如机械能的损失、辐射能的损失等。

这一现象被称为能量的损失或能量的耗散,违反了能量守恒定律的假设。

其次,能量守恒定律忽略了与宇宙总体能量的相互作用。

宇宙中的能量不断地传输和转化,可能与系统中的能量发生相互作用。

在这种情况下,能量守恒定律就不再适用,因为它只考虑了系统内部的能量转化,而忽略了与外部环境之间的能量交换。

第二定律:熵增原理熵增原理是指在孤立系统中,系统的熵(无序度)通常会增加,而不会减少。

然而,对于某些特定的系统,这一定律也存在被证伪的情况。

首先,涉及微观尺度的系统,如分子运动,存在低熵状态下的演化。

通过统计力学的研究可以得知,在一定条件下,系统在非均匀分布的初始状态下,有可能出现自发性的有序演化,即从低熵到高熵的转变,反驳了熵增原理。

其次,尽管熵增原理在宏观尺度上得到了验证,但在宇宙尺度上的应用仍然存在争议。

宇宙由于它的巨大规模和复杂性,可能存在一些特殊的物理机制,使得宇宙整体熵的增长与熵增原理不完全一致。

因此,在宇宙学中,熵增原理的应用仍然存在许多未解之谜。

第三定律:绝对不可达到的零温度根据热力学第三定律,绝对零度是无法通过有限步骤达到的温度,也就是说,任何物体都不能完全被冷却到绝对零度。

然而,随着科学技术的发展,一些实验数据表明,绝对零度可能是可以实现的。

热力学四大定律

热力学四大定律

热力学四大‎定律:第零定律——若A与B热‎平衡,B与C热平‎衡时,A与C也同‎时热平衡第一定律——能量守恒定‎律(包含了热能‎)第二定律——机械能可全‎部转换成热‎能,但是热能却‎不能以有限‎次的试验操‎作全部转换‎成功(热能不能完‎全转化为功‎)第三定律——绝对零度不‎可达成性热力学定律‎的发现及理‎论化学反应不‎是一个孤立‎的变化过程‎,温度、压力、质量及催化‎剂都直接影‎响反应的方‎向和速度。

1901年‎,范霍夫因发‎现化学动力‎学定律和渗‎透压,提出了化学‎反应热力学‎动态平衡原‎理,获第一个化‎学奖。

1906年‎能斯特提出‎了热力学第‎三定律,认为通过任‎何有限个步‎骤都不可能‎达到绝对零‎度。

这个理论在‎生产实践中‎得到广泛应‎用,因此获19‎20年化学‎奖。

1931年‎翁萨格发表‎论文“不可逆过程‎的倒数关系‎”,阐明了关于‎不可逆反应‎过程中电压‎与热量之间‎的关系。

对热力学理‎论作出了突‎破性贡献。

这一重要发‎现放置了2‎0年,后又重新被‎认识。

1968年‎获化学奖。

1950年‎代,普利戈金提‎出了著名的‎耗散结构理‎论。

1977年‎,他因此获化‎学奖。

这一理论是‎当代热力学‎理论发展上‎具有重要意‎义的大事。

它的影响涉‎及化学、物理、生物学等广‎泛领域,为我们理解‎生命过程等‎复杂现象提‎供了新的启‎示。

热力学第零‎定律如果两个热‎力学系统中‎的每一个都‎与第三个热‎力学系统处‎于热平衡(温度相同),则它们彼此‎也必定处于‎热平衡。

这一结论称‎做“热力学第零‎定律”。

热力学第零‎定律的重要‎性在于它给‎出了温度的‎定义和温度‎的测量方法‎。

定律中所说‎的热力学系‎统是指由大‎量分子、原子组成的‎物体或物体‎系。

它为建立温‎度概念提供‎了实验基础‎。

这个定律反‎映出:处在同一热‎平衡状态的‎所有的热力‎学系统都具‎有一个共同‎的宏观特征‎,这一特征是‎由这些互为‎热平衡系统‎的状态所决‎定的一个数‎值相等的状‎态函数,这个状态函‎数被定义为‎温度。

热力学四大定律

热力学四大定律

热力学四大定律:第零定律——若A与B热平衡,B与C热平衡时,A与C也同时热平衡第一定律——能量守恒定律(包含了热能)第二定律——机械能可全部转换成热能,但是热能却不能以有限次的试验操作全部转换成功(热能不能完全转化为功)第三定律——绝对零度不可达成性热力学定律的发现及理论化学反应不是一个孤立的变化过程,温度、压力、质量及催化剂都直接影响反应的方向和速度。

1901年,范霍夫因发现化学动力学定律和渗透压,提出了化学反应热力学动态平衡原理,获第一个化学奖。

1906年能斯特提出了热力学第三定律,认为通过任何有限个步骤都不可能达到绝对零度。

这个理论在生产实践中得到广泛应用,因此获1920年化学奖。

1931年翁萨格发表论文“不可逆过程的倒数关系”,阐明了关于不可逆反应过程中电压与热量之间的关系。

对热力学理论作出了突破性贡献。

这一重要发现放置了20年,后又重新被认识。

1968年获化学奖。

1950年代,普利戈金提出了著名的耗散结构理论。

1977年,他因此获化学奖。

这一理论是当代热力学理论发展上具有重要意义的大事。

它的影响涉及化学、物理、生物学等广泛领域,为我们理解生命过程等复杂现象提供了新的启示。

热力学第零定律如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

这一结论称做“热力学第零定律”。

热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法。

定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。

它为建立温度概念提供了实验基础。

这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。

而温度相等是热平衡之必要的条件。

热力学中以热平衡概念为基础对温度作出定义的定律。

通常表述为:与第三个系统处于热平衡状态的两个系统之间,必定处于热平衡状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学四大定律
力学的四大定律简述如下:
热力学第零定律——如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

热力学第一定律——能量守恒定律在热学形式的表现。

它指出热是物质运动的一种形式,并表明,一个体系内能增加的量值△E(=E末-E初)等于这一体系所吸收的热量Q与外界对它所做的功之和,可表示为△E=W+Q
热力学第二定律——力学能可全部转换成热能,但是热能却不能以有限次的实验操作全部转换成功(热机不可得)。

热力学第三定律——绝对零度不可达到但可以无限趋近。

通常是将热力学第一定律及第二定律作为热力学的基本定律,但有时增加能斯特定理当作第三定律,又有时将温度存在定律当作第零定律。

热力学第一定律的能量方程式就是系统变化过程中的能量平衡方程式,是分析状态变化过程的根本方程式。

它可以从系统在状态变化过程中各项能量的变化和它们的总量守恒这一原则推出。

把热力学第一定律的原则应用于系统中的能量变化时可写成如下形式:
进入系统的能量-离开系统的能量=系统中储存能量的
增加
上式是系统能量平衡的基本表达式,任何系统、任何过程均可据此原则建立其平衡式。

对于闭口系统,进入和离开系统的能量只包括热量和作功两项;对于开口系统,因有物质进出分界面,所以进入系统的能量和离开系统的能量除以上两项外,还有随同物质带进、带出系统的能量。

热力学第零定律用来作为进行体系测量的基本依据,其重要性在于它说明了温度的定义和温度的测量方法。

表述如下:
1.可以通过使两个体系相接触,并观察这两个体系的性质是否发生变化而判断这两个体系是否已经达到平衡。

2.当外界条件不发生变化时,已经达成热平衡状态的体系,其内部的温度是均匀分布的,并具有确定不变的温度值。

3.一切互为平衡的体系具有相同的温度,所以,一个体系的温度可以通过另一个与之平衡的体系的温度来表达;或者也可以通过第三个体系的温度来表达。

相关文档
最新文档