热力学定律(一)

合集下载

热力学第一定律

热力学第一定律
W 绝 热 V V 1 2pd p 1 V V 1 1 [V V 1 2 () 1 1 ]1 1 [p 1 V 1 p 2 V 2 ]
例4.3 P.183
已知T1 =300 K, p2/p1 =10和p2 /p1 =100,则T=?
m x x=0(平衡位置)
例4.4 P.184
Q是系统所吸收的能量,W是外界对系统所
U2U1QW作的功
d U d Q d或 W d Q d U pd V
热力学第一定律12
一、定体热容与内能
定体比热容cv ,定压比热容cp
p
b
d
定体摩尔热容Cv,m, 定压摩尔热容 Cp,m
c
a
e
等体过程a—b, dV=0
T+dT
T
(ΔQ)v = ΔU
0 V
c V lT i0( m m Q T )V lT i0 (m T u)V ( T u)V
三、可逆与不可逆过程
系统从初态出发经历某一过程变到末态,若可以找到一个能使系统和外界都复原的过程(这时系统回到 初态,对外界也不产生任何影响),则原过程是可逆的。若总是找不到一个能使系统与外界同时复原的过程, 则原过程是不可逆的。
例如:气体向真空自由膨胀就是一个不可逆过 程。
判断条件
真空
•系统回到初态 •对外界也不产生任何影响
一、理想气体内能
热力学第一定律12 1、自由膨胀过程
C
A
B
焦耳实验 理想气体宏观特性:
U1 (T1 ,V 1) =U2 (T2 ,V2)=常量
证明:理想气体内能仅是状态的函数,与体积 无关,称为焦耳定律
满足pV=νRT关系;满足道尔顿分压定律; 满足阿伏加德罗定律;满足焦耳定律U=U(T)。

热力学第一定律

热力学第一定律

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。

(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。

如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。

热 Q :体系吸热为正,放热为负。

热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。

热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。

第二章热力学第一定律1

第二章热力学第一定律1

超临界流体: (1)定义: 温度在临界温度以上,压力 接近或超过临界压力的流体。 (2)特点:密度大,分子间力强,溶解 能力大,具有气体和液体的双重特性。 (3)应用:在萃取分离技术上有重要的 应用,超临界萃取分离工程是近几年发 展起来的技术。
10、热与功
能量交换的两种形式。 不是系统的性质,
不是状态函数。
V V dp 则体积的微分可写成:dV= dT T p p T
由状态1变到状态2的体积改变量为:
Δ=
dV V2 V1
V2 V1
状态函数沿闭合回路的积分为零:∮dV=0
状态性质的特点总结:
(1) 单值性。系统状态一定,各状态性质一定。
δ :ΔX = XⅠ - XⅠ = 0
△p=p2-p1 △V=V2-V1 △T=T2-T1 状态函数的增量=系统终态的函数值-系统始态的函数值
b.系统状态的微小变化所引起的状态函数的微小变化可以 用全微分表示,并且是可以积分的。 如封闭系统一定量某理想气体的体积是温度压力的函数 ,即V=f(T,p)

(2)功:热力学中除热之外系统与环境 之间一切其他方式传递的能量。 符号: W 单位:J 分类: a.体积功:由于体积变化而与环境交换的能 量,W b.非体积功:除体积功之外的其他功,如电 功、表面功, W '
正负号规定: 系统对环境作功 “-” 环境对系统作功 “+” 大小:取决于具体的变化过程,相同的 始、末态之间变化,途径不同交换的功 不同,是途径函数。 微小变化过程的功用δW 表示。
4、状态和状态函数
(1)状态: 系统的状态是系统所有性质(物理
性质、化学性质)的综合表现。
系统状态与性质之间存在单值对应关系。

1.1 热力学第一定律(热力学第一定律,焓,理想气体,可以过程与不可逆过程,热容,绝热过程)

1.1 热力学第一定律(热力学第一定律,焓,理想气体,可以过程与不可逆过程,热容,绝热过程)

二、第一定律数学表达式
• 当体系经历任一变化,从一始态到一末态, 当体系经历任一变化,从一始态到一末态 体系的总能量将发生变化, 体系的总能量将发生变化,对于一般化学 体系, 等能量不会变化, 体系,其T、V等能量不会变化,主要是 、 等能量不会变化 体系的内能发生变化, 体系的内能发生变化,故体系总能量的变 化等于体系内能的改变值: 化等于体系内能的改变值: •
常用的热量单位是卡(cal): : 常用的热量单位是卡
一克纯水从14.50C升至 升至15.50C所需的热量 一克纯水从 升至 所
热力学所采用的热功当量为: 热力学所采用的热功当量为 1cal = 4.184 J
第二节
焓 (enthalpy)
• 一. 等压过程和焓 • 若体系经历一等压过程,且不作有用功,由热力 若体系经历一等压过程,且不作有用功, 学第一定律: 学第一定律: • ∆U=Q+W=Q-∫p外dV = + = - • 等压过程: 等压过程: p外=p2=p1 • ∆U=Q-p1or2(V2-V1) = - • 对上式进行改写: • (U2-U1)=Q-(p2V2-p1V1) = - • (U2+p2V2)-(U1+p1V1)=Qp (1) - =
• • • • • • 简单体系的等容过程一般为变温过程,其热量为: 简单体系的等容过程一般为变温过程,其热量为: QV=∫CV dT 简单体系等容过程的内能改变值为: 简单体系等容过程的内能改变值为: ∆U=QV=∫CV dT = 当体系的热容为常量时) =CV ∆T (当体系的热容为常量时) 注意:等容过程的热效应等于体系内能的变化是有条件的, 注意:等容过程的热效应等于体系内能的变化是有条件的, 此条件是,在此过程中,体系不作有用功 不作有用功。 此条件是,在此过程中,体系不作有用功。

热力学第一定律

热力学第一定律
过程。
23
本章学习要求
• 掌握能量、热力系统储存能、热力学能、热量和功量 的概念,理解热量和功量是过程量而非状态参数。 • 理解热力学第一定律的实质能量守恒定律。 • 掌握稳定流动能量方程,能熟练运用稳定流动能量方 程对简单的工程问题进行能量交换的分析和计算。 • 掌握膨胀功、轴功、流动功和技术功的概念、计算及 它们之间的关系。 • 理解焓的定义式及其物理意义。 • 了解常用热工设备主要交换的能量及稳定流动能量方 程的简化形式。
2. 宏观位能: Ep ,单位为 J 或 kJ
Ep mgz
5
热力系总储存能:E ,单位为 J 或 kJ
E U Ek Ep
比储存能:e ,单位为 J/kg 或 kJ /kg
1 2 e u ek ep u cf gz 2
6
内动能-温度 热力学能 (内能U、u) 外储存能 内位能-比体积
∴流动功是一种特殊的功,其数值取决于
控制体进、出口界面上工质的热力状态。
14
根据热力学第一定律, 有 :
1 2 1 2 u1 cf 1 gz1 p1v1 q u2 cf 2 gz2 p2v2 ws 0 2 2
令 upv h,由于u、p、v都是状态参数,所以h也是 状态参数,称为比焓。
对一切热力系统和热力过程,有:
进入系统的能量-离开系统的能量 = 系统储存能量的变化
8
二、闭口热力系的能量方程
如图: Q=△U+W 对微元过程: Q QdUW 或 qduw 即: 热力系获得热量= 增加的热力学能+膨胀做功 对于可逆过程 : qdupdv 或
ΔU
W
qu pdv

热力学第一定律

热力学第一定律
稳定流动时必有
m1 m2 m
ECV 0
热流科学与工程系
稳定系统的能量分析: 进入系统的能量:
1 Q E1 p1V1 Q (U1 m1c12 m1 gz1 ) p1V1 2 离开系统的能量: 1 2 E2 p2V2 Wsh (U 2 m2c2 m2 gz2 ) p2V2 Wsh 2
燃气轮机装置如图所示。已知在截面1处 h1=286 kJ/kg的燃 料与空气的混合物以 20 m/s 的速度进入燃烧室,在定压下燃烧, 相当于从外界获得热量q=879 kJ/kg。燃烧后的燃气在喷管中绝 热膨胀到 3, h3=502kJ/kg.流速增加到 c3 。然后燃气推动叶轮 转动作功。若燃气推动叶轮时热力状态不变,只是流速降低。 离开燃气轮机的速度 c4 =150 m/s.试求: (1) 燃气在喷管出口的流速c3 ;
若过程可逆
q h vdp
1
2
q dh vdp Q dH Vdp
Q H Vdp
1
2
热流科学与工程系
3、一般开口系统的能量方程
在dτ间内 进入系统的能量:
Q dE1 p1dV1
离开系统的能量:
dE2 p2 dV2 Wsh
系统能量的增加: dEsy,CV 代入能量方程, 整理后得
对于一个循环
Q U pdV
1
2
q u pdv
1
2
Q dU W
由于 dU 0 所以
Qnet dQ dW Wnet qnet dq dq qnet
热流科学与工程系
2、开口系统的能量方程式
(1)、稳定流动系统的能量方程 稳定流动: 流动过程中开口系内部的状态参数(热力学参数和动 力学参数)不随时间变化的流动称为稳定流动。

热力学第一定律

热力学第一定律

•物体内所有分子的EK 和EP 总和 •物体的内能与温度和体积有关,还和物体所 含的分子数有关。
物体 内能
一、热力学第一定律
1.一个物体,它既没有吸收热量也没有放出热量, 那么:
①如果外界做的功为W,则它的内能如何变化? 变化了多少?
②如果物体对外界做的功为W,则它的内能如何 变化?变化了多少?
(1)该气体在状态B,C时的温度分别是多少? (2)该气体从状态A到状态C的过程中内能的变化量是多 少? (3)该气体从状态A到状态C的过程中是吸热还是放热? 传递的热量是多少?
示。已知该气体在状态A时的温度为27℃,求:
解析:(1)对于理想气体 pA pB A→B T =T TB=100K A B VB VC B→C T = T TC=300K B C (2)A→C 由温度相等得:ΔU=0 (3)A→C的过程中是吸热 吸热的热量 Q=-W=pΔV=200J
10.3《热力学第一定律 能量守恒定律》
分子 动能
•分子因热运动而具有的能量 •同温度下各个分子的分子动能EK 不同
•分子动能的平均值仅和温度有关
分子 势能
•分子间因有相互作用力而具有的、由它 们相对位置决定的能量 • r<r0时,r↓→EP↑;r>r0时,r↑→EP↑; r=r0时,EP 最低 •EP 随物态的变化而变化
A.外界对气体做功,气体的内能一定增大
B.气体从外界只收热量,气体的内能一定增大
C.气体的温度越低,气体分子无规则运动的平均
动能越大
D.气体的温度越高,气体分子无规则运动的平均 动能越大
2 .一定质量的理想气体,从某一状态开始,经 过一系列变化后又回一开始的状态,用W1表示外界 对气体做的功,W2表示气体对外界做的功,Q1表示 气体吸收的热量,Q2表示气体放出的热量,则在整 个过程中一定有 ( A ) A.Q1—Q2=W2—W1 C.W1=W2 B.Q1=Q2 D.Q1>Q2

热力学第一定律

热力学第一定律

1.热力学第一定律热力学第一定律的主要内容,就是能量守恒原理。

能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。

而不同形式的能量在相互转化时永远是数量相当的。

这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。

一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。

总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。

所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。

设计方案之多,但是成千上万份的设计中,没有一个能实现的。

人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。

第一类永动机是不可能制成的,这就是能量守恒原理。

到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。

想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。

1cal = 4.1840J热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。

至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。

把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。

2.热力学第二定律能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。

它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。

也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。

人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档