统计学知识点(完整)

合集下载

(完整word)统计学原理知识点及公式,推荐文档

(完整word)统计学原理知识点及公式,推荐文档

统计学原理知识点及公式第一章统计总论•1.统计一词的三种含义•2.统计学的研究对象及特点•3.统计学的研究方法•4.统计学的几个基本概念:总体与总体单位、标志与标志表现、变异与变量、统计指标的概念、特点及分类。

•5.国家统计兼有的职能第二章统计调查•1.统计调查的概念和基本要求•2.统计调查的种类•3.统计调查方案的构成内容•4.统计调查方法:普查、抽样调查、重点调查、典型调查•5.调查误差的种类第三章统计整理•1.统计整理的概念和方法•2.统计分组的概念、种类•3.统计分组的关键•4.统计分组的方法:品质分组方法、变量分组的方法•5.分配数列的概念、构成及编制方法变量数列的编制基本步骤为:第一步:将原始资料按数值大小依次排列。

第二步:确定变量的类型和分组方法(单项式分组或组距分组)。

第三步:确定组数和组距。

当组数确定后,组距可计算得到:组距= 全距÷组数全距= 最大变量值-最小变量值。

第四步:确定组限。

(第一组的下限要小于或等于最小变量值,最后一组的上限要大于最大变量值。

)第五步:汇总出各组的单位数(注意:不同方法确定的组限在汇总单位数时的区别),计算频率,并编制统计表。

间断式确定组限:汇总各组单位数时,按照“上下限均包括在本组内”的原则汇总。

重叠式确定组限:汇总各组单位数时,按照“上组限不在内”的原则汇总。

因为有了“上组限不在内”的原则,实际工作中,对于离散型变量也经常采用重叠式确定组限的方法。

•6.统计表的结构和种类第四章综合指标•1.总量指标的概念、种类和计量单位•2.相对指标的概念、指标数值的表现形式、相对指标的种类。

相对指标包括:结构相对指标、比例相对指标比较相对指标、强度相对指标动态相对指标、计划完成程度相对指标●3.平均指标的概念、作用和种类。

算术平均数、调和平均数、众数、中位数●4.变异指标的概念、作用和种类。

●全距、平均差、标准差、变异系数第五章 抽样估计•1.抽样推断的概念、特点、和内容。

统计学知识点

统计学知识点

统计学知识点(总14页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除一、总论一、概念题1.统计总体的同质性是指总体各单位具有某一共同的品质标志或数量标志;2.统计指标、可变的数量标志都是变量,变量可以是绝对数、相对数和平均数。

4.不是所有总体单位与总体之间都存在相互转换关系。

5.指标是说明总体数量特征的概念和数值,标志是说明总体单位的属性和特征的名称。

6.统计指标是由总体各单位的数量标志值和品质标志表现对应的单位数汇总而成的。

7.年份、产品质量、信用等级、宾馆星级以及是非标志等是品质标志。

8.统计中的相加性是指几个数相加后具有实际意义。

二、思考题1.统计学的研究对象是什么统计学的研究对象的特点有哪些答:统计学的研究对象是社会经济现象总体的数量特征和数量关系,以及通过这些数量方面反映出来的客观现象发展变化的规律性。

统计学研究对象的特点:数量性、总体性、变异性。

2.统计学的学科性质及特点是什么统计学的研究方法有哪些答:学科性质:统计学是一门方法论科学,特点:“定性分析—定量分析—定性分析”。

研究方法:大量观察法、统计分组法、综合指标法、统计模型法、归纳推断法。

3.什么是数量指标和质量指标?举例说明。

答:数量指标是反映社会经济现象总规模水平或工作总量的统计指标,用绝对数表示。

如人。

口总数、国民生产总值。

质量指标是反映社会经济现象相对水平或工作质量的统计指标,用相对数或平均数表示。

如平均工资、人口密度等。

4.统计指标的概念和构成要素是什么?举例说明。

答:统计指标是反映总体现象数量特征概念和数值。

构成要素有:(1)时间限定;(2)空间范围;(3)指标名称;(4)指标数值;(5)计量单位;(6)计算方法。

如2009年6月全国粗钢产量4942. 5万吨。

5.什么是简单现象总体什么是复杂现象总体答:将几个小总体组成一个大总体,这时小总体变成了大总体的总体单位。

统计学知识点全归纳__全面准确

统计学知识点全归纳__全面准确

统计学知识点全归纳__全面准确统计学是一门研究和应用统计原理和方法的学科。

统计学的目的是通过收集、整理、分析和解释数据来描述和推断人类活动中的规律性和不确定性。

下面将全面准确地归纳统计学的基本知识点。

1.数据收集和整理-数据的收集方法:可以通过抽样或完全普查进行数据收集。

抽样是从总体中选择一部分样本进行调查或实验,以此来推断总体的特征。

2.描述统计-数据的概括性度量:包括测量中心趋势的平均数(如算术平均值、中位数和众数)、测量离散程度的方差和标准差、测量数据分散程度的四分位数等。

-数据的可视化表示:可以使用直方图、箱线图、散点图、饼图等图表来展示数据的分布和关系。

3.概率与随机变量-概率的概念:概率是描述事件发生可能性的数值,范围从0到1、事件的概率可以通过频率或基于概率模型推断得到。

-随机变量:随机变量是随机试验结果的数值表示。

可以分为离散随机变量和连续随机变量。

4.概率分布-离散分布:包括二项分布、泊松分布等。

二项分布描述了一次试验中两个可能结果的概率分布,泊松分布描述了随机事件在固定时间或空间区域内发生的次数的概率分布。

-连续分布:包括正态分布、指数分布等。

正态分布是最常见的连续概率分布,它以钟形曲线显示数据的分布情况。

-概率密度函数和累积分布函数:概率密度函数描述了随机变量落在一些区间内的概率密度,累积分布函数描述了随机变量小于或等于一些值的概率。

5.抽样分布和统计推断-抽样分布:根据中心极限定理,当样本容量足够大时,样本均值的抽样分布会近似服从正态分布。

-参数估计:通过样本统计量(如样本均值、样本方差)来推断总体参数的数值。

-假设检验:用来检验一个关于总体参数的假设是否成立。

根据样本数据和给定的显著性水平,对假设进行接受或拒绝的判断。

6.相关分析和回归分析-相关分析:用来研究两个变量之间的关系。

可以通过计算相关系数(如皮尔逊相关系数)来衡量两个变量之间的线性相关程度。

-回归分析:用来研究一个或多个自变量与因变量之间的关系。

统计学的知识点

统计学的知识点

统计学的知识点统计学是一门研究数据收集、整理、分析和解释的科学。

它在各个领域都有着广泛的应用,从社会科学到自然科学,从商业决策到医学研究,都离不开统计学的支持。

接下来,让我们一起深入了解一些重要的统计学知识点。

一、数据的类型数据可以分为定性数据和定量数据两大类。

定性数据是描述事物性质或类别的数据,例如性别(男、女)、职业(教师、医生、工程师等)。

定量数据则是可以用数字来度量的数据,又进一步分为离散数据和连续数据。

离散数据只能取有限个或可数个值,比如班级里的学生人数;连续数据可以在某个区间内取任意值,例如身高、体重等。

二、数据收集方法常见的数据收集方法包括普查和抽样调查。

普查是对研究对象的全体进行调查,能得到全面、准确的信息,但往往成本高、耗时费力。

抽样调查则是从总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。

抽样方法有简单随机抽样、分层抽样、系统抽样等。

简单随机抽样保证了每个个体被抽到的概率相等;分层抽样将总体按某些特征分成若干层,然后在各层中独立抽样;系统抽样则是按照一定的规律抽取样本。

三、数据的整理与展示收集到数据后,需要对其进行整理和展示,以便更直观地理解数据的分布和特征。

常用的图表有柱状图、折线图、饼图、直方图等。

柱状图用于比较不同类别之间的数据量;折线图适合展示数据随时间或其他顺序变量的变化趋势;饼图用于展示各部分在总体中所占的比例;直方图则能展示数据的分布情况。

四、集中趋势的度量描述数据集中趋势的统计量主要有平均数、中位数和众数。

平均数是所有数据的总和除以数据的个数,它容易受到极端值的影响。

中位数是将数据从小到大排序后位于中间位置的数值,如果数据个数为偶数,则中位数是中间两个数的平均值。

众数是数据中出现次数最多的数值。

五、离散程度的度量离散程度反映了数据的分散程度。

常见的度量指标有极差、方差和标准差。

极差是最大值与最小值之间的差值,它只考虑了极端值。

方差是每个数据与平均数之差的平方的平均值,标准差则是方差的平方根。

统计学知识点

统计学知识点

第一章思考题1.1统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2描述统计:它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计:它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据:按所采用的计量尺度不同分;〔定性数据〕分类数据:只能归于*一类别的非数字型数据,它是对事物进展分类的结果,数据表现为类别,用文字来表述;〔定性数据〕顺序数据:只能归于*一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

〔定量数据〕数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在一样或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5对一千灯泡进展寿命测试,则这千个灯泡就是总体,从中抽取一百个进展检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象*种特征的概念,比方说灯泡的寿命。

1.6变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经历变量和理论变量。

1.7离散型变量,只能取有限个值,取值以整数位断开,比方"企业数〞连续型变量,取之连续不断,不能一一列举,比方"温度〞。

1.8统计应用实例:人口普查,商场的名意调查等。

1.9统计应用的领域:经济分析和政府分析还有物理,生物等等各个领域。

统计学知识点

统计学知识点

统计学知识点关键信息项1、统计学的定义和范围定义:____________________________范围:____________________________2、数据收集方法普查:____________________________抽样调查:____________________________观察法:____________________________实验法:____________________________3、数据整理与描述分类数据的整理与图示:____________________________顺序数据的整理与图示:____________________________数值型数据的整理与图示:____________________________ 4、集中趋势的度量均值:____________________________中位数:____________________________众数:____________________________5、离散程度的度量方差:____________________________标准差:____________________________极差:____________________________6、概率基础事件的概率:____________________________条件概率:____________________________概率的加法法则:____________________________概率的乘法法则:____________________________7、随机变量及其分布离散型随机变量:____________________________连续型随机变量:____________________________常见分布(如正态分布、二项分布等):____________________________8、抽样分布样本均值的分布:____________________________样本比例的分布:____________________________样本方差的分布:____________________________9、参数估计点估计:____________________________区间估计:____________________________10、假设检验原假设与备择假设:____________________________检验统计量:____________________________拒绝域与接受域:____________________________两类错误:____________________________11 统计学的定义和范围统计学是一门研究数据收集、整理、分析、解释和表达的科学方法。

统计的知识点总结

统计的知识点总结

统计的知识点总结1. 描述统计描述统计是通过数据的收集、整理和呈现,来对数据的特征进行描述和解释的方法。

描述统计包括了测度中心趋势的方法(如均值、中位数、众数)、测度离散程度的方法(如标准差、方差、极差)以及数据的呈现方法(如表格、图表、频率分布)。

2. 推论统计推论统计是通过对样本数据的分析和推断,来对总体特征进行推测和预测的方法。

推论统计包括了参数估计和假设检验两个主要方法。

在参数估计中,我们通过样本数据来估计总体的参数值;在假设检验中,我们通过样本数据来对总体的某个假设进行检验。

推论统计方法在科学研究和决策制定中具有重要的应用价值。

3. 概率统计概率统计是研究随机现象规律性的科学,它包括了概率的概念、概率分布、随机变量的概念和性质、大数定律和中心极限定理等。

概率统计的基本概念对于理解统计学的理论和方法具有重要的意义。

4. 回归分析回归分析是一种对两个或多个变量之间关系进行建模和分析的方法。

它包括了简单线性回归、多元线性回归、非线性回归等。

回归分析的方法对于预测和决策具有重要的应用价值。

5. 方差分析方差分析是一种用于比较两个或两个以上样本均值之间差异的方法。

它包括了单因素方差分析、双因素方差分析、多因素方差分析等。

方差分析的方法在生物、医学、社会科学等领域都具有重要的应用价值。

6. 生存分析生存分析是一种对时间至事件发生之间关系进行建模和分析的方法。

它包括了生存函数、风险集与危险比、生存曲线、生存比较等。

生存分析的方法在医学、流行病学、生物统计学等领域都具有重要的应用价值。

以上是统计学的一些基本知识点总结。

统计学作为一门科学,它的研究对象是数据,通过数据的收集、整理、分析和解释,来探索数据之间的关系和规律,从而推断和验证问题的解答。

统计学的方法和技术在各个领域都有着广泛的应用价值,它不仅可以帮助我们理解世界,还可以指导我们进行决策和预测。

统计学的知识点非常丰富,每一个知识点都有着自己的理论和方法,对于我们学习和应用统计学都具有着重要的意义。

统计学各章节期末复习知识点

统计学各章节期末复习知识点

统计学各章节期末复习知识点统计学是一门研究数据收集、分析和解释的学科。

作为一门广泛应用于各个领域的学科,统计学的知识点非常丰富。

以下是统计学各章节的期末复习知识点汇总:1.数据收集与描述-数据类型:定量数据和定性数据-数据收集方式:问卷调查、观察、实验-描述统计:中心趋势(均值、中位数、众数)、离散程度(范围、方差、标准差)、数据分布(直方图、条形图、饼图)2.概率论基础-随机试验与样本空间-事件与事件概率-古典概型、几何概型和统计概型-条件概率与独立性-伯努利试验与二项分布3.随机变量及其分布-随机变量与分布函数-离散型随机变量与其分布律-连续型随机变量与其概率密度函数-均匀分布、正态分布、指数分布等常见分布4.多个随机变量的分布-边缘分布与条件分布-两个离散型随机变量的联合分布律-两个连续型随机变量的联合概率密度函数-相互独立的随机变量的分布5.随机变量的数字特征-数学期望与其性质-方差与标准差-协方差与相关系数-矩、协方差矩阵与相关系数矩阵6.大数定律与中心极限定理-辛钦大数定律-中心极限定理-切比雪夫不等式与伯努利不等式7.统计推断基础-参数估计:点估计、区间估计-置信区间与置信水平-假设检验:原假设与备择假设、显著性水平、拒绝域-类型Ⅰ错误和类型Ⅱ错误-样本容量与统计检验的效应大小8.单样本与双样本推断-单个总体均值的推断:正态总体与非正态总体-单个总体比例的推断-两个总体均值的推断:独立样本与配对样本-两个总体比例的推断9.方差分析与回归分析-单因素方差分析-两因素方差分析-简单线性回归分析:最小二乘法-多元线性回归分析:拟合优度、剩余平方和、变量选择10.非参数统计方法-指标:秩和检验、秩和相关检验、符号检验- 分布:符号检验、秩和检验、秩和相关检验、Kolmogorov-Smirnov检验这些是统计学各个章节的期末复习知识点的一个概述。

每个章节都拥有更加详细和复杂的内容,需要学生在复习中深入理解并进行练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本统计方法第一章 概论1. 总体(Population ):根据研究目的确定的同质对象的全体(集合);样本(Sample ):从总体中随机抽取的部分具有代表性的研究对象。

2. 参数(Parameter ):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic ):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。

3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。

第二章 计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR =P 75-P 25)、标准差(或方差)、变异系数(CV )3. 正态分布特征:①X 轴上方关于X =μ对称的钟形曲线;②X =μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。

4. 医学参考值范围的制定方法:正态近似法:/2X u S α±;百分位数法:P 2.5-P 97.5。

第三章 总体均数估计和假设检验1. 抽样误差(Sampling Error ):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。

抽样误差不可避免,产生的根本原因是生物个体的变异性。

2. 均数的标准误(Standard error of Mean, SEM ):样本均数的标准差,计算公式:/X σσ=3. 降低抽样误差的途径有:①通过增加样本含量n ;②通过设计减少S 。

4. t 分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度ν,ν越小,t 值越分散,t 分布的峰部越矮而尾部翘得越高;③当ν逼近∞,X S 逼近X σ, t 分布逼近u 分布,故标准正态分布是t 分布的特例。

5. 置信区间(Confidence Interval , CI ):按预先给定的概率(1-α)确定的包含总体参数的一个范围,计算公式:/2,X X t S αν±或/2,X X u S αν±。

95%CI 含义:从固定样本含量的已知总体中进行重复抽样试验,根据每个样本可得到一个置信区间,则平均有95%的置信区间包含了总体参数。

6. 假设检验的基本原理:小概率反证法的思想。

①反证法:从问题的对立面(H 0)出发间接判断要解决的问题(H 1)是否成立。

②小概率事件:在H 0成立的条件下计算检验统计量,根据概率分布确定检验水准α下P 值大小,判断是否为小概率事件(通常P ≤α视为小概率事件,α通常取0.05),是则拒绝H 0,接受H 1;否则尚不能拒绝H 0。

7. 假设检验一般步骤:①建立假设(反证法,H 0和H 1),确定检验水准(α);②计算统计量:u , t ,F ;③确定概率值P ,做出推断结论。

8. t 检验需满足的条件:比较的两个样本相互独立、均服从正态分布。

9. P 的含义:是指从H 0规定的总体随机抽样,抽得等于及大于(或/和等于及小于)现有样本获得的检验统计量(如t 、u 等)值的概率。

10. Ⅰ型错误(Type Ⅰ error ):拒绝了实际上成立的H 0,这类“弃真”的错误称为Ⅰ型错误,Ⅰ型错误的大小为检验水准α。

Ⅱ型错误(Type Ⅱ error ):接受了实际上不成立的H 0,这类“存伪”的错误称为Ⅱ型错误,Ⅱ型错误的大小用β表示,1-β表示检验效能。

α越小,β越大,增大样本量可以同时降低α和β。

11. 置信区间和假设检验的区别和联系:①可以通过判断置信区间是否包含零假设,判断单样本均数是否来自已知的总体;②置信区间不但能回答差别有无统计学意义,还可提示差别有无实际意义。

③假设检验可提供置信区间不能提供的信息,如P值和检验效能等。

第四章方差分析1. 方差分析的基本思想:根据研究目的和设计类型,把所有测量值的总变异按照处理因素和水平等分解成两部分(组内变异和组间变异)或更多部分,同时把对自由度相应进行分解,再进行比较,评价由处理因素引起的变异是否具有统计学意义。

2. 方差分析的应用条件:各样本是相互独立的随机样本,均来自正态分布的总体,各样本的总体方差相等(具有方差齐性)。

3. 方差分析表:变异来源SS νMS F P组间变异 a g-1 a/(g-1) MS组间/MS组内组内变异 b N-g b/(N-g)总变异a+b N-14. g=2时,随机区组设计的方差分析与配对设计资料t检验等价,t=。

5. 多个样本均数间的多重比较:①LSD-t检验,即最小显著差异t检验,适用于一对或几对在专业上有特殊意义的样本均数间的比较;②Dunnett-t检验:适用于g-1个实验组与一个对照组均数差别的多重比较;③SNK-q检验:适用于多个样本均数两两之间的全面比较。

第五章计数资料的统计描述1. 相对数的类型:强度相对数(率,如死亡率、发病率等);结构相对数(构成比);相对比(如性别比等)2. 应用相对数的注意事项:①结构相对数不能代替强度相对数;②计算相对数应有足够的数量;③正确计算合计率;④注意资料的可比性;⑤对比不同时期资料应注意客观条件是否相同;⑥样本率(或构成比)的抽样误差。

3. 标准化率(Standardization rate ):采用标准化法进行计算,消除数据内部构成的差异,使标化后的合计率具有可比性,这种经过标化后的合计率称为标准化率。

4. 标准化率的注意事项:①只适用于内部构成不同,影响总率的可比性的问题;②选择的标准不同,计算得到的标准化率也不同,多个标准化率比较时,应选同一标准;③标准化率已经不再反映当地的实际水平;④样本标准化率是样本值,存在抽样误差。

比较两样本标准化率,当样本量较小时,需做假设检验。

第六章 几种离散型变量的分布及应用1. 二项分布X ~B (n , π)的适用条件:①每次试验只发生两种对立的可能结果之一;②每次试验产生某结果的概率π固定不变;③重复试验是相互独立的。

2. 二项分布的性质:①阳性次数X 的总体均数(n μπ=)、标准差(σ=;②样本率p 的均数(p μπ=)、标准差(p S =,即率的标准误)。

③二项分布的正态近似条件:np 和n (1-p )均大于5。

3. 泊松分布X ~P (λ)的性质:①总体均数λ和总体方差σ2相等;②当n 很大,π很小,且np = λ为常数时,二项分布近似泊松分布;③λ≥20时,泊松分布近似正态分布;④泊松分布具备可加性。

第七章 χ2检验1. χ2检验的基本思想:根据χ2分布特征,通过比较实际频数与理论频数的差异,确定在H 0成立的条件下该差异由抽样误差造成是否为小概率事件,进而判断差异是否具有统计学意义。

χ2值反映了实际频数与理论频数的吻合程度。

2. R×C列联表中的各格子T≥1,并且1≤T<5的格子数不宜超过1/5格子总数,否则可能产生偏差。

处理方法有三种:①增加样本量,使理论频数增大;②根据专业知识,删除或合并行列;③采用Fisher确切概率法分析。

3. 有序分组资料表线性趋势检验:①双向无序的R×C列联表:多个样本率的比较采用R×C列联表的χ2检验;两个分类变量的关联性分析则采用R×C列联表的χ2检验和Pearson列联系数进行分析。

②单向有序的R×C列联表:行有序而列无序:R×C列联表的χ2检验;行无序而列有序,采用Wilcoxon秩和检验。

③双向有序属性相同的R×C列联表:配对四格表的扩展,采用一致性检验(Kappa检验)。

④双向有序属性不同的R×C列联表:样本率的比较采用Wilcoxon秩和检验;相关性分析采用Spearman相关分析;线性变化趋势分析采用有序分组资料的线性趋势检验或CMHχ2检验等。

第八章非参数检验1. 秩和检验的适用范围:①总体分布偏态的计量资料;②数据两端有不确定值;③等级资料;④各组离散程度相差悬殊,总体方差不齐的资料。

2. 非参数检验对总体分布的形状差别不敏感,只对总体分布位置差别敏感;非参数检验没有充分利用资料信息,较参数检验的检验效低。

故能用参数检验尽量采用参数检验,不满足参数检验条件才使用非参数检验。

3. 不同数据类型的统计分析路径:(1)样本均数与总体均数的比较:正态,样本均数与总体均数的t检验;非正态,Wilcoxon符号秩检验。

(2)两样本均数比较:①独立正态:两独立样本t检验;②独立非正态:两独立样本的Wilcoxon秩和检验;③配对设计差值正态,配对t检验;④配对设计差值非正态,Wilcoxon 符号秩检验。

(3)多样本均数比较:①独立正态(方差齐),方差分析;②独立非正态Kruskal-Wails H 检验;③非独立正态,重复测量资料的方差分析;④非独立非正态,Friedman M检验第九章双变量回归和相关1. 直线回归应满足的条件:自变量与因变量呈线性关系、观察值之间相互独立、因变量Y=+,a 随机正态、对任何X因变量Y的标准差相等。

直线回归方程的一般形式为:ˆY a bX为截距,b为回归系数,回归系数的估计采用最小二乘法原则(Least Squares Method,使残差平方和最小)进行估计。

2.决定系数(coefficient of determination):回归平方和与总平方和的比值,R2=SS回/SS 总。

R2取值0~1之间无单位,其数值大小反映回归贡献的相对程度,即总变异中回归模型能够解释的百分比。

3. 秩相关的应用适用范围:(1)不服从双变量正态分布而不宜作Pearson相关分析;(2)总体分布型未知;(3)等级资料的相关分析。

4. 相关与回归的区别与联系区别(1)区别:①资料:回归分析资料要求Y为正态随机变量,X为选定变量;相关分析资料X、Y服从双变量正态分布。

②应用:回归分析是由一个变量值推算另一个变量值(依存关系);相关分析只反映两个变量间的相互关系。

③ 回归系数b 与原度量单位有关,而相关系数r 无关。

b 的绝对值越大,回归直线越陡,即X 变化1个单位时Y 的平均变化越大;r 的绝对值越大,所有点越趋近于一条直线,两变量的关系越密切,相关度越高。

(2)联系:① r 与b 值可相互换算,YY XX l l b r =;② r 与b 正负号一致;③ r 与b 的假设检验等价:对于同一资料b r t t =,检验完全等价;④ 回归可解释相关。

相关系数的平方r 2(决定系数)是回归平方和与总的离均差平方和之比(SS 回/SS 总)。

5. 应用直线回归时的注意事项(1)作回归分析要有实际意义,不能把毫无关联的两种现象作回归分析,必须对两种现象间的内在联系有所认识。

相关文档
最新文档