刚性悬挂接触网概述

刚性悬挂接触网概述
刚性悬挂接触网概述

刚性悬挂接触网国内外应用情况

架空刚性悬挂接触网不是新事物,相反,它和电气化铁路发展的历史一样长远,刚性悬挂接触网最初就被应用于美国巴尔的摩市的第一条电气化铁路,尽管它的形式与现在不同。

在国外,刚性接触网已在地铁工程、大型车站、人员密集的场所、集装箱节点站、城市轻轨、干线铁路隧道以及一些特殊工点中得到了有效应用。

近年建成的瑞士Kerenzerzberg隧道刚性接触网设计速度为160km/h,初期试验速度达到了185 km/h;奥地利Sittenberg隧道的刚性接触网初期试验速度达到了200 km/h。2004年奥地利联邦铁路局在其境内干线铁路Wien-Linz线上,采用德国联邦铁路局试验列车成功地进行了速度为350km/h的试验,与此同时,在前面提到的奥地利Sittenberg隧道刚性接触网区段也成功地进行了速度为260km/h 的试验。拟建的长大隧道刚性接触网有:奥地利-意大利Brenner Base Tunnel (63km、单线隧道、计划2015年建成),法国-意大利Lyon-Turin Tunnel(53km、单线隧道、计划2020年建成),设计速度均大于200km/h。

城市轨道交通方面,随着城市规模的不断扩大,为了缓解交通压力,地铁采用高电压供电制已是一种必然趋势。因此,法国、瑞士、日本、韩国等国家自80年代开始,在城市交通领域中,不论是旧线改造,还是新线建设,低净空隧道,还是高净空隧道等各种线路条件大量使用刚性接触网,截至目前全世界已建成通车800多公里。

国内对刚性悬挂接触网的开发应用始于上世纪九十年代未期,当时仅限于地铁直流系统中采用。2002年首次在陇海线天兰段成功应用该悬挂方式,石门至怀化铁路石门山隧道为解决低净空问题亦采用了刚性接触网。此后,为保证接触网设备长期安全运营、减小运营维护的工作量、做到设备少维护免维修,2004年兰武线新建的乌鞘岭特长隧道(20.05公里双单线隧道)首次设计采用160km/h 刚性悬挂接触网。截止目前我国已有多条电气化铁路隧道中采用了刚性接触网,

除以上提到的项目以外,还有包头至西安铁路延安至延安北既有低净空隧道、石怀线扩能改造工程大木山隧道、京九线淮滨~向塘段扩能改造工程4座既有隧道、武九线电气化改造工程陈家冲既有上下行隧道,新建项目—天津地下直径线、北京地下直径线、广珠货运线江门隧道、新疆精伊霍铁路北天山隧道、青藏线西格段新建关角上下行隧道、南疆铁路中天山隧道(双单线)、成灌线地下段等均采用了刚性悬挂接触网。

国内城轨交通方面,至2011年底,全国已有多个城市(北京、上海、广州、天津、深圳、大连、长春、沈阳、南京、苏州、杭州、成都、重庆、武汉、西安)建成了总计超过1000km的城市轨道交通线,其中上海、广州、深圳、南京、重庆等的城轨系统都大量地采用了刚性悬挂接触网。目前在建轨道交通的城市还有宁波、南昌、郑州、哈尔滨、长沙、东莞等;另外还有十几个城市正在进行轨道交通前期工作,其牵引网也大部分拟采用刚性悬挂接触网。可以说刚性悬挂接触网在我国城市轨道交通领域占有重要的地位。

刚性悬挂接触网

架空刚性悬挂系统简介 “Π”型刚性悬挂接触网特点 1、结构简单,TRANBBS施工方便 “Π”型刚性悬挂汇流排当量截面积为1200 mm2,相当于柔性8根150 mm2 硬铜绞线。其下嵌入传统柔性悬挂接触导线后,即等于同于柔性悬挂承力索、接触导线和架空馈电线的作用。因而刚性悬挂的结构形式相对于传统的柔性悬挂接触网来讲更简单、更紧凑(如图1),方便施工。 2、安全可靠、易于维护 首先,刚性悬挂接触网处于无张力自然悬挂状态,它依靠铝合金汇流排的刚性来保持接触导线的位置恒定,不需要象柔性悬挂设置重力下锚张力装置,悬挂结构变得更加简单,节约了有限了隧道空间,且对土建结构的承力要求较柔性悬小得多,系统的安全性及稳定性均较柔性悬挂要好。 其次,由于刚性悬挂接触网不存在张力作用,完成消除了突发断线之忧。而且,所有刚性悬挂提高了运营安全可靠性,同时也增加了系统的可维护性,使维护变得更容易。 再次,由于刚性悬挂接触网的安全可靠性决定了其正式投入运行后,日常维护和事故抢修工作量比柔性接触系统要少得多,事故平均恢复时间较柔性悬挂短得多,能最大限度地保证正常的运营。 第四,刚性悬挂接触网系统正线采用绝缘锚段关节进行电分段,无需再单独采用分段绝缘器,从而减少投资,且最大限度地保证了正线接触网系统的相对连续性,提高接触网系统安全性、可靠性。 3、国产化高、节约投资 在广州地铁一号线刚性悬挂示范段的开通并投入运营,标志着由中铁电气化局集团有限公司与广州地铁总公司进行联合研制的国产化架空刚性悬挂接触网系统的试验成功,实现了汇流排及其附件的国产化、主要零部件的国产化、绝缘子国产化。至此,除刚性分段绝缘器外,其它设备都已实现国产化,可以大大降低建设成本。 4、形式特殊、要求较高 由于刚性悬挂采用硬质铝合金材质,施工过程中的一个小小的失误都可能造成难以恢复的永久性缺陷,例如不小心造成汇流排永久变形,有可能在锚段中间形成无法修正的缺陷,它不可能象柔性悬挂那样可以通过系统本身的匹配关系进行弥补。因此,在刚性悬挂施工过程中对系统关键点的控制的人员、TRANBBS技术、设备就显得犹为重要,它将决定整个项目工程的竣工质量。 TRANBBS设计对刚性悬挂系统性能要求很高,对施工安装的精度要求更高,这就要求施工单位做更多大量的、精确的、细致的调整工作。 5、灵活方便、性能优良 刚性接触网可根据需要,在特殊的地方设计为可移动的形式。如在地铁车辆段检修库、隧道段人防门、防淹门等地方,在需要检修或关闭人防门、防淹门时移去上部刚性悬挂,待检修完成或打开人防门、防淹门后再移回这部分刚性悬挂,恢复正常工作状态,这一特点的优越性是显而易见的。 根据采用刚性悬挂接触网系统的国家以及我国广州地铁二号线的刚性接触网系统的运营经验得知,刚性悬挂接触网在柔性悬挂相对薄弱的环节上具有绝对

架空刚性悬挂系统简介

架空刚性悬挂系统简介 一、架空刚性悬挂系统简介 刚性悬挂接触网系统的应用从发明至今已有100多年的历史了。1895年,在美国巴尔的摩第一条电气化铁路中首次应用了架空刚性悬挂接触网系统。1961年,日本营团地 铁日比谷线采用了“T”型刚性悬 挂接触网系统作为接触网悬挂形 式。1983年,在法国巴黎RATPA线 采用了作为架空刚性悬挂主要型 式之一的“Π”型架空刚性悬挂系 统被成功应用。 刚性悬挂接触网系统按受流 器(或称受电弓、集电靴)的取流 部位来分,可分为两种:1、通过集电靴从轨道侧面或底部取流,如接触轨(第三轨)、“T”型汇流排刚性接触网系统;2、通过受电弓从轨道顶部取流,亦即架空刚性接触网形式,如“Π”型汇流排刚性悬挂接触网系统。其中,“Π”型刚性悬挂接触网系统以其结构简单、安装维护方便、安全可靠、国产化率高的特点,在我国城轨行业内取得了普遍好评。 自从1997年至2000年4月间,由中铁电气化局集团有限公司上海地铁工程公司总承,在广州地铁一号线坑口站——花地湾站进行了约135米的“Π”型铝合金汇流排刚性悬挂接触网试验段后,这种安装形式被正式引入我国,并在广州地铁二号线隧道段全面采用。自2 003年06月28日广州地铁二号线正式对外运营以来,整个系统的良好性能表现,使刚性悬挂这一架空接触网安装形式在我国的轨道交通领域的广泛推广使用打下了基础。目前,国内现有及在建的城市轨道交通线路中,采用“Π”型汇流排刚性接触网系统的就有广州地铁地二号线(已建成开通)、广州地铁三号线(在建)、南京地铁南北线工程(在建)、上海轨道交通9号线(在建)、上海轨道交通M8线(拟建)等。 二、“Π”型刚性悬挂接触网特点 1、结构简单,施工方便 “Π”型刚性悬挂汇流排当量截面积为1200 mm2,相当于柔性8根150 mm2 硬铜绞线。其下嵌入传统柔性悬挂接触导线后,即等于同于柔性悬挂承力索、接触导线和架空馈电线的作用。因而刚性悬挂的结构形式相对于传统的柔性悬挂接触网来讲更简单、更紧凑(如图1),方便施工。 2、安全可靠、易于维护 首先,刚性悬挂接触网处于无张力自然悬挂状态,它依靠铝合金汇流排的刚性来保持接触导线的位置恒定,不需要象柔性悬挂设置重力下锚张力装置,悬挂结构变得更加简单,节约了有限了隧道空间,且对土建结构的承力要求较柔性悬小得多,系统的安全性及稳定性均

刚性悬挂基本参数及振动特性研究

龙源期刊网 https://www.360docs.net/doc/814400471.html, 刚性悬挂基本参数及振动特性研究 作者:刘英杰 来源:《中国科技博览》2015年第20期 [摘要]随着城市轨道交通的发展,刚性接触悬挂的应用逐渐增多,但对刚性接触悬挂的研究在我国尚处于起步阶段,其理论体系还不完善,还有许多工作要做。 本论文介绍了刚性接触悬挂的基本特点,说明刚性接触网悬挂具有简单的结构和支撑,同样可以节省隧道的建设费用;提出了在确定刚性接触悬挂锚段长度及跨距长度时应考虑的因素,并对各种因素进行了较为详细的分析;比较了不同速度,不同吊点间距下接触网刚性悬挂的振动特性。 [关键词]接触网;刚性悬挂;振动特性 中图分类号:U225.2 文献标识码:A 文章编号:1009-914X(2015)20-0067-01 1 架空刚性接触网简介 1.1 刚性悬挂的基本组成 架空刚性悬挂由支持体、绝缘子、汇流排和与受电弓接触的接触面或接触线组成。不同的工程、不同的设计者所采用的支持体、绝缘子、汇流排和接触线不同。 典型断面主要有两种:日本的“T”型架空刚性悬挂(双线、单线);法国、瑞士等国家采用的“?”型架空刚性悬挂。 1.2 刚性悬挂的基本特点 架空刚性接触悬挂一般采用具有相应刚度的导电轨或具有相应刚度的汇流排与接触线组成。刚性接触悬挂由“?”型汇流排、接触线、绝缘子以及悬挂定位装置等组成,与柔性接触悬挂有较大差异和明显特点: 1.汇流排是刚度较大的断面成“?”型铝质导电体,通过定位悬挂装置,悬挂于轨道的上方。接触线被安放在汇流排的夹线槽中,接触线被汇流排自然夹紧,接触悬挂两端不设张力补偿装置,汇流排和接触线的轴向没有补偿张力。从而避免了钻弓、烧融、磨耗不均匀、高温软化、线材缺陷以及弓网故障等各种原因造成的断线事故。因此刚性悬挂的故障一般是点故障,范围很小。

地铁接触网导线磨耗分析

地铁接触网导线磨耗分 析 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

地铁接触网导线磨耗分析 【摘要】从地铁接触网的柔性接触网和刚性接触网两方面进行阐述,分析它们在实际运行中所常见的故障与问题,并通过不断的摸索与研究提出相应的解决措施。从而不仅有利于提升地铁接触网的运行效率,提高地铁交通的运行质量与运行能力,还能提高地铁运行的稳定性与安全性,促进我国交通事业的快速发展。 【关键词】刚性接触网导线磨耗分析建议 接触线在与电客车受电弓的相互作用时,表面产生腐蚀及磨损的现象即为接触线磨耗。导致接触线磨耗的原因主要包括:接触线与滑板间的电气腐蚀、受电弓碳滑板的机械摩擦、化学腐蚀、及接触线氧化等。接触线的载流量、接触网的机械安全及接触网使用寿命都会受到接触线磨耗的影响。 1 接触线局部磨耗原因分析 1.1 电客车的速度对接触线磨耗的影响 在电客车出站加速区段,车辆晃动较大,加剧了受电弓的振动,且受电弓取流增大,弓网关系处于波动状态,接触压力及冲击力都不稳定,当电客车的速度不断提高时,就可能导致接触线与受电弓之间产生瞬间分离,引起跳跃式的接触现象。这种异常的现象会引起很多问题,比如:(1)接触线与受电弓之间工作面不平整,致使接触线磨耗不均,增加受电弓碳滑板

的磨耗;(2)还会增大接触线与受电弓的离线率及机械磨耗,由于接触线与受电弓间接触不良会增加接触电阻,从而产生大量的热量,导致接触线局部温度升高,致使接触线局部软化,接触线和受电弓滑板的电气磨耗增大,加速此区段接触线的磨耗速率,最终使得接触线工作面产生不平滑的现象,甚至出现接触线烧损的情况。 1.2 接触线异常磨耗的原因 造成线岔非支处接触线及刚性悬挂锚段关节出现异常磨耗的主要原因有以下两点:首先,轨道线路的曲线、线岔以及车体抖动等会对弓网关系造成影响,特别是缓坡区段,对非支翘头处的异常磨耗现象也较为突出;其次,通常非支的抬高量要求在2~4mm范围内,抬高量过小就会导致接触线异常磨耗。 2 建议措施 2.1 优化刚性悬挂接触网的设计 在刚性接触网设计过程中,对全线接触线拉出值分布的设计,呈正弦波布置为最佳;刚性接触网的悬挂跨距不宜大于 10m,在6~8m范围为最宜;在变坡区域,跨中弛度不得大于跨距值的1‰,从而减小汇流排的形变,降低对受电弓的影响。 2.2 特殊地段采用弹性部件 刚性接触网因其结构特点弹性较小,受电弓在运行中会产生上下震动,如若其震动得不到释放或者缓冲,弓网间的电气磨耗及机械磨耗就会加大,所以需根据具体路线及刚性悬挂安

刚性悬挂接触网施工流程

刚性悬挂接触网施工流程 王军虎 (杭州市地铁集团有限责任公司运营分公司,杭州,310000) 摘要介绍了刚性悬挂接触网的基本结构和在施工中的工程测量、汇流排安装、接触线镶入的基本方法和要求,以及工程中的注意事项。 关键词接触网悬挂,刚性悬挂,施工方法 Rigid suspension catenary construction process WANG Jun-Hu (Operations branch of the Hangzhou Metro Group Co., Ltd., Hangzhou,310000)Abstract This paper introduces the basic structure of the rigid suspension catenary and construction measure, bus installation, contact line inlaid into the basic method and requirements, and the matters needing attention in engineering. Key words catenary suspension, rigid suspension, construction method 城市轨道交通对改善现代城市交通困扰局面、调整和优化城市区域布局、促进国民紧急发展所发挥的作用,已是不容置疑的客观现实。对此,我国的大、中城市已普遍有所共识,也深刻体会到城市轨道交通是衡量城市综合实力的一个重要指标。观念的转变,带来了实际行动的飞跃,从而使我国城市轨道交通的建设发展,面临着一个前所未有的良好机遇。总所周知,城市轨道交通是我国城市有史以来最大的公益性交通基础运输,但是作为与受电弓接触的悬挂方式又有两种区分,分别为架空刚性接触网和柔性接触网。 架空刚性接触悬挂受电弓的安全性和适应性要明显好于柔性。刚性汇流排和接触线无轴向力,不存在断排和断线的可能,从而避免了柔性钻弓、烧融、不均匀磨耗、高温软化、线材缺陷以及受电弓故障造成的断线故障。刚性悬挂的锚段关节简单,锚段长度是柔性悬挂的1/7~1/6,固定金具窜动回转范围小,相应的提高了运行中的安全性和适应性。接触网刚性悬挂方式在国外地铁领域中的应用已较为成熟,在国内也有广泛应用。在国铁领域,焦柳铁路石怀段扩能工程、兰州—武威二线部分隧道内均在采用接触网刚性悬挂。在地铁领域上海轨道交通9号线、8号线、11号线、二号线东延伸;广州地铁二号线、三号线;南京地铁南北线工程;苏州地铁一号线都采用刚性悬挂接触网。

论地铁刚性接触网要点

1摘要 随着地铁牵引供电接触网悬挂形式的变迁,刚性悬挂技术在地铁中表现出了良好发展潜力。虽然其一次投资费用稍高,但安全性能高,污染少,维护材料与人工费用少,远期效益明显。在国外地铁界,架空刚性接触网已大量采用,效果很好。架空刚性接触网有很多的特点:整体结构简洁、锚段关节和线岔安装调试方便、网两端无需设置下锚张力补偿装置、没有断线之忧、施工安装和维护检修精度要求高等等,另外架空刚性接触网能很好地满足低净空隧道要求,适用于地下铁道。架空刚性接触网的运行维护检修缺少资料和经验,只能通过实践摸索和积累。笔者针对成都地铁刚性接触网的实际情况,并参考了大量国内外资料,对架空刚性接触网的组成、特点和检修进行了粗浅探讨。 关键词:地铁; 牵引供电; 刚性接触网

Abstract As the subway traction power supply catenary suspension form of change, rigid suspended technique in the performance of a good development potential. Although one investment cost is a little bit higher, but the safety performance is high, less pollution, maintain material and artificial costs less, long-term benefit. In the foreign subway world, overhead rigid catenary already used in great quantities, the effect is very good. The overhead rigid catenary has a lot of features: the whole structure is simple, anchor, period of the joints and line installation convenient, nets with both ends without Settings anchor tension compensation devices, and not worry about break, construction installation and repair and maintenance of the precision requirement high and so on, in addition the overhead rigid catenary can well meet the requirements of low headroom tunnel, applicable to the underground. The overhead rigid catenary of repair and maintenance of lack of material and operation experience, can only through the practice of learning and accumulation. According to the chengdu subway rigid catenary of practice, and a reference foreign material, on overhead rigid catenary of composition, characteristics and the overhaul this paper has made some simple. 【Key words】the subway; Traction power supply; Rigid catenary

浅析刚性悬挂接触网

毕业设计(论文)中文题目:浅析刚性悬挂接触网 专业:电气化铁道技术 班级:电气化3102班 姓名:王吉民 学号: 100130210 指导教师:陈红军 2013年 04 月 20 日

吉林铁道职业技术学院毕业论文 吉林铁道职业技术学院 毕业设计(论文)成绩评议

摘要 本文主要简述了刚性悬挂接触网的一些概况以及它在国内外的应用情况,还有刚性悬挂在实际应用中的技术标准,通过对刚性悬挂优缺点的了解,从而进一步的对刚性悬挂在正常运行中所出现的故障进行分析。 刚性悬挂接触网与传统柔性接触网性能比较,阐述了刚性悬挂接触网更适用于电气化铁路隧道内的理论分析及实际应用效果。接触网的刚性悬挂是一种适用于轨道交通在隧道中传输电能的新型接触网悬挂方式。刚性悬挂方式与柔性悬挂方式相比,其结构简单、安装方便、维护简便、节省空间,被称之为免维护接触网,它的存在降低建设成本和减少了未来运营维护的工作量。 关键词:刚性悬挂接触网刚性接触网磨耗刚性悬挂的应用维护检修

Abstract This paper mainly describes the rigid suspension catenaries and some of its application at home and abroad, there are rigid suspension technology standard in practical application, through to the rigid suspension of the advantages and disadvantages of understanding, thus further on rigid suspension failure that occurs in the normal operation of the analysis. Rigid suspension catenaries network performance with the traditional flexible contact, the rigid suspension catenaries is more suitable for electrified railway tunnel theory analysis and actual application effect. The rigid suspension catenaries is a suitable for rail traffic in the tunnel transmission model contact network can hang. Rigid suspension mode compared with the flexible suspension mode, has the advantages of simple structure, easy installation, maintenance is simple, save a space, called the maintenance-free contact network, it has lower construction costs and reducing the future operating and maintenance workload. Key Words: Rigid suspension catenaries Rigid catenaries wear Application of rigid suspension Maintenance and overhaul

地铁刚性接触网施工方案

地铁刚性接触网施工方案 编者:王政中 一、前言 城市轨道交通已成为全世界解决城市交通问题有效途径,对改善现代城市交通困扰局面、调整和优化城市区域布局、促进中国的大、中城市已普遍有所共识,也深刻体会到城市轨道交通是衡量城市综合实力的一个重要指标。近年来我国城市轨道交通的建设发展速度也非常快。众所周知,城市轨道交通是我国城市有史以来最大的公益性交通基础运输,但是作为与受电弓接触的悬挂方式又有两种区分,分别为架空刚性接触网和柔性接触网,本次主要介绍架空刚性接触网施工方法。 二、.刚性悬挂接触网的结构和特点 刚性悬挂接触网主要有铝合金汇流排、接触线、绝缘元件和悬挂装置组成,其中铝合金汇流排既作为固定接触线的嵌体,同时又作为导电截面的一部分。这种悬挂方式根据线路通过能力及电流量的大小,又有单接触线式和双接触线式两种。根据铝合金汇流排截面的不同又分为T 型与Π型两种。本次主要介绍Π型。Π型结构的刚性悬挂特点是:其一, 结构稳定,接触线是靠两侧夹持力固定的,因此运行稳定性;其二好便于安装和架设,在架设接触线时,使用专用滑动式镶线车,利用Π型结构的弹性力可使接触线嵌入虎口槽内。。我国目前刚性接触网中多用Π型铝合金汇流排的形式。单根接触线汇流排目前有两种类型: 一种为高80 mm 的PAC80 型, 另一种为高110 mm 的PAC110 型。其中PAC110 型的截面积为2 213 mm2 , 中间每节长12 m,下锚两端汇流排每节长7.5m。特殊地带(菱形道岔)可采用曲线汇流排,即带有弯度。目前在长沙、西安、广州、上海等大部分城市轨道采用的是PAC110 型汇流排,也有部分城市轨道采用第三轨供电技术。汇流排结构示意图

城市轨道交通铺轨前刚性悬挂接触网悬挂点测量技术研究

城市轨道交通铺轨前刚性悬挂接触网悬挂点测量技术研究 摘要:通过对刚性悬挂接触网的施工的分析,研究设计出专用的铺轨前悬挂点测量平台,并提出测量工艺及步骤来保证刚性悬挂接触网悬挂点的测量精度。 关键词:刚性悬挂接触网;悬挂点;测量 中图分类号:U2文献标识码:A文章编号:1671-7597(2011)0220078-01 刚性悬挂接触网,是一种区别于传统柔性接触网的供电悬挂方式。由于地铁隧道净空有限,刚性接触网是采用绝缘子来悬挂刚性导体,如同把第三轨架到了顶部,省去了柔性悬挂的腕臂或弹性底座,既增大了对地距离,又降低了车辆上方的空间。作为一种成熟可靠的接触网悬挂方式,在我国城市轨道交通领域有着良好的应用前景。 1、工程分析 1.1国内现状。刚性悬挂不同于柔性悬挂,由于刚性悬挂接触网系统的安装精度比柔性悬挂接触网系统的安装精度高,调节范围小,因此在进行刚性悬挂接触线的安装时,

后切底螺栓孔位的测量定位,到汇流排的安装、接触导线的架设、刚性悬挂的安装调整均为刚性悬挂接触网施工的关键。特别是悬挂点的定测直接关系到整个刚性接触网的平整,因些对刚性悬挂目前对于隧道内刚性悬挂点施工测量,国内施工方式主要为待轨道成型后,以轨道为测量基础,进行横向、纵向测量,定出定位点位置。 1.2上海轨道交通9号线接触轨工程简介。上海轨道交通9号线二期工程(初期),线路全长14.472km,均采用刚性悬挂安装方式,全线共有悬挂支持装置4927处。接触网系统和轨道系统同时开工建设,接触网系统开通时间为2009年8月15日,而轨道开通时间为2009年7月15日。全线留给接触网系统施工时间仅为短短1个月的时间,对于接触网系统来说,按铺轨后进行接触网施工无法完成的任务。为此,重点对“钢性悬挂点铺轨前测量技术”进行了研究。 2、铺轨前悬挂点施工测量 2.1测量平制作 为保证测量精准度,铺轨前测量采用自制模拟平台,无轨测量平台由两部分组成:测量平台本体,长约1500mm,宽约2100mm(具体尺寸可根据实际情况,以方便测量、重量轻、携带方便为准),用铝合金板制成,平直无挠度。上方置

接触网刚性悬挂标准化检修作业指导书

接触网刚性悬挂标准化检修作业指导书 第一部分 适用范围 本作业指导书适用于北京铁路局管内北京直径线接触网刚性悬挂停电检查和常见问题处理。 第二部分 检修标准 一、北京直径线刚性悬挂介绍 1.隧道长7.2km。设计运行速度:120km/h以下。 2.刚性悬挂接触网的主要技术参数 ⑴接触线悬挂高度为5300mm; ⑵跨距一般为10m; ⑶拉出值一般为±200mm。 3.锚段关节 ⑴锚段长度一般为300m; ⑵采用膨胀接头;。 4.刚柔过渡段 隧道外承力索在隧道洞口下锚。接触线通过切槽式汇流排夹持,通过三跨悬挂后锚固。

刚柔过渡安装图 二、汇流排和接触线 (一)准备工作 1.工具 序号 名称 规格型号 单位 数量 1 作业车 台 1 2 工具包 个 2 3 扭力扳手 根据需要携带配套套筒 把 2 4 钢卷尺 5m 把 1 5 水平尺 600mm 套 1 6 接触网多功能测量仪 套 1 7 安全工具 8 防护工具 2.材料 序号 名称 规格型号 单位 数量 1 电力复合脂 Kg 1

2 专用螺栓 根据需要携带相应型号套 若干 3 毛巾 张 若干 (二)工艺标准 1.汇流排表面不得有裂纹,不得扭曲变形,表面光洁无缺损、毛刺、污迹、腐蚀。 汇流排 2.汇流排沿线路按近似正弦波布置,无明显折角。汇流排的平面应与轨平面平行,即汇流排断面对称中轴线应垂直于该处轨面连线,偏斜角不应大于1°。 3.加强夹紧力汇流排用于刚性悬挂刚柔过渡处安装。

加强夹紧力汇流排 3.汇流排中间接头既起机械连接作用,又起电气连接作用。连接件的接触面清洁干净,两端汇流排在接头处应对接平直,当对接缝不能全封闭时,应保证下端密闭。接头紧固件齐全,螺栓朝向为一正一反交替布置,紧固力矩见附件一。 中间接头 4.汇流排中间接头避免处于或靠近跨中。中间接头连接缝至汇流排定位线夹的距离不小于200mm。采用外包接头时,则外包接头端头与汇流排定位处弹性线夹边缘距离不小于200mm。 5.接触线应可靠嵌入汇流排内。接触线与汇流排的接触面应均匀涂有电力复合脂,在锚段内无接头、硬弯。

刚性悬挂接触网概述

刚性悬挂接触网国内外应用情况 架空刚性悬挂接触网不是新事物,相反,它和电气化铁路发展的历史一样长远,刚性悬挂接触网最初就被应用于美国巴尔的摩市的第一条电气化铁路,尽管它的形式与现在不同。 在国外,刚性接触网已在地铁工程、大型车站、人员密集的场所、集装箱节点站、城市轻轨、干线铁路隧道以及一些特殊工点中得到了有效应用。 近年建成的瑞士Kerenzerzberg隧道刚性接触网设计速度为160km/h,初期试验速度达到了185 km/h;奥地利Sittenberg隧道的刚性接触网初期试验速度达到了200 km/h。2004年奥地利联邦铁路局在其境内干线铁路Wien-Linz线上,采用德国联邦铁路局试验列车成功地进行了速度为350km/h的试验,与此同时,在前面提到的奥地利Sittenberg隧道刚性接触网区段也成功地进行了速度为260km/h 的试验。拟建的长大隧道刚性接触网有:奥地利-意大利Brenner Base Tunnel (63km、单线隧道、计划2015年建成),法国-意大利Lyon-Turin Tunnel(53km、单线隧道、计划2020年建成),设计速度均大于200km/h。 城市轨道交通方面,随着城市规模的不断扩大,为了缓解交通压力,地铁采用高电压供电制已是一种必然趋势。因此,法国、瑞士、日本、韩国等国家自80年代开始,在城市交通领域中,不论是旧线改造,还是新线建设,低净空隧道,还是高净空隧道等各种线路条件大量使用刚性接触网,截至目前全世界已建成通车800多公里。 国内对刚性悬挂接触网的开发应用始于上世纪九十年代未期,当时仅限于地铁直流系统中采用。2002年首次在陇海线天兰段成功应用该悬挂方式,石门至怀化铁路石门山隧道为解决低净空问题亦采用了刚性接触网。此后,为保证接触网设备长期安全运营、减小运营维护的工作量、做到设备少维护免维修,2004年兰武线新建的乌鞘岭特长隧道(20.05公里双单线隧道)首次设计采用160km/h 刚性悬挂接触网。截止目前我国已有多条电气化铁路隧道中采用了刚性接触网,

地铁接触网刚性悬挂技术交底书

刚性悬挂点定位测量技术交底 1技术交底范围;刚性悬挂点定位测量。 2设计情况: 1)已有完整的设计图纸和设计文件。 2)已进行了图纸审核和设计技术交底,发现的问题已得到解决。 3)相关各方已共同确认轨道和线路结构的现状和技术条件,已符合线路设计标准。 4)业主代表或驻地监理工程师已确认土建结构定位坐标点(线)。 3施工准备 3.1作业准备 隧道内接触网系统含刚性接触悬挂和架空地线。隧道内施工测量含架空“п”型刚性悬挂底座、架空地线底座及中心锚结下锚底座等。测量工作量大,测量精度要求高且有线下铺轨施工的影响,需成立专项测量作业组,并由测量工程师担任测量组组长,负责与线下单位联系并进行测量指导工作,确保测量的精度。 3.2材料要求 说明辅助材料和工器具要求。 3.3人员配置 测量人员配备表 3.4机具准备 主要测量机具表 3.5技术准备: 测量前技术主管工程师已进行了测量技术交底,所有测量人员都已明白测量方案。

4施工工艺和方法 4.1施工工艺流程: 隧道内施工测量流程图 4.2施工方法 隧道内测量可分为纵向测量和横向测量,纵向测量主要是根据隧道平面图中设计跨距,确定每组悬挂的纵向位置以及平面图中中心锚结、隔离开关的安装位置。横向测量是将每组悬挂处的受电弓中心点、悬挂底座和架空地线底座的中心点测出以及中心锚结下锚固定底座的中心点测出。 (1)纵向测量 A.纵向测量时用钢卷尺进行测量,测量工作可从已铺设标准轨道的任一车站或区间内开始。一般以刚性悬挂锚段关节第一个定位点开始,有绝缘锚段关节区段从绝缘关节处开始起测,有渡线区段从道岔定位处起测,当线路为曲线时,沿曲外钢轨丈量。测出各悬挂点位置后,用红油漆在钢轨侧面作出明显清晰的标记,并在隧道壁上用红油漆画1cm 宽15×15cm 的“+”字,标明悬挂点号、安装类型、悬挂底座及架空地线底座安装高度等信息。在车站时,要考虑所标信息不会被其他专业施工覆盖,且不能损坏车站墙壁和站台的装饰工程。测量过程中,要随时复核测量结果,防止产生积累误差。 B.当悬挂点遇到隧道伸缩缝、连接缝、盾构隧道管片接缝、渗水及漏水部位时,避开。但最大位移不能超过±500mm ,且必须进行多跨调整,保证不超过设计最大跨距允许值,和相邻两跨距的跨距比不大于1:1.25的设计标准。中心锚结、锚段关节、道岔定位和交叉渡线处不能移位,需特殊移位时报请监理工程师联系设计单位解决。 C.中心锚结、锚段关节、道岔定位和交叉渡线定位严格按设计要求的位置安装。如与设计图不符时,报请驻地监理工程师联系设计单位解决。 测量记录 施工测量

刚性接触网要点

刚性接触网 授课稿2005年12月27日

第一节:刚性接触网的应用情况 刚性悬挂接触网主要有“π”型汇流排+接触线、“T”型汇流排+接触线、第三轨接触轨等几种形式。目前国内,北京地铁采用第三轨——“接触轨”形式,重庆轻轨较新线采用了“T”型汇流排+接触线的悬挂形式,而结构简单、性能优良、维护方便的“π”型汇流排+接触线的悬挂形式自1895年首次在美国巴尔的摩第一条电气化铁路中得到了应用之后,1961年在日本的营团地铁日比谷线投入使用,1983年在法国巴黎的PATPA线投入使用。由于其各方面的优良表现,目前国内外已将其作为地铁接触网的主要悬挂方式。在国内,这种安装形式已被广州地铁二号线、广州地铁三号线和南京地铁一号线所采用。目前在上海地铁正准备采刚性接触网的有上海轨道9号线、上海轨道交通8号线、上海轨道交通6号线、上海轨道交通7号线和上海轨道交通11号线。正准备采用刚性接触网的城市有:沈阳地铁、深圳地铁等。它是由铝合金汇流排嵌入接触导线,悬挂于轨道线路上方,向地铁列车输送电能的装置。刚性悬挂接触网主要组成部件:汇流排、汇流排连接接头、终端汇流排、绝缘支持装置、中锚固定装置、刚柔过渡装置、刚性电连接线夹装置、维修临时接地线夹。 第二节刚性接触网的特点 优点: 一、减少隧道净空的需要 汇流排在隧道内占用很小的安装空间,而在同样条件下,传统的柔性接触网是很难达到了。这样来就降低了新建隧道的工程预算,进而降低了整个地铁工程的成本。 (1)刚性接触网无外加张力,无需张力补偿装配置。 (2)刚性接触网结构简单,占用净空小。排的高度为110mm,宽为85mm,其截面积达到2213.7mm2 ,其载流相当于1200mm2的铜导线。即8*150mm2。汇流排加上支撑装置和电气安全距离,从汇流排接触线底部至隧道顶部也只需要350mm左右。一号线采用德国的弹性底座,采用了4根150mm2的馈线和2根120mm2,载流截面积才840mm2。 二、无外加张力

刚性接触网线脱槽解决对策探讨

刚性接触网线脱槽解决对策探讨 发表时间:2019-01-16T11:35:01.617Z 来源:《防护工程》2018年第31期作者:黎新明[导读] 架空接触网的悬挂类型大致上分为简单悬挂,链式悬挂,刚性悬挂三种。 深圳市地铁集团有限公司运营总部 摘要:刚性接触网是地铁系统的关键部件之一,是保障地铁安全、可靠运行的重要支持部分,其在运行过程中受到各种恶劣自然环境的影响以及强烈磨耗,很容易出现各种故障。其中包含接触线脱槽。轻则造成地铁线路供电系统暂时瘫痪,重则造成行车中断,给乘客带来严重的出行影响。本文主要对地铁接触网接触线脱槽进行分析,并提出解决对策。 关键词:接触线脱槽;受电弓异常磨损;线夹卡滞 前言 当前,架空接触网的悬挂类型大致上分为简单悬挂,链式悬挂,刚性悬挂三种,而隧道内普遍使用刚性悬挂,刚性悬挂是将接触线夹装在汇流排上的接触悬挂方式,依靠汇流排自身的刚性使得接触导线保持在同一高度,从而取消链形悬挂承力索而使接触悬挂系统具备最小的结构高度,最大程度利用有限的悬挂空间。在实际使用过程中,受客观环境的影响,造成刚性接触网接触线脱槽的现象常有发生,造成接触线脱槽的原因很多主要分为:电客车受电弓异常磨损,其形状发生改变不能有效与线排形成良好配合在偶然情况下造成脱槽;在机车运行过程中线在线夹槽中经常卡滞也会造成脱槽;长时间的运行缺乏巡视检修接触线的位置发生变动无法达到运行要求也会造成脱槽。本文将对刚性接触网接触线脱槽的现象原因进行分析,同时指出在实际使用过程中的解决方案。? 一、接触网卡滞造成脱线的分析刚性接触网想比柔性接触网主要是刚性汇流排和接触线无张力,不存在断排和断线的可能,从而避免了钻弓、烧融、不均匀磨耗造成的断线事故。但是刚性接触网的汇流排和接触线通过定位线夹与隧道顶部钢槽等装置固定连接,在设计时考虑汇流排在长时间运行过程中出现轻微的位移,所以定位线夹与汇流排之间有一定的间隙,以满足汇流排因温度变化引起的顺线路方向位移变化,允许汇流排在线槽内滑动。因为列车运行,汇流排热胀冷缩和客车受电弓的惯性力始终朝一个方向,容易使定位线夹出现卡滯,长此以往会造成绝缘子受力异常,汇流排损伤,严重时底座开裂、绝缘子扭曲变形,在偶然情况下还会造成脱槽事故,严重威胁了地铁的安全运行。? 刚性接触网采用刚性悬挂,一般采用具有相应刚度的导电轨或具有相应刚度的汇流排与接触线组成;整个系统又分为若干个锚段的机械分段结构组成。在锚段中间采用中锚进行固定,防止汇流排窜动,每隔6到8米采用线夹、绝缘子、横撑等装置将汇流排与接触线与建筑结构固定。汇流排在温度变化下会产生热胀冷缩现象。当温度升高时汇流排越长,低时缩短。在极限温差线会出现6-8毫米的伸缩量。线路为小半径时,机车给接触网汇流排作用力,该力可分解为水平力和垂直力,当线路半径越小,其水平力越大。该水平力容易造成卡滞现象的产生。另一个原因是热胀冷缩在末端时,由于汇流排的伸长及汇流排本身的重量,线夹和汇流排之间产生摩擦力造成卡滞。? 为了减少卡滞现象我们可以对线夹进行优化,采用冷轧成型,并与汇流排固定,同时线夹螺杆与绝缘子固定连接,绝缘子采用可活动的杵头绝缘子。同时,在槽钢与绝缘子之间增加一个刚性滑道,滑道长度满足因温度变化引起的绝缘子位移长度,解决卡滞问题,有效避免了脱槽等事故的产生。? 二、接触网弓网异常磨损造成脱槽接触线异常磨损主要体现容易引发接触线异常磨耗的区域。由于涉及、施工以及线路等原因,在部分区域接头、分段绝缘器、膨胀元件、锚段关节、列车上坡拐弯处,由于接触悬挂高度变化较大导致受电弓离线或撞击悬挂,从而造成异常磨损。在列车运行时左右受力不稳,造成冲击从而造成脱槽现象的产生。? 各种类型的磨损:中心偏磨型磨损,是指受电弓的中心段磨耗比较严重,越往两边磨耗越小甚至没有磨耗。波浪形磨耗,是指磨耗不均匀的分布在受电弓碳滑板上,具有随机性,导致滑板表面凹凸不平,犹如波浪一样。裂纹型磨损,主要是指接触悬挂的高度变化,导致弓网间的机械连接状态发生变化,在高速运行中受到机械冲击,导致受电弓碳滑板出现裂纹,严重时有部分结构从受电弓上脱落导致脱槽等事故发生。? 刚性接触网的弹性较低,刚性接触网高低不平滑导致受电弓颠簸。由于自身无法释放这种垂直方向的振动能量,当受电弓从导向高的地方走向导向低的地方时,被迫撞击抬升接触网,造成磨损增加。在接触悬挂上难免出现凸性硬点,这也导致了磨损位置的随机性。硬点的出现意味着导向高度的突然增高,造成了机械冲击从而造成了磨损的增加。机械冲击过大时会产生裂纹。在接触网线路上有一些区域一直未进行优化。如出站时同一线路上多辆客车同时启动电流较大,而进站时有制动反馈电流更加增大了电流。接触线和受电弓易受到电弧损伤及温升熔焊方面的磨耗,其影响不可忽视。刚性接触网也须按照波纹形布置。而且在线路拐弯时应该有圆弧过度。但是由于列车速度弓网关系以及接触线的平面布置形式的不同。受电弓碳滑板各点与接触线接触时间、频率不同,各部位的磨损情况也不相同,这也是造成中心偏磨损磨耗的主要原因之一。而且受电弓各部分的受力也不一样,靠边的力比较小,这更加造成了中心磨损。? (一)要合理选用受电弓,不同的受电弓在材料、结构等方面的组合影响了弓网的电接触特性、机械摩擦性以及受电弓的跟随性,碳滑板特别适用于铜和铜合金其自润滑性强的接触线。但是其导电性强度也需要增加,尤其在碳滑板的基础上加一些铅、锡合金就会增加碳滑板的强度、和降低碳滑板的电阻值,有利于弓网关系的运行。(二)改善刚性接触网的弹性。由于硬点的出现,高速运行的受电弓容易撞击接触网或拉弧烧损碳滑板。为了改善弹性问题不少地铁公司引进了弹性定位线夹,该汇流排及接触线的重力靠线夹内弹簧来承担,其弹簧压缩长度与接触网系统的跨距、汇流排自重及弓网接触力有关,保证了汇流排有上升及下降的空间,能吸收机械冲击力,减少磨损。(三)优化悬挂导高缺陷。硬点是导高突变的地方。在检修过程中,应该及时调整不符合接触线导高突变点。(四)优化悬挂拉出值缺陷。不均匀磨损的重要原因是线路中出现磨耗特殊区域,如电客车出入加速区段位置,我们采取统筹优化的方法,对重点区域进行重点标记。优化特殊区域的线路,如改变其形状和改善其材料用电阻更小的线材。? 三、加强接触网的日常巡视维护?

接触网的悬挂类型

接触网的悬挂类型 接触网的分类大多以接触悬挂的类型来区分。在一条接触网线路上,无论是在区间还是站场上,为了满足供电方面和机械方面的要求,总是将接触网分成若干一定长度且相互独立的分段,这就是接触网的锚段。我们所讲的接触悬挂的分类是对接触闲的每个锚段而言的。接触悬挂的种类较多,一般根据其结构的不同分成简单接触悬挂和链形接触悬挂两大类。 一、简单接触悬挂 简单接触悬挂是接触悬挂的一种形式,系由一根或两根平行的接触线直接固定在支持装置上的接触悬挂形式,它的特点是无承力索,接触线直接悬挂在支持装置上。它在发展中经历了未补偿简单悬挂和目前采用的带补偿装置及弹性吊索式简单悬挂,如图1—2—1、图1—2—2所示。 图1-2-1未补偿简单接触悬挂示意图 1—支柱;2—拉线;3—接触线;4—绝缘子串;5—腕臂承力索 接触线(或承力索)端头同支柱的连接称为线索的下锚。线索下锚有两种方法:一是将线索端头同支柱直接固定连接,称为硬锚或死锚;另一种是加设补偿装置,以调整线索的弛度和张力。但简单接触悬挂在实际运营的大铁路线上很少应用,所以在此就不作过多做讨论研究。 二、链形接触悬挂 链形悬挂是一种运行性能较好的悬挂形式。它的特点是接触线通过吊弦悬挂在承力索上,承力索通过钩头鞍子或悬吊滑轮悬挂在支持装置的腕臂上。使接触

线在不增加支柱的情况下增加了悬挂点,通过调整吊弦长度使接触线在整个跨距内对轨面的高度基本保持一致。减小了接触线在跨距中的弛度,改善了弹性,增加了悬挂重量,提高了稳定性,可以满足电力机车高速运行取流的要求。 链形悬挂分类方法较多,按悬挂链数的多少可分为单链形、双链形和多链形(又称三链形)。目前我国采用单链形悬挂,乐昌网工区也是采用这种单链形悬挂。如图1—2—3所示。 双链形悬挂的接触线经短吊弦悬挂在辅助吊索上,辅助吊索又通过吊弦悬挂在承力索上,如图1—2—4所示。 双链形悬挂接触线弛度小,稳定性好,弹性均匀,有利于电力机车高速运行取流。但结构较复杂,投资及维修费用高,我国仅在个别地段试用。 双链形悬挂及其他悬挂类型由于结构复杂、不易施工、维修困难、设计繁琐、造价高等原因,目前没有得到广泛的应用。 链形悬挂根据线索的锚定方式(即线索两端下锚的方式),可分为下列四种形式: 1.未补偿简单链形悬挂 这种悬挂方式的承力索和接触线两端无补偿装置,均为硬锚。因此,在温度变化时,承力索和接触线的张力、弛度变化较大,一般不采用,其结构形式如图1—2—5所示。 图1-2-5 未补偿简单链形悬挂示意图 1,2—绝缘子串;3—支柱 图1-2-4 双链形悬挂示意图 1—承力索;2—吊弦;3—辅助吊索;4—短吊弦;5—接触线 图1-2-3 单链形接触悬挂示意图 1—承力索;2—吊弦;3—接触线

《轨道交通架空刚性接触网系统技术标准》条文说明

广东省标准 轨道交通架空刚性接触网系统 技术标准 DBJ/T15―XX―2020 条文说明

目次 3设计技术要求 (74) 3.1.基础数据 (74) 3.2.弓网相互作用 (74) 3.3.支持、定位与接触悬挂 (75) 3.4.绝缘、接地与防雷 (75) 3.5.平面布置 (75) 3.6.结构设计 (76) 3.7.设计提交文件 (76) 4零部件技术要求与检验 (77) 4.2.技术要求 (77)

3设计技术要求 3.1基础数据 3.1.1-3.1.6 设计的基础数据由建设方提供。3.1.1-3.1.5中所规定的数据类型在考虑设计输入需求并参照GB/T 32578-2016后给出。 3.1.6 由于线路的行车密度不同,按照年限规定接触网寿命不合理,根据接触网的使用率(弓架次)来定义,更为合理。具体算法如下: 按照30年核算计算弓架次。 交流系统取流量小,采用单弓,线路长行车间距大。因此,按照30(年)X 365(天)X18(小时)X20(3分钟一趟)=394.2万次,取400万次。 直流系统取流量大,多采用双弓,线路短行车间距小,按照30(年)X 365(天)X18(小时)X30(3分钟一趟)X 2(双弓)=1182.6万次,取1200万次。 3.2弓网相互作用 3.2.1 《铁路设施.电流采集系统.受电弓和架空接触线之间动态相互作用模拟的验证》EN 50318-2018中的适用范围覆盖了刚性网和柔性网,并给出了刚性网仿真数学模型。目前国内对应的标准GB/T 32591-2016中,未包含刚性网部分,因此,此处参照欧标。 3.2.3 参考《轨道交通地面装置电力牵引架空接触网》GB/T 32578-2016以及《铁路应用电流采集系统之间交互作用的技术标准受电弓与架空接触线》IEC 62486-2017中相关条款,弓网动态接触力指标是保证弓网可靠受流的必要条件,应首先通过弓网动态仿真方法进行预测,再通过弓网检测手段进行验证。 3.2.4-3.2.7 弓网动态接触力包含受电弓平均接触力与弓网动应力,其中受电弓平均接触力包含弓网静态接触力与空气动力。参考《铁路应用电流采集系统之间交互作用的技术标准受电弓与架空接触线》IEC 62486-2017中相关条款。 3.2.8参照《铁路应用电流采集系统之间交互作用的技术标准受电弓与架空接触线》IEC 62486-2017中相关的国际条款,未参照中国的特殊条款,原因是:。研究表明,大电流下的电弧产生的热侵蚀对弓网系统有损害,而小电流下的电弧对维持取流有益处,此处规定超过电流标称值30%才统计,意为只统计对弓网系统有害的电弧。因此,在此方法下,单次燃弧时间和测试总时间均为受电弓取流量超过标称值30%时的统计量,燃弧率为0.1%。 3.3支持、定位与接触悬挂 3.3.1 架空刚性接触网系统具有净空小,零部件少、可靠性高等优点,主要应用于隧道内,因此适用于城市轨道交通地下区间和地下车站。 3.3.2 垂直悬吊式结构主要应用于直流系统中,水平悬挂式结构主要应用于交流系统中。 3.3.4 悬挂点载荷计算应按照现行《建筑结构荷载规范》(GB 50009)中规定,考虑永久荷载(系统自重)、可变荷载(施工人员的重量)和偶然荷载(相邻悬挂点失效),刚性网不存在承载施工人员重量的情况,因此不考虑可变荷载。 3.3.5 铜银合金接触线具有低接触电阻、耐高温,耐磨耗和抗拉强度高等优势,适合作为电接触材料·,目前已广泛应用于国内外电气化轨道交通项目中,且由于目前刚性网常见异常磨耗多由于弓网接口载流能力不够造成的电弧引起的电气磨耗,因此在多数情况下,是目前接触线材料的较优选择。

相关文档
最新文档