太阳能电池组件技术示范

合集下载

太阳能电池组件及方阵的设计方法案例图文说明

太阳能电池组件及方阵的设计方法案例图文说明

太阳能电池组件及方阵的设计方法案例图文说明上面已经说过,太阳能电池组件的设计就是满足负载年平均每日用电量的需求。

所以,设计和计算太阳能电池组件大小的基本方法就是用负载平均每天所需要的用电量(单位:安时或瓦时)为基本数据,以当地太阳能辐射资源参数如峰值日照时数、年辐射总量等数据为参照,并结合一些相关因素数据或系数综合计算而得出的。

在设计和计算太阳能电池组件或组件方阵时,一般有两种方法。

一种方法是根据上述各种数据直接计算出太阳能电池组件或方阵的功率,根据计算结果选配或定制相应功率的电池组件,进而得到电池组件的外形尺寸和安装尺寸等。

这种方法一般适用于中小型光伏发电系统的设计。

另一种方法是先选定尺寸符合要求的电池组件,根据该组件峰值功率、峰值工作电流和日发电量等数据,结合上述数据进行设计计算,在计算中确定电池组件的串、并联数及总功率。

这种方法适用于中大型光伏发电系统的设计。

下面就以第二种方法为例介绍一个常用的太阳能电池组件的设计计算公式和方法,其他计算公式和方法将在下一节中分别介绍。

1.基本计算方注计算太阳能电池组件的基本方法是用负载平均每天所消耗的电量(Ah)除以选定的电池组件在一天中的平均发电量(Ah),就算出了整个系统需要并联的太阳能电池组件数。

这些组件的并联输出电流就是系统负载所需要的电流。

具体公式为:负载用电10A,负载工作8小时。

(220V ))组件日平均发电量()负载日平均用电量(电池组件并联数Ah Ah =其中, 组件日平均发电量=组件峰值工作电流(A)×峰值日照时数(h)。

假设告知负载日耗电(KWh ),如何计算负载日平均用电量(Ah )。

再将系统的工作电压除以太阳能电池组件的峰值工作电压,就可以算出太阳能电池组件的串联数量。

这些电池组件串联后就可以产生系统负载所需要的工作电压或蓄电池组的充电电压。

具体公式为:组件峰值工作电压系数)系统工作电压(电池组件串联数 1.43V ⨯=系数1.43是太阳能电池组件峰值工作电压与系统工作电压的比值。

光伏组件技术方案

光伏组件技术方案

光伏组件技术方案1. 简介光伏组件是一种将太阳能转化为电能的设备,通过光电效应将太阳辐射转化为直流电。

它由太阳能电池板、支架、连接器和其他附件组成。

本文将介绍光伏组件的技术原理、关键技术和发展方向。

2. 技术原理光伏组件的工作原理基于光电效应,即当光线照射到半导体材料上时,会产生电荷载流子。

太阳能电池板通常采用硅材料,当光线照射到硅材料上时,光子会激发硅材料中的电子,形成电子和空穴。

电子和空穴被分离后,通过电场的作用,电子会流向顶端,而空穴会流向底端,从而产生电流。

这样,光能就被转化为电能。

3. 关键技术3.1 太阳能电池板太阳能电池板是光伏组件的核心部件,负责将太阳能转化为电能。

常见的太阳能电池板有单晶硅、多晶硅和非晶硅等类型。

其中,单晶硅的转化效率最高,但成本也最高;多晶硅的转化效率次之,成本相对较低;非晶硅则转化效率最低,但成本也最低。

选择太阳能电池板的类型,需要综合考虑转化效率、成本和实际应用需求。

3.2 支架支架是用来固定太阳能电池板的组件,通常采用铝材或钢材制成。

支架需要具有足够的强度和稳定性,能够承受太阳能电池板的重量和外部环境的影响。

此外,支架还需要具备调整角度的功能,以便使太阳能电池板能够在不同的季节和时间段中接收到最大的太阳辐射。

3.3 连接器连接器用于连接太阳能电池板与其他设备,如电池或逆变器。

连接器需要具有良好的导电性能和耐高温、耐腐蚀的特性,以确保电能的传输效率和安全性。

3.4 逆变器逆变器是将光伏组件产生的直流电转换为交流电的设备。

它采用先进的电子技术,将直流电转换为需要的电压和频率的交流电。

逆变器还具备电能监控、保护和故障诊断等功能,提高光伏组件系统的稳定性和可靠性。

4. 发展方向4.1 提高转化效率目前光伏组件的转化效率仍有提升空间。

未来的发展方向之一是研发更高效的太阳能电池板材料和结构,提高光子的吸收和电子的分离效率,从而提高光伏组件的转化效率。

4.2 降低生产成本光伏组件的生产成本是影响其广泛应用的关键因素之一。

太阳能电池组件技术规范

太阳能电池组件技术规范

太阳电池组件成品技术规范编写:校对:审核:会签:、、、、、、批准:太阳电池组件技术总规范1目的通过制定太阳电池组件技术总规范,使公司所生产的太阳能电池组件的生产及质量处于规范、可控的状态。

保证产品质量,满足客户要求。

2适用范围2.1本技术规范规定了太阳电池组件的技术要求、外观质量及性能要求。

2.2本技术规范适用于本公司生产的太阳能电池组件(客户另有要求除外)。

2.3本技术规范不能取代本公司与客户签订的技术协议。

3职责权限3.1技术开发部制定太阳能电池组件成品技术总规范;3.2公司各相关部门在电池组件生产、检验等环节依据本规范执行。

4引用文件4.1 GB/T 9535 地面用晶体硅光伏组件——设计鉴定和定型(IEC 61215-2005,IDT);4.2 GB/T 20047.1-2006 光伏(PV)组件安全鉴定第1部分:结构要求(IEC 61730-1:2004);4.3 GB/T 20047.2-2006光伏(PV)组件安全鉴定第2部分:试验要求(IEC 61730-2:2004);4.4 QEH-2011-RD-I139A太阳电池组件用晶硅电池片技术规范V1.0;4.5 QEH-2011- RD-I115A太阳电池组件用钢化玻璃技术规范V2;4.6 QEH-2011- RD-I121A太阳电池组件用EVA技术规范V2;4.7 QEH-2011- RD-I122A太阳电池组件用背板材料技术规范 V2;4.8 QEH-2011- RD-I114A太阳电池组件用焊带技术规范V1.2;4.9 QEH-2011- RD-I123A太阳电池组件用接线盒技术规范V2.0;4.10 QEH-2010-RD-I118A太阳电池组件用铝合金边框技术规范;4.11 QEH-2011-RD-I119A 太阳电池组件用透明胶带技术规范V1.0;4.12 QEH-2011-RD-I124太阳能电池组件制造工艺过程卡汇总V4.0;4.13 IEC 60364-2005 Electrical installations of buildings-Part 5-51 Selection and erection of electrical equipment-Common rules.5定义5.1 组件:具有封装及内部连接的、能单独提供直流电输出的、不可分割的最小太阳能电池组合装置。

hjt组件制作工艺

hjt组件制作工艺

hjt组件制作工艺HJT组件制作工艺HJT(Heterojunction with Intrinsic Thin Layer)组件是一种高效的太阳能电池组件,其制作工艺具有独特的特点和步骤。

本文将介绍HJT组件的制作工艺,从材料选择到工艺流程,带您了解这一先进的太阳能电池技术。

HJT组件的制作过程开始于材料的选择。

这种组件的关键材料是硅基片和n型摻杂层,其中硅基片是太阳能电池的主体。

与传统的晶体硅太阳能电池不同,HJT组件使用的硅基片具有高纯度和高晶格质量,以确保电荷在材料中的传输效率。

接下来是制作工艺的核心步骤——形成p-n结。

首先,通过化学气相沉积(CVD)将p型摻杂层沉积在硅基片上,形成p-n结的一侧。

然后,在摻杂层上涂覆一层氧化层,以充当反射镜。

接着,通过热处理将n型摻杂层沉积在氧化层上,形成p-n结的另一侧。

完成p-n结后,需要进行电极的制作。

首先,使用蒸发或溅射技术在硅基片上沉积金属薄膜,作为正极电极。

然后,在n型摻杂层上涂覆一层透明导电层,作为负极电极。

这两个电极将确保电荷在p-n结中的收集和传输。

接下来是工艺流程中的关键步骤——退火。

通过高温退火处理,可以提高HJT组件的光电转换效率。

退火过程中,硅基片和摻杂层中的杂质和缺陷会被修复,从而提高材料的光电性能。

需要进行封装和测试。

封装是将制作完成的HJT组件进行密封,以保护其不受外界环境的影响。

封装过程中,需要使用透明的玻璃或聚合物材料,以确保太阳光能够进入组件中。

完成封装后,可以进行组件的性能测试,包括光电转换效率、电流-电压特性等指标的检测。

总结起来,HJT组件的制作工艺包括材料选择、形成p-n结、电极制作、退火处理、封装和测试等步骤。

通过这些工艺步骤,可以制作出高效、稳定的太阳能电池组件。

HJT组件具有高光电转换效率、较低的温度系数和优秀的低光性能,被广泛应用于太阳能发电领域。

未来,随着制作工艺的不断改进和技术的推陈出新,HJT组件有望成为太阳能电池领域的主流技术之一。

太阳能电池组件工艺流程详细介绍PPT课件

太阳能电池组件工艺流程详细介绍PPT课件
• ——光伏组件输出功率:从零点几瓦到数百瓦不

完整版课件
5
1.2 太阳能电池组件的分类
1. 单晶硅太阳能电池组件 2. 多晶硅太阳能电池组件 3. 刚性衬底薄膜太阳能电池组件 4. 柔性薄膜太阳能电池组件
碲化镉薄膜 非晶硅薄膜
单结晶硅太阳电池 SINGLE CRYSTAL
多结晶硅太阳电池 POLY CRYSTAL
完整版课件
30
2.13 包装入库
• 13、包装入库:对产品信息的记录和归纳, 便于使用和今后查找和数据调用
完整版课件
31
Thank You!
完整版课件
32
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
1521硅胶配对比例 • A :B=6 :1(质量) • A :B=3 :1(体积)
完整版课件
25
2.9 组件清洗
• 9、组件清洗:好的产品不仅有好的质量 和好的性能,而且要有好的外观,所以次 工序保证组件清洁度,铝边框边上的毛刺 要去掉,确保组件在使用减少对人体的损 伤
完整版课件
26
2.10 组件电性能测试
• 10、组件测试:测试的目的是对电池的输 出功率等参数进行标定,测试其输出特性, 确定组件的质量等级。
完整版课件
27
组件电性能测试
终测机
终测曲线
完整版课件
28
2.11 组件EL测试
• 125*150*72组件EL图像
完整版课件
29
2.12 成品检验
• 12、成品检验:为了使组件产品质量满足 相关要求,使组件的最终检验操作过程规 范化,主要对组件成品的全面检验:型号、 类别、清洁度、各种电性能的参数的确认, 以及对组件优劣等级的判定和区分。

新能源技术知识:太阳能电池组件的选用及安装技巧

新能源技术知识:太阳能电池组件的选用及安装技巧

新能源技术知识:太阳能电池组件的选用及安装技巧一、选用太阳能电池组件太阳能电池组件是太阳能发电系统的核心部件,其选用对系统的性能和寿命有着重要影响。

在选用太阳能电池组件时,需要考虑以下因素:1.1组件类型目前市场上主要有单晶硅、多晶硅和薄膜太阳能电池组件。

单晶硅和多晶硅电池组件具有较高的转换效率和稳定性,但成本较高;薄膜太阳能电池组件相对成本较低,但转换效率和稳定性较差。

选择组件类型时,需要根据具体应用场景和预算来进行综合考虑。

1.2转换效率太阳能电池组件的转换效率是衡量其性能的重要指标,一般情况下,转换效率越高,发电效果越好。

因此在选用太阳能电池组件时,需要选择高转换效率的产品。

1.3组件质量太阳能电池组件的质量直接影响其使用寿命和稳定性。

一般情况下,品牌知名度较高、产品质量有保障的厂家生产的组件质量相对较好,可以考虑选择。

1.4保修期限太阳能电池组件的长期使用需要有较长的质保期限,一般建议选择质保期限较长的产品,以保障系统的长期稳定运行。

二、安装太阳能电池组件的技巧2.1安装位置太阳能电池组件的安装位置需要尽量选择光照充足、阴影遮挡较少的地方,以保证组件能够得到充分的太阳辐射。

同时,需要考虑安装位置的结构承载能力和风载荷要求,选择合适的安装支架类型和固定方式。

2.2倾斜角度太阳能电池组件的倾斜角度会影响其接收太阳辐射的效果。

一般情况下,太阳能电池组件的安装倾斜角度应等于所处地区的纬度角。

2.3防护措施在太阳能电池组件安装过程中,需要注意加装防护措施,防止如鸟类、树叶、雪等外部物体影响组件的发电效果。

特别是在海边或沙漠等环境中,需要注意组件的防尘、防腐蚀等工作。

2.4接线方式太阳能电池组件的接线方式需要谨慎选择,一般需要遵循厂家的产品说明书进行接线,同时需要保持接线的整洁和可靠性。

2.5地面处理太阳能电池组件的安装地面需要进行合理的处理,以保证组件支架的稳固和安全。

2.6安全防护在太阳能电池组件的安装过程中,需要注意安全防护措施,如穿戴安全帽、安全带等,以保障施工人员的安全。

单晶硅太阳能电池详细工艺

单晶硅太阳能电池详细工艺

单晶硅太阳能电池1.基本结构指电极图1太阳能电池的基本结构及工作原理2,太阳能电池片的化学清洗工艺切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。

②断面完整性好,消除拉丝、刀痕和微裂纹。

③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。

④提高切割速度,实现自动化切割。

具体来说太阳能硅片表面沾污大致可分为三类:1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。

2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径;0.4仙颗粒,利用兆声波可去除>0.2飘粒。

3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。

硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。

(2)、带正电的金属离子得到电子后面附着(尤如电镀”)到硅片表面。

1、用H2O2作强氧化剂,使电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面。

2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。

3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。

由于SC-1是H2O2和NH40H的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。

因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。

在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。

另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。

被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。

太阳能光伏发电实用技术

太阳能光伏发电实用技术

太阳能光伏发电实用技术摘要:本文通过介绍光伏建筑一体化,以引起业界人士对太阳能利用的广泛关注。

文中分别对光伏屋顶和光伏幕墙铺设太阳电池板发电形式和特点进行分析,以期不断扩大太阳能的应用范畴。

巨大能源的太阳东升西落,成为匆匆过客未被人们充分利用。

若在世界陆地的0.5%面积(恰为中国城镇占地之和)上安装太阳电池,将能供应全球所需能源,所以找宇宙要效益索取太阳能是当务之急。

我国太阳能资源的数量、分布的普遍性、供应的清洁性、技术的可靠性都优越于风能、水能和生物质能等可再生能源。

目前大量能源消耗难以面对,专家估计,再过50年,全世界可再生能源比例将>50%的总一次能源,其中太阳能可占到13%~15%十分可观。

所以加大光伏发电力度刻不容缓。

1 光伏发电利用范畴1.1 充分利用太阳光目前国内外许多建筑光学工作者指出,首先应掌握太阳能日照量三要素:季节,夏季日照量最高,冬季最低。

天气,正午日照量最高,晴、阴雨天则相应降低。

方位,以正南向效率为100%,则东西向为82%,北向为50%的输出量。

但在实际应用中,太阳电池方阵输出降低的原因很多,如日照量的多少,太阳电池镜面污垢产生的程度,温度上升及转换器损失等。

加上太阳能控制器损失的5%,总发电容量为设置容量的85%~95%;其次是发电量估算:太阳电池容量=太阳电池最大输出×设置数量。

如以最大输出功率50W太阳电池为例,设置20片时,则其输出容量=50W×20=1kWp,表1示某市7月底的光伏发电量。

表1 夏季南向日发电量1.2 太阳能应用多样化从收集到的有关资料来看,历年的成果涵盖许多方面。

近年来涉及的领域又有了发展。

分别为太阳能光伏建筑一体化、光伏电站、光伏照明和光伏设施等方面的设计及应用。

2 太阳能光伏建筑一体化2.1 基本概念2.1.1 定义光伏幕墙(屋顶)是将传统幕墙(屋顶)与光电转换技术相结合的一种新型建筑。

换句话说,主要是利用太阳能发电的一种新型、绿色的能源技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳电池组件成品技术规范编写:校对:审核:会签:、、、、、、批准:太阳电池组件技术总规范1目的通过制定太阳电池组件技术总规范,使公司所生产的太阳能电池组件的生产及质量处于规范、可控的状态。

保证产品质量,满足客户要求。

2适用范围2.1本技术规范规定了太阳电池组件的技术要求、外观质量及性能要求。

2.2本技术规范适用于本公司生产的太阳能电池组件(客户另有要求除外)。

2.3本技术规范不能取代本公司与客户签订的技术协议。

3职责权限3.1技术开发部制定太阳能电池组件成品技术总规范;3.2公司各相关部门在电池组件生产、检验等环节依据本规范执行。

4引用文件4.1 GB/T 9535 地面用晶体硅光伏组件——设计鉴定和定型(IEC 61215-2005,IDT);4.2 GB/T 20047.1-2006 光伏(PV)组件安全鉴定第1部分:结构要求(IEC 61730-1:2004);4.3 GB/T 20047.2-2006光伏(PV)组件安全鉴定第2部分:试验要求(IEC 61730-2:2004);4.4 QEH-2011-RD-I139A太阳电池组件用晶硅电池片技术规范V1.0;4.5 QEH-2011- RD-I115A太阳电池组件用钢化玻璃技术规范V2;4.6 QEH-2011- RD-I121A太阳电池组件用EVA技术规范V2;4.7 QEH-2011- RD-I122A太阳电池组件用背板材料技术规范V2;4.8 QEH-2011- RD-I114A太阳电池组件用焊带技术规范V1.2;4.9 QEH-2011- RD-I123A太阳电池组件用接线盒技术规范V2.0;4.10 QEH-2010-RD-I118A太阳电池组件用铝合金边框技术规范;4.11 QEH-2011-RD-I119A 太阳电池组件用透明胶带技术规范V1.0;4.12 QEH-2011-RD-I124太阳能电池组件制造工艺过程卡汇总V4.0;4.13 IEC 60364-2005 Electrical installations of buildings-Part 5-51 Selection and erection of electrical equipment-Common rules.5定义5.1 组件:具有封装及内部连接的、能单独提供直流电输出的、不可分割的最小太阳能电池组合装置。

6内容6.1 关键材料要求用于制造晶硅太阳电池的所有材料应根据客户要求,考虑强度、耐用性、化学物理性能,选用通过新材料实验验证、合格供应商提供的、经过品质原材料检验合格入库的材料。

关键材料要求如下:6.1.1电池片电池片要符合《QEH-2011-RD-I139A太阳电池组件用晶硅电池片技术规范V1.0》要求的电池片,同一板组件中电池片应为同一品牌,且同一电性能分档的电池片,表面颜色均匀,电池片表面无明显色差、无碎片。

所有电池片均无隐形裂纹。

客户有特殊要求的情况,通过技术实验验证后,由供需双方商定。

6.1.2 内部导线和载流部件内部导线和载流部件应具有满足要求的机械强度和电流传输能力,具体的外观要求、性能要求参考《QEH-2011- RD-I114A太阳电池组件用焊带技术规范V1.2》。

客户有特殊要求的情况,通过技术实验验证后,由供需双方商定。

6.1.3 上盖板上盖板材料常规采用低铁绒面钢化玻璃,玻璃的外观性能等要符合《QEH-2011- RD-I115A太阳电池组件用钢化玻璃技术规范V2》。

客户有特殊要求的情况,通过技术实验验证后,由供需双方商定。

6.1.4下盖板常规组件的下盖板一般采用具有耐候性、耐化学腐蚀性、优良电气指数等性能的聚合物。

聚合物的具体外观要求、性能及应通过的老化实验等要符合《QEH-2011- RD-I122A太阳电池组件用背板材料技术规范V2》。

客户有特殊要求的情况,通过技术实验验证后,由供需双方商定。

6.1.5 粘结剂常规组件中用的粘结剂一般为EVA,具有高透光性、良好的弹性、良好的电绝缘性,且与上盖板、下盖板的剥离强度达到一定粘结力等性能,具体要求参考《QEH-2011- RD-I121A太阳电池组件用EVA技术规范V2》。

客户有特殊要求的情况,通过技术实验验证后,由供需双方商定。

6.1.6 边框常规组件一般采用金属边框,便于组件与支架的连接固定,有良好的机械性能,耐腐蚀性能。

具体材料及性能要求参考《QEH-2010-RD-I118A太阳电池组件用铝合金边框技术规范》。

客户有特殊要求的情况,通过技术实验验证后,由供需双方商定。

6.1.7接线盒(含连接器、导线和二极管)接线盒的结构与尺寸应为电缆及接口提供保护,防止其在日常使用中受到电气、机械及环境的影响。

电性能应满足相应的电压和电流要求。

具体性能要求参考《QEH-2011- RD-I123A太阳电池组件用接线盒技术规范V2.0》。

客户有特殊要求的情况,通过实验验证后,由供需双方商定。

6.2 结构及设计要求6.2.1 组件结构要求及实验要求,参考《GB/T 20047.1-2006光伏(PV)组件安全鉴定第1部分:结构要求》及《GB/T 20047.2-2006光伏(PV)组件安全鉴定第2部分:试验要求》。

6.2.2应能够在IEC 60364-5-51规定的AB8类环境下工作。

6.2.3 金属部件:暴露在潮湿环境中部位使用过程中,会引起腐蚀的金属,不允许单独或组合使用,作为产品必须但不直接暴露在外部环境的铁或低碳钢等部件应施以电镀、油漆或瓷漆等来防止腐蚀。

简单的剪切边缘和冲孔不要求附加保护。

6.2.4爬电距离和电气间隙无绝缘的不同电位体之间以及带电体和与可接触的金属部件之间的爬电距离和电气间隙不允许小于表1和表2的规定。

这些要求不适用于组件内部带电部件之间的距离,其距离应满足部件相关要求。

这些要求也不适用于固体绝缘材料,材料的绝缘特性可以利用GB/T 20047.2列出的试验进行验证。

组件接线端子的爬电距离和电气间隙用组件的开路电压(Voc)来判定。

如果在端子排上有未标识的接线端子,或有专门标识的接地端子,爬电距离和电气间隙将根据最大系统电压来判定。

表1 现场接线端子之间可接受的最小爬电距离和电气间隙表2 内部带电体与可接触点之间可接受的最小电气间隙注:光伏组件中的封装材料也会吸湿,封装过程也不保证会形成完全密封。

因此,规定的爬电距离和电气间隙是基于污染度2级、材料等级Ⅲa和Ⅲb、应用等级A、脉冲电压8kV。

小数尾数采用进位法以得到偏于安全的数值。

现场接线端子的爬电距离和电气间隙应在有导线连接和没有导线连接两种情况下测量。

导线应按实际应用时的方式进行连接。

如果端子能适配,产品也没有标注使用限制,所得导线的线规应比要求的大一号,否则,导线用要求的线规。

在决定爬电距离时,不大于0.4mm的间隙的表面之间被认为是相互接触的。

6.2.5 设计要求组件的生产,根据客户的要求,按照BOM中要求的准备生产。

BOM中主要内容包含:(1)产品特性:电池片类别、组件功率、外型尺寸、电池片功率等要求;(2)技术图纸编号:装配图编号、正/背面图编号、铝合金加工图编号、大包装箱编号、小包装箱编号、托盘编号及标签编号;(3)特别联络事项;(4)规格:Pmax、Uoc、Isc、Ump、Imp、电路连接方式及排列方式;(5)主要原材料、附属材料的名称、规格、厂家信息;技术图纸的编号原则:(1)正面图:LN-ACR-B-XXX,LN-ACR-B-代表组件装配图,XXX为图纸索引号;(2)背面图:LN-ACR-C-XXX,LN-ACR-C-代表组件装配图,XXX为图纸索引号;(3)装配图:LN-ACR-D-XXX,LN-ACR-D-代表组件装配图,XXX为图纸索引号;(4)铝合金截面图/加工图:LN-ALK-E-XXX,LN-ALK-E-代表组件装配图,XXX为图纸索引号;生产过程要严格按照《QEH-2011-RD-I124太阳能电池组件制造工艺过程卡汇总V4.0》中要求的作业条件和作业方式进行,产品尺寸要求及公差要求按照相对应图纸进行生产、检验。

6.3 外观要求《GB/T 9535 地面用晶体硅光伏组件——设计鉴定和定型》对于设计鉴、定型和性能造成影响严重外观缺陷要求主要有以下几项:(1)破碎、开裂、或外表面脱附,包括上层、下层、边框和接线盒;(2)弯曲、不规整的外表面,包括上层、下层、边框和接线盒的不规整以至于影响到组件的安装和/或运行。

(3)一个电池的一条裂缝,其延伸可能导致超过一个电池10%以上面积从组件的电路上减少;(4)在组件的边缘和任何一部分电路之间形成连续的气泡或脱层通道;(5)丧失机械完整性,导致组件的安装和/或工作都受到影响(6)互联条或接头有缺陷。

根据以上几点要求,针对具体组件情况,我公司生产组件要达到外观判断标准,具体参考附件1《外观判断标准》。

外观不合格组件由品质中心组织评审,作出三种处理方案:(1)降为B级、让步放行;(2)返回生产进行修理,返修合格的按正常工艺流程继续进行;(3)无法返修或返修后仍为不合格的组件,等待处理。

6.4 EL测试6.4.1 环境要求温度:15~30℃,湿度≤70%;6.4.2测试仪器:EL测试仪。

6.4.3 测试标准和过程EL测试基本标准和过程如下(具体操作参考QEH-2011-RD-I124太阳能电池组件制造工艺过程卡汇总V4.0中要求进行):(1)开启EL测试仪,启动软件;(2)打开直流电源供应器的电源开关,根据所测试的组件调整电压和电流值,125版型电流调整为5~7A,156版型电流调整为7~9A;(3)按要求连接好正负极,电脑屏上显示图片是否合格,具体参考附件2《EL测试判断标准》。

合格,方可传入下一工序,不合格单独放置,做好记录,并报告品质中心等待处理;(4)测试完成后,关闭EL测试仪。

6.5 耐压、绝缘及接地阻抗测试耐压、绝缘及接地阻抗测试基本标准和过程如下(具体步骤参考QEH-2011-RD-I124太阳能电池组件制造工艺过程卡汇总V4.0中要求进行):6.5.1环境要求:温度为环境温度15~30℃,相对湿度≤75%;6.5.2装置:绝缘耐压测试仪;6.5.3耐压测试标准和过程(1)按照正确的方式连接绝缘耐压测试仪;(2)将组件的正、负极引出端短接后,接到绝缘耐压测试仪的正极或接地端;(3)将组件边框的裸露处接到绝缘耐压测试仪的负极,绝缘耐压测试仪的负极与铝合金边框在安装孔或连接拐角的裸露处紧密接触;(4)按下绝缘耐压测试仪的高压测试枪开关,测试开始,以不大于500V·s-1的速率增加绝缘测试仪的电压,将测试仪电压增加至3600V,维持此电压1s,如果系统报警(漏电流≥50μA,系统会自动报警),则组件不合格,如果不报警,则组件合格。

相关文档
最新文档