半导体二极管的特性及主要参数

合集下载

好资料二极管

好资料二极管

图1-7 PN结加正向电压 时的导电情况
第一章 半导体二极管
(2) PN结加反向电压时的导电情况 PN结加反向电压时的导电情况如图1-8所示。
外加的反向电压有一部分降落在PN结区,方向与PN结内 电场方在向一相定同的,温加度强条了件内下电,场。内电场对多子扩散运动的阻碍 增由强本,征激发决定的少子浓 扩度散是电一流定大的大,减故小少。子此形时成 P的N结漂区移电的流少是子恒在定内的电,场基的 作本用上下与形所成加的反漂向移电电压流的大大 于小扩无散关电,流这,个可电忽流略也扩称散为 电反流向,饱P和N结电呈流现。高阻性。
P区的电位低于N区的电位,称为加反向电压, 简称反偏。
第一章 半导体二极管
(1) PN结加正向电压时的导电情况 PN结加正向电压时的导电情况如图1-7所示。
外加的正向电压有一部 分降落在PN结区,方向与 PN结内电场方向相反,削弱 了内电场。于是,内电场对 多子扩散运动的阻碍减弱, 扩散电流加大。扩散电流远 大于漂移电流,可忽略漂移 电流的影响,PN结呈现低阻 性。
图 1-8 PN结加反向电压时 的导电情况
第一章 半导体二极管
图 1-9 PN结加反向电压时 的导电情况
PN结加正向电压时 ,呈现低电阻,具有较大 的正向扩散电流;PN结 加反向电压时,呈现高电 阻,具有很小的反向漂移 电流。由此可以得出结论 :PN结具有单向导电性 。
第一章 半导体二极管
往往用于集成电路制造工
4、最高工作频率fM。fM的值主要取决于PN
结结电容的大小, 结电容越大, 则二极管允许的最高工 作频率越低。
第一章 半导体二极管
1.3 二极管电路的分析方法
线性化:用线性电路的方法来处理,将非线性器件用恰 当的元件进行等效,建立相应的模型。

(整理)半导体二极管的主要参数.

(整理)半导体二极管的主要参数.

1.反向饱和漏电流IR指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。

在常温下,硅管的IR为纳安(10-9A)级,锗管的IR为微安(10-6A)级。

2.额定整流电流IF指二极管长期运行时,根据允许温升折算出来的平均电流值。

目前大功率整流二极管的IF值可达1000A。

3.最大平均整流电流IO在半波整流电路中,流过负载电阻的平均整流电流的最大值。

这是设计时非常重要的值。

4.最大浪涌电流IFSM允许流过的过量的正向电流。

它不是正常电流,而是瞬间电流,这个值相当大。

5.最大反向峰值电压VRM即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。

这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。

因给整流器加的是交流电压,它的最大值是规定的重要因子。

最大反向峰值电压VRM指为避免击穿所能加的最大反向电压。

目前最高的VRM值可达几千伏。

6.最大直流反向电压VR上述最大反向峰值电压是反复加上的峰值电压,VR是连续加直流电压时的值。

用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的.7.最高工作频率fM由于PN结的结电容存在,当工作频率超过某一值时,它的单向导电性将变差。

点接触式二极管的fM值较高,在100MHz以上;整流二极管的fM较低,一般不高于几千赫。

8.反向恢复时间Trr当工作电压从正向电压变成反向电压时,二极管工作的理想情况是电流能瞬时截止。

实际上,一般要延迟一点点时间。

决定电流截止延时的量,就是反向恢复时间。

虽然它直接影响二极管的开关速度,但不一定说这个值小就好。

也即当二极管由导通突然反向时,反向电流由很大衰减到接近IR时所需要的时间。

大功率开关管工作在高频开关状态时,此项指标至为重要。

9.最大功率P二极管中有电流流过,就会吸热,而使自身温度升高。

最大功率P为功率的最大值。

具体讲就是加在二极管两端的电压乘以流过的电流。

这个极限参数对稳压二极管,可变电阻二极管显得特别重要。

二极管特性参数

二极管特性参数

二极管特性参数在电子学中,二极管是一种常见的电子器件,用于控制和调节电流。

了解和了解二极管的特性参数对于电子工程师和电子爱好者来说是非常重要的。

本文将详细介绍二极管的特性参数。

二极管是由PN结组成的半导体器件,其中P区为正极,N区为负极。

当二极管正向偏置时,电流可以流过器件,这被称为正向工作。

当二极管反向偏置时,电流几乎不能流过器件,这被称为反向工作。

以下是二极管的几个重要特性参数:1. 正向电压降(Vf):正向电压降是二极管在正向偏置时产生的电压降。

对于常见的硅二极管而言,正向电压降大约在0.6V至0.7V之间。

对于锗二极管而言,正向电压降约为0.2V至0.3V。

2. 反向电流(Ir):反向电流是指当二极管反向偏置时,经过器件的微小电流。

反向电流非常小,通常以纳安(nA)为单位。

高质量的二极管具有较低的反向电流。

3. 反向击穿电压(Vbr):反向击穿电压是指当反向电压达到一定值时,二极管会发生击穿,导致大电流流过器件。

反向击穿电压是二极管的最大反向工作电压,超过这个电压会损坏二极管。

4. 最大正向电流(Ifmax):最大正向电流是指二极管能够承受的最大正向电流。

超过这个电流将导致二极管过热并可能损坏。

5. 反向恢复时间(trr):反向恢复时间是指二极管从反向工作状态切换到正向工作状态所需的时间。

较小的反向恢复时间表示二极管具有更好的开关特性。

6. 正向导通压降温度系数(Vf-Tc):正向导通电压降温度系数表示二极管的正向电压降随温度变化的程度。

它通常以mV/℃为单位,负值表示正向电压降随温度的升高而下降,正值则相反。

通过了解和理解这些二极管的特性参数,电子工程师和电子爱好者能够更好地选择和应用二极管。

这些参数对于设计和调试电路以及解决电子设备故障都非常有帮助。

总结:本文介绍了二极管的特性参数,包括正向电压降、反向电流、反向击穿电压、最大正向电流、反向恢复时间和正向导通压降温度系数。

了解这些特性参数可以帮助电子工程师和电子爱好者更好地选择和使用二极管。

半导体二极管的导通电压特性及应用分析

半导体二极管的导通电压特性及应用分析

半导体二极管的导通电压特性及应用分析半导体二极管是一种最简单的半导体器件,具有非常重要的导电特性和广泛的应用。

导通电压是二极管的一个重要参数,决定了二极管能否在电路中起到理想的作用。

本文将深入探讨半导体二极管的导通电压特性,同时分析其在实际应用中的重要作用。

一、二极管的基本结构和性质半导体二极管由P型半导体和N型半导体材料组成,分别形成PN结。

在PN结中,P区富含电子空位,N区富含自由电子。

这种结构的二极管在无外加电压的情况下会形成一个正向偏置,导致电子从N区向P区运动,同时空位从P区向N区运动,形成电流。

二、半导体二极管的导通电压特性半导体二极管在导通状态下,需要达到一定的电压才能开始导电。

这个导通电压被称为正向电压或者开启电压。

实际上,正向电压会引起PN结的耗能,从而产生正向电流。

而当PN结处于反向电压下时,电流极小,甚至可以忽略不计。

PN结的导通电压特性是非线性的,也就是说导通电压并非线性增长。

在二极管导通之前,需要克服PN结产生的势垒电压(Schottky势垒),才能使电流流过。

当正向电压超过势垒电压时,电流会快速增大,最终进入饱和状态。

因此,导通电压是二极管导通的关键电压,也是二极管正常工作的必要条件。

三、导通电压的影响因素导通电压的大小受到PN结材料特性和结构参数的影响。

以下是导通电压变化的主要因素:1. 材料特性:PN结的材料特性对导通电压有直接影响。

不同的半导体材料有着不同的导通电压特性。

例如,硅(Si)二极管通常具有一个较高的导通电压(约0.6V),而锗(Ge)二极管则具有较低的导通电压(约0.3V)。

2. 温度对导通电压的影响:温度变化会导致PN结材料内禀载流子浓度的变化,从而影响导通电压。

一般来说,温度升高会引起导通电压的减小,而温度降低则会使导通电压增加。

3. PN结的几何参数:导通电压还受到PN结的几何参数的影响。

例如,PN结的面积和长度等参数会对导通电压造成显著影响。

二极管特性及参数

二极管特性及参数

二极管特性及参数一、二极管的特性:二极管是一种最简单的半导体器件,它具有单向导电性。

二极管由P 型半导体和N型半导体组成,P型半导体区域被称为P区,N型半导体区域被称为N区,P区和N区之间形成的结被称为PN结。

在PN结两侧形成的电场称为势垒,势垒会阻碍电流的流动,只有当正向电压施加在二极管上时,电流才能流过。

二极管的工作特性如下:1.正向工作特性:当二极管的正端连接到正电压源,负端连接到负电压源时,二极管处于正向偏置状态。

此时,PN结的势垒被削弱,电流可以流动。

二极管的正向电压(Vf)越大,通过二极管的电流(If)越大。

正向工作特性遵循指数规律,即电流与电压之间存在指数关系。

2.反向工作特性:当二极管的正端连接到负电压源,负端连接到正电压源时,二极管处于反向偏置状态。

此时,PN结的势垒会增加,电流几乎不能流动。

只有当反向电压(Vr)超过二极管的反向击穿电压时,才会发生逆向击穿,电流急剧增加。

二、二极管的参数:1.极限值参数:-峰值反向电压(VRM):反向电压的最大值,一般用来表示二极管的耐压能力。

-峰值反向电流(IFM):反向电流的最大值,一般用来表示二极管的耐流能力。

-正向电压降(VF):正向工作时,PN结两侧产生的电压降。

-正向电流(IF):通过二极管的最大电流。

2.定常态参数:- 正向阻抗(Forward resistance):在正向工作状态下,二极管的阻抗大小。

正向阻抗与正向电流大小有关,一般用欧姆表示。

- 反向电流(Reverse current):在反向工作状态下,二极管的电流大小。

- 反向传导电导(Reverse conductance):在反向工作状态下,PN结的反向传导电导值,与反向电流大小有关。

3.动态参数:- 正向导通压降(Forward voltage drop):当二极管处于正向工作状态时,二极管两端的电压降。

- 动态电电渡特性(Forward dynamic electrical characteristics):反映在零偏电流条件下,PN结在正向电压下的电流特性关系。

二极管特性及参数

二极管特性及参数

二极管特性及参数二极管(Diode)是一种电子器件,由两种不同类型的半导体材料组成:P型半导体和N型半导体。

它具有单向导电特性,即只允许电流在一个方向上通过。

二极管有很多重要的特性和参数,下面将会详细介绍。

一、正向特性:当二极管的正负极正向连接时,如果正向电压小于等于一个特定的值,即正向电压低于二极管的结压降(通常为0.7V),二极管处于正向工作状态,电流可以流过。

这时二极管的电流随正向电压的增加而迅速增大。

这种情况下,二极管处于导通状态,其导通状态下的电阻非常小,几乎可以视为导线。

二、反向特性:当二极管的正负极反向连接时,如果反向电压小于等于一个特定的值,即反向电压低于二极管的击穿电压(通常为50V~1000V),则二极管处于反向工作状态,电流几乎为零。

反向工作状态下的电阻很大,可以视为开路。

但是,当反向电压大于击穿电压时,二极管会产生击穿,电流会大幅度增加,这时二极管会被损坏。

三、参数:1. 峰值逆向电压:也称为击穿电压(Reverse Breakdown Voltage),它指的是二极管可以承受的最大反向电压,在这个电压之下,二极管工作正常,超过这个电压则可能发生击穿。

击穿电压越高,二极管的耐受能力越强。

2.正向电压降:二极管在正向导通时,正向电流通过后,在二极管的两端会形成一个固定的电压降,通常在0.6V~0.7V之间。

这个电压降称为正向电压降或者压降,是指在正向工作状态下二极管的电压降低多少。

3. 最大正向电流:也称为额定电流(Rated Forward Current),它指的是二极管可以正常工作的最大电流值。

超过这个电流值,二极管可能会发生损坏。

4. 最大反向电流:也称为反向饱和电流(Reverse Saturation Current),它指的是二极管在反向工作时通过的最大电流值。

在正常情况下,反向电流很小,几乎为零。

超过这个电流值,二极管可能会发生击穿,导致损坏。

5. 动态电阻:也称为交流电阻或微分电阻(Dynamic Resistance),它是指二极管在线性区时,输入的交流信号变化所引起的反向电流变化与正向电压变化之间的比例关系。

半导体二极管

半导体二极管

(1-4)
1. 4 二极管的主要参数
1. 最大整流电流 IFM
在规定的环境温度和散热条件下,二极管长 期使用时,所允许流过二极管的最大正向平 均电流。
2. 最高反向工作电压URM
通常称耐压值或额定工作电压,是指保证二 极管截止的条件下,允许加在二极管两端的 最大反向电压。手册上给出的最高反向工作 电压URM一般是击穿电压UBR的一半。
(1-5)
3. 反向电流 IR
指二极管未击穿时的反向电流。反向电流 越小越好。通常反向电流数值很小,但受 温度影响很大,温度越高反向电流越大, 一般温度每升高10o,反向电流约增大一倍。 硅管的反向电流较小,锗管的反向电流要 比硅管大几十到几百倍。
4. 最最高工作频率fM
指保证二极管导向导电作用的最高工作频 率。当工作频率超过fM时,二极管将失去导 向导电性。
模拟电子技术
半导体二极管
1. 1 半导体二极管的结构和符号
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线
基片
面接触型
二极管的ห้องสมุดไป่ตู้路符号: 阳极
阴极
(1-2)
二极管的主要特性---单向导电
1、二极管的偏置:二极管单向导电的特性,只有外加一定极 性的电压(称为偏置)才能表现出来。阳极电位高于阴极 电位称为二极管的正向偏置,反之称为反向偏置。
2、二极管的主要特性:单向导电,即正向导通,反向截止。 或曰:只能一个方向导电,另一个方向不导电,即由阳极 向阴极可以顺利的流电流,反方向不流电流。
只能一个方向 电,
(1-3)
1. 3 二极管的伏安特性
I
反向击穿 电压UBR

二极管的特性参数及应用

二极管的特性参数及应用

二极管的特性参数及应用
二极管,也叫双极性半导体元件,是一种半导体器件,具有电子和空穴的放射发射和吸收能力。

它的正反极分别可以简单地用正极和负极来描述,同时也在电路中作为一个非常重要的控制元件,常用的二极管有二极管、晶体管、FET等。

1、二极管的电压降
二极管的电压降是指当其正向电流的幅值接近0时,正向电压大于其反向电压的差值,一般叫做正向最小电压或者正向电压降。

2、正向最大电流
正向最大电流是指当其正向电压的值低于其最小正向电压时,其可以支撑的最大电流值,它的单位一般是安培,也称为正向夹角率。

3、二极管的反向电压损失
反向电压损失是指当其正向电压降的值接近零时,其反向电压会发生多少的损失,它的单位一般是伏特,也就是反向击穿电压。

4、正向充电容
正向充电容是指当其正向电压降的值比反向击穿电压的值大一些时,在正向电流过程中,发生电荷的累积,该累积电荷的多少,正向充电容就算出来了,它的单位是法拉。

使用二极管可以制作出大量的电路,如控制电路、保护电路、放大电路等。

(1)控制电路
二极管可以被用于控制电路,例可以使用二极管来控制家用电器的电源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

U BR IR反 向反 Nhomakorabea特性 O

死区
穿
电压
正向特性 Uth uV /V
Uth = 0.5 V (硅管) 0.1 V (锗管)
U Uth iV 急剧上升
Uth = (0.6 0.8) V 硅管 0.7 V (0.1 0.3) V 锗管 0.2 V
UBR U 0 U < UBR
iV = IR < 0.1 A(硅) 几十 A (锗)
特性
iV
符号及 等效模型
S
uV
2、恒压降模型
iV Uth uV
0.7 V (Si) uv = Uth 0.2 V (Ge)
3、二极管的折线近似模型
iv
斜率1/ rD Uth U
I uv
rv
U I
rv
可编辑ppt
S
Uth
Uth
10
第一章 半导体二极管
4、小信号模型 如果二极管在它的伏安特性的某一小范围
可编辑ppt
5
第一章 半导体二极管
温度对二极管特性的影响
IV / mA 80C
60
20C
40
20 –50 –25
0 0.4
– 0.02
UV / V
T 升高时,
UV(th)以 (2 2.5) mV/ C 下降
可编辑ppt
6
第一章 半导体二极管
IV / mA
60 40 20 –50 –25
0 0.4 0.8 UV / V
反向电流急剧增大 可编辑ppt
(反向击穿) 4
第一章 半导体二极管
反向击穿类型: 电击穿 — PN 结未损坏,断电即恢复。 热击穿 — PN 结烧毁。
特别注意:
温度对二极管的特性有显著影响。当温度升高 时,正向特性曲线向左移,反向特性曲线向下移。
变化规律是:在室温附近,温度每升高1℃,正向 压降约减小2~2.5mV,温度每升高10℃,反向电 流约增大一倍。
内工作,例如静态工作点Q 附近工作,则可把 伏安特性看成一条直线,其斜率的倒数就是所 求的小信号模型的微变电阻。 如果二极管在它的伏安特性的某一小范围内工作,例如静态工作点Q(此时有
iv

等效电路模型
可编辑ppt
un
伏安特性
11
第一章 半导体二极管
1.2 半导体二极管的特性及 主要参数
一、 二极管的结构与符号 二、 二极管的伏安特性 三、 二极管的主要参数 四、 二极管电路的分析方法
可编辑ppt
1
第一章 半导体二极管
一、 半导体二极管的结构
构成: PN 结 + 引线 + 管壳 = 二极管
符号:
分类:
VD 硅二极管
点接触型
可编辑ppt
8
第一章 半导体二极管
影响工作频率的原因 — PN 结的电容效应
结论: 1. 低频时,因结电容很小,对 PN 结影响很小。
高频时,因容抗减小,使结电容分流,导致单向 导电性变差。 2. 结面积小时结电容小,工作频率高。
可编辑ppt
9
第一章 半导体二极管
四、二极管电路的分析方法
1、理想模型
– 0.02
– 0.04
硅管的伏安特性
IV / mA
15
10
5
– 50 – 25
–0.01 0 0.2 0.4
–0.02
UV / V
锗管的伏安特性
可编辑ppt
7
第一章 半导体二极管
三、 二极管的主要参数
IV IF
U (BR) URM O
UV
1. IF — 最大整流电流(最大正向平均电流) 2. URM — 最高反向工作电压,为 UBR / 2 3. IR — 反向饱和电流(越小单向导电性越好) 4. fM — 最高工作频率(超过时单向导电性变差)
按材料分
按结构分 面接触型
锗二极管
平面型
正极 引线
N 型锗片
铝合金 负极 小球 引线
正极引线 PN 结
正极 负极 引线 引线
N型锗 金锑
P
合金
N
外壳
触丝 负极引线
底座
点接触型
面可接编触辑p型pt
P 型支持衬底
集成电路中平面2 型
可编辑ppt
3
第一章 半导体二极管
二、二极管的伏安特性
iV /mA
0 U Uth iV = 0
相关文档
最新文档