10kv电压波动范围

10kv电压波动范围

10kv电压波动范围

《电能质量供电电压允许偏差》(GB12325-90)规定电力系统在正常运行条件下,用户受电端供电电压的允许偏差为:

(1)35kV及以上供电和对电压质量有特殊要求的用户为额定电压的+5%~-5%;

(2)10kV及以下高压供电和低压电力用户为额定电压的+7%~-7%;

(3)低压照明用户为额定电压的+5%~-10%。

为了保证用电设备的正常运行,在综合考虑了设备制造和电网建设的经济合理性后,对各类用户设备规定了如上的允许偏差值,此值为工业企业供配电系统设计提供了依据。

零序与间隙零序的区别

零序与间隙零序的区别 两种保护主要都是用于接地故障的。根据系统运行方式的不同,中性点接地系统中主变的中性点是接地的,而中性点不接地系统中主变中性点要求不接地运行。零序用于前者的接地保护,而间隙零序用于后者的接地保护,一般还会辅以零序电压保护。至于保护的选择很简单,引出一个中性点接地刀闸的辅助接点即可判断。有时这两种保护是并存的,如在中性点接地系统中,如果将主变中性点接地刀闸拉开时,主变零序电流保护就不起作用,这时主变间隙零序保护就承担起接地保护的重任了。原来两者共用一个ct,现已要求分开。 变压器的零序方向过电流保护是为防止电力变压器出现单项短路或负载严重不平衡而安装的保护电路,在变压器出现单项短路或负载严重不平衡切断高压输出柜,使变压器断电,达到保护变压器和线路安全的目的。通常保护值设为额定电流的25%。 变压器的不平衡电流,Y型接线的变压器不平衡电流过大的影响 变压器不平衡电流系指三相变压器绕组之间的电流差而言。当变压器三相负载不平衡时,会造成变压器三相电流不平衡,由于不平衡电流的存在,将使变压器阻抗不平衡,二次侧电压也不平衡,这对变压器和用电设备是不利的。尤其是在Y型接线的变压器中,零线将出现零序电流,而零序电流将产生零序磁通,绕组中将感应出零序电动势,,使中性点位移。其中电流大的一相电压下降,而其他两相电压上升,另外对充分利用变压器的出力也是很不利的。 当变压器的负荷接近额定值时,由于三相负载不平衡,将使电流大的一相过负荷,而电流小的一相负荷达不到额定值。所以,一般规定变压器零线截面的也是根据这一原则决定的。所以,当零线电流超过额定电流的25%时,要及时对变压器三相负荷进行调整。 接地(零序)保护是将的中性点与大地可靠连接。中性点接地作用是保护变压器过电压击穿绕组或铁芯与绕组间绝缘的击穿,还有个作用是防止外部过电压造成绕组等器件的损坏。 变压器低压侧星型接法中性点接地的作用是:1、用来接使用相电压的设备;2、用来传到三相不平衡电流和单相电流;3、用来减少负荷中性点的偏移;

什么叫零序电压

什么叫零序电压、零序电流??? 正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。由于上不了图,请大家按文字说明在纸上画图。 从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。 1)求零序分量:把三个向量相加求和。即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。同方法把C相的平移到B相的顶端。此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。 2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。这就得出了正序分量。 3)求负序分量:注意原向量图的处理方法与求正序时不一样。A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。下面的方法就与正序时一样了。 通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。 在这里再说说各分量与谐波的关系。由于谐波与基波的频率有特殊的关系,故在与基波合成时会分别表现出正序、负序和零序特性。但我们不能把谐波与这些分量等同起来。由上所述,之所以要把基波分解成三个分量,是为了方便对系统的分析和状态的判别,如出现零序很多情况就是发生单相接地,这些分析都是基于基波的,而正是谐波叠加在基波上而对测量产生了误差,因此谐波是个外来的干扰量,其数值并不是我们分析时想要的,就如三次谐波对零序分量的干扰 什么是零序电流? 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接

关于零序电压和零序电流的几个概念

关于零序电压和零序电流的几个概念 零序电流 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为: Ia+Ib+Ic=I(漏电电流) 这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 产生零序电流的两个条件: 1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生; 2、零序电流有通路。 以上两个条件缺一不可。因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。 零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC 正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了毛病(特别是单相接地时的零序分量)。下面再

第二章 电压波动与闪变的概念 危害

第二章电压波动与闪变的概念 2.1 电压波动 电压波动和闪变(voltagefluetuationandflicker)一系列电压随机变动或工颇电压包络线的周期性变化,以及由此引起的照明闪变。它是电能质量的一个重要技术指标。电压波动是指电压均方根值一系列相对快速变动或连续改变的现象,其变化周期大于工频周期。电压闪变是指电压波动造成灯光照度不稳定的人眼视感反应,不属于电磁现象,同时也反映了电压波动引起的灯光闪烁对人视感产生的影响。电压闪变是电压波动引起的结果,它不属于电磁现象。 描述电压均方根值变化特性的参数通常有2个:相对电压波动值(RelativeVoltage Fluctuation)和电压变动频度(VoltageVariation Frequency)。相对电压波动值d定义为一系列电压均方根值变化中相邻2个极值Umax、Umin之差与标称电压的百。分比,即d =Umax- Umi你UN×100% (1 电压变动频度是指单位时间内电压变动的次数。标准规定,电压由大到小或由小到大的变化各算一次变动。 在电力系统中具有冲击性功率的负荷(如轧机、电弧炉)时,电力网中的电压降将发生相应变化,导致电压波动。冲击性负荷可分为周期性冲击负荷和非周期性冲击负荷两类。其中周期性或近似周期性的冲击性负荷的影响更为严重。电压波动使电能用户不能正常工作,在人民生活中最受影响的是白炽灯的闪变(flieker)。频率在5~12Hz范围内的电压波动值,即使只有额定电压的1%,其引起的白炽灯照明的闪变,已足以使人感到不舒适,所以选白炽灯的工况作为判断电压波动值,把电压变动而引起人对灯闪的主观感觉叫“闪变”。广义的闪变包括电压波动的全部有害作用,但不能以电压波动来代替闪变,因为闪变是人对照度波动的主观视感。闪变的主要决定因素:①供电电压波动的幅值、频度和波形,②照明装!,以对白炽灯的照度波动形响最大,而且与白炽灯的功率和额定电压等有关 2.2电压波动与闪变的产生原因

零序电压、电流以及6KV开关柜符号解释、三相四线制

在三相四线电路中,三相电流的相量和等于零,即 Ia+Ib+IC=0。如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)。这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 产生零序电流的条件 1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生; 2、零序电流有通路。 以上两个条件缺一不可。因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。

当中性点直接接地系统(又称大接地电流系统)中发生接地短路时,将出现很大的零序电流。还有在中性点不直接接地系统中当发生单相接地时,也会产生零序电压 零序电压是三相线路中一相或者两相接地产生的,大小取决于接地的程度,是金属接地,非金属接地,就是接地电阻了。 此处小圆圈 就是零序电 压的 符号表示 零序电源在故障点,故障点的零序电压最高,系统中距离故障点越远处的零序电压就越低,取决于测量点到大地间阻抗的大小。

正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了毛病(特别是单相接地时的零序分量) 三相四线制 三相交流发电机向外供电时,把三组线圈的末端X、Y、Z 联在一起,从联接点引出一条线,这条线叫零线,也叫中性线。再从线圈绕组另一端A、B、C各引出一条线,这三条线叫相线或火线,这种联接方法叫星形联接法 发电机的这种向外输电方法构成三相四线制

电网电压波动的分析与抑制

电网电压波动的分析与抑制 1.电压波动的定义与限值 1.1电压波动的定义 电压波动是指电压均方根值一系列相对快速变动或连续改变的现象。电压波动量化为电压方均根值的两个极值 ax U m 和in U m 之差与其额定电压比值的百分值,即%100 ?=??N V U V 。其变化周期大于工频周期,每秒V ?的变化大于%2.0者为电压波动,否则视为电压偏差(电压的慢变化)。 在配电系统运行中,这种电压波动现象有可能多次出现,其变化过程是多种多样的,有规则和不规则的,也有随机的。电压波动的图形和变化过程相同,也是多种多样的,有跳跃形,准稳态形和斜坡形等。 1.2电压允许波动的范围 电压波动的限值与考察点的位置、电压等级和电压变动频度有关。以电网的公共连接点(PCC )为例,对于电压变动频度较低(r ≤1000次/h)或 规 则 的 周 期 性 电 压 波 动,GB12326—2008《电能质量 电压波动和闪变》给出了相应的电压波动限值,如下所示。 表1电压变动限值 2. 电压波动的产生原因 一个理想供电系统的三相交流电源对称、电压均方根值恒定,并且负荷特性与系统电压水平无关。这就要求电力用户的负荷分配三相平衡,并以恒定功率汲取电能,同时也要求公共连接点(PCC)的短路容量无穷大,系统的等值电抗为零。而实际上,这些条件是不可能满足的,供电系统电压每时每刻都发生着变换。 电力系统的电压波动主要是由具有冲击性(快速变动)功率的负荷引起的,例如炼钢电弧炉、轧钢机、电弧焊机等。特别是电弧炉,国外的有关规定主要是针对电弧炉的。这些负荷的特点是在生产过程中有功和无功功率随机地或周期性地大幅度变动。随着工业的发展,这类负荷的功率越来越大,达几万乃至十几万千瓦,因此对电能质量将产生不可忽视的影响。具体一点可做如下分类: (1)电源引起的电压波动。用户负荷的剧烈变化,会引起电压波动。 (2)大型电动机起动时引起的电压波动。工厂供电系统中广泛采用鼠笼型感应电动机和异步起动的同步电动机,它们的起动电流可达到额定电流的4~6倍(3 000 r/min 的感应电动机可能达到其额定电流的9~11倍)。 一方面,电动机起动和电网恢复电压时的自起动电流流经网路及变压器,在各个元件上引起附加的电压损失,使该供电系统和母线都产生快速、短时的电压波动。 另一方面,起动电流不仅数值很大,且有很低的滞后功率因数,将造成更大的电压波动。这种影响对于容量较小的电力

零序电流及方向

零序电流及方向保护 一、零序电流方向保护的基本原理; 1、基本原理; 零序电流保护: 在正常运行时没有零序电流,只有在接地短路时才有零序电流。 并且流过保护的零序电流大小反应了短路点的远近; 当短路点越近时,保护动作越快,短路点越远保护动作得越慢。 输电线路零序电流保护是反应输电线路一端零序电流的保护。反应输电线路一端电气量变化的保护由于无法区分本线路末端短路和相邻线路始端的短路,为了在相邻线路始端短路不越级跳闸。 所以反应输电线路一端电气量弯化的保护都要做成多段式保护。零序电流一段的任务: 保护本线路的一部分。它的定值按躲过本线路末端(实质是躲过相邻线路始端)接地短路时流过保护的最大零序电流整定(其他整定条件姑且不论)。 零序电流二段的任务: 能以较短的延时尽可能地切除本线路范围内的故障。 零序电流三段的任务: 应可靠保护本线路的全长,在本线路末端金属性接地短路时有一定的灵敏系数。 零序电流四段的任务:

起可靠的后备作用。第四段的定值应不大于300A,用它保护本线路的高阻接地短路。在110KV的线路上,零序电流保护中的第四段还应作为相邻线路保护的后备。 零序电流保护只能用来保护接地故障,所以对于两相不接地的短路和三相短路不能起到保护作用。另外零序一段保护范围受运行方式的影响也较大,有时可能保护范围缩得很小,这一点比同样保护接地故障的接地距离一段要逊色得多。但是零序电流保护的最后一段——零序过电流保护,由于很灵敏,保护过渡电阻的能力很强,这一点又比接地距离第三段强; 所以,现在有一些高压电网中有线路纵联保护,又配有保护接地短路的三段式的接地距离保护,并有双重化的保护配置,所以,生产一种保护装置的型号,把零序电流保护的第一段省略而只配零序电流保护二、三段; 零序电流保护中: 零序电流的大小与中性点接地的变压器的多少有很大关系。 零序方向继电器的原理、实现方法、性能评述: 零序方向继电器的最基本思想是比较零序电压的零序电流的相位来区分正、反方向的接地短路。 零序电流以母线流向被保护线路的方向为其正方向。 如果系统中各元件零序阻抗的阻抗角为80°,正方向短路时,零序电压超前零序电流的角度为:-100°,反方向短路时,零序电压超前

零序电压,零序电流.负序电流.正序电流怎么理解

零序电压,零序电流.负序电流.正序电流怎么理解 对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立; 当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流; 对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立; 因此,零序电流通常作为漏电故障判断的参数。 负序电流则不同,其主要应用于三相三线的电机回路; 在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流; 其常作为电机故障判断; 注意了: Ia+Ib+Ic=0与三相对称不是一回事; Ia+Ib+Ic=0时,三相仍可能不对称。 注意了: 三相不平衡与零序电流不可混淆呀! 三相不平衡时,不一定会有零序电流的; 同样有零序电流时,三相仍可能为对称的。 前面好几位把两者混淆了吧! 正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。 只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原 因)。 当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病 (特别是单相接地时的零序分量)。 下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。由于上不了图,请大家按文字说明在纸上

零序电流及方向

零序电流及方向 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

零序电流及方向保护 一、零序电流方向保护的基本原理; 1、基本原理; 零序电流保护: 在正常运行时没有零序电流,只有在接地短路时才有零序电流。 并且流过保护的零序电流大小反应了短路点的远近; 当短路点越近时,保护动作越快,短路点越远保护动作得越慢。 输电线路零序电流保护是反应输电线路一端零序电流的保护。反应输电线路一端电气量变化的保护由于无法区分本线路末端短路和相邻线路始端的短路,为了在相邻线路始端短路不越级跳闸。 所以反应输电线路一端电气量弯化的保护都要做成多段式保护。零序电流一段的任务: 保护本线路的一部分。它的定值按躲过本线路末端(实质是躲过相邻线路始端)接地短路时流过保护的最大零序电流整定(其他整定条件姑且不论)。 零序电流二段的任务: 能以较短的延时尽可能地切除本线路范围内的故障。 零序电流三段的任务: 应可靠保护本线路的全长,在本线路末端金属性接地短路时有一定的灵敏系数。 零序电流四段的任务:

起可靠的后备作用。第四段的定值应不大于300A,用它保护本线路的高阻接地短路。在110KV的线路上,零序电流保护中的第四段还应作为相邻线路保护的后备。 零序电流保护只能用来保护接地故障,所以对于两相不接地的短路和三相短路不能起到保护作用。另外零序一段保护范围受运行方式的影响也较大,有时可能保护范围缩得很小,这一点比同样保护接地故障的接地距离一段要逊色得多。但是零序电流保护的最后一段——零序过电流保护,由于很灵敏,保护过渡电阻的能力很强,这一点又比接地距离第三段强; 所以,现在有一些高压电网中有线路纵联保护,又配有保护接地短路的三段式的接地距离保护,并有双重化的保护配置,所以,生产一种保护装置的型号,把零序电流保护的第一段省略而只配零序电流保护二、三段; 零序电流保护中: 零序电流的大小与中性点接地的变压器的多少有很大关系。 零序方向继电器的原理、实现方法、性能评述: 零序方向继电器的最基本思想是比较零序电压的零序电流的相位来区分正、反方向的接地短路。 零序电流以母线流向被保护线路的方向为其正方向。 如果系统中各元件零序阻抗的阻抗角为80°,正方向短路时,零序电压超前零序电流的角度为:-100°,反方向短路时,零序电压超前零

电压波动和闪变

对国家相关电能质量标准的理解与综述 1 电压波动和闪变 范围 本标准适用于交流50Hz 电力系统正常运行方式下,由波动负荷引起的公共连接点电压的快速变动及由此可能引起人对灯光闪烁明显感觉的场合。 1.1 定义: (1)电压波动(voltage fluctuation )电压方均根值(有效值)一系列的变动或连续的改变 (2)电压方均根值曲线R.M.S. voltage shape U (t ) 每半个基波电压周期方均跟值(有效值)的时间函数 (3)电压变动relative voltage change d 电压方均根值曲线上相邻两个极值电压之差,以系统标称电压的百分数表示。 (4)电压变动频度rate of occurrence of voltage changes r 单位时间内电压变动的次数(电压由大到小或由小到大各算一次变动)。不同方向的若干次变动,如间隔时间小于30ms ,则算一次变动。 1.2电压波动的测量和估算 电压波动可以通过电压方均根值曲线U (t )来描述,电压变动d 和电压变动频度r 则是衡量电压波动大小和快慢的指标。 电压变动d 的定义表达式为: %100??=N U U d 式中: △U----电压方均根值曲线上相邻两个极值电压之差。 U N ----系统标称电压。 当电压变动频度较低且具有周期性时,可通过电压方均根值曲线U (t )的测量,对电压波动进行评估。单次电压变动可通过系统和负荷参数进行估算。 当已知三相负荷的有功功率和无功功率的变化率分别为△P i 、 △Q i 时,可用下 式计算: %1002??+?=N i L i L U Q X P R d 式中R L 、X L 分别为电网阻抗的电阻电抗分量。 在高压电网中,一般X L >> R L 则 式中: S SC ---考察点(一般为PCC )在正常较小方式下的短路容量。 在无功功率的变化量为主要成分时(例如大容量电动机启动),可采用以下两

零序电流保护的整定计算

零序电流保护的整定计算 一、变压器的零序电抗 1、Y/△联接变压器 当变压器Y侧有零序电压时,由于三相端子是等电位,同时中性点又不接地,因此变压器绕组中没有零序电流,相当于零序网络在变压器Y侧断开(如图1所示)。 图1:Y/△联接变压器Y侧接地短路时的零序网络 2、Y0/△联接变压器 当Y0侧有零序电压时,虽然改侧三相端子是等电位,但中性点是接地的,因此零序电流可以经过中性点接地回路和变压器绕组。

每相零序电压包括两部分:一部分是变压器Y0侧绕组漏抗上的零序电压降I0XⅠ,另一部分是变压器Y0侧的零序感应电势I lc0X lc0(I lc0为零序励磁电流,X lc0为零序励磁电抗)。由于变压器铁芯中有零序磁通,因此△侧绕组产生零序感应电势,在△侧绕组内有零序电流。由于各相零序电流大小相等,相位相同,在△侧三相绕组内自成回路,因此△侧引出线上没有零序电流,相当于变压器的零序电路与△侧外电路之间是断开的。所以△侧零序感应电势等于△侧绕组漏抗上的零序电压降I0’XⅡ。 Y0/△联接变压器的零序等值电路如图2所示。由于零序励磁电抗较绕组漏抗大很多倍,因此零序等值电路又可简化,如图3所示。在没有实测变压器零序电抗的情况下,这时变压器的零序电抗等于0.8~1.0倍正序电抗。即:X0=(0.8~1.0)(XⅠ+XⅡ)= (0.8~1.0)X1。 本网主变零序电抗一般取0.8 X1。

图2:Y0/△联接变压器Y0侧接地短路时的零序网络 图3:Y0/△联接变压器Y0侧接地短路时的零序网络简化 二、零序电流保护中的不平衡电流 实际上电流互感器,由于有励磁电流,总是有误差的。当发生三相短路时,不平衡电流可按下式近似地计算: I bp.js=K fzq×f wc×ID(3)max 式中K fzq——考虑短路过程非周期分量影响的系数,当保护动作时间在0.1S以下时取为2;当保护动作时间在0.3S~0.1S时取为1.5;动作时间再长即大于0.3S时取为1; f wc——电流互感器的10%误差系数,取为0.1; I D(3)max——外部三相短路时的最大短路电流。

3、GB/T12326-2008电能质量 电压波动和闪变

电能质量电压波动和闪变 Power quality—Voltage fluctuation and flicker GB12326—2000 代替GB12326—1990 前言 本标准是电能质量系列标准之一,目前已制定颁布的电能质量系列国家标准有:《供电电压允许偏差》(GB 12325—1990);《电压允许波动和闪变》(GB 12326—1990);《公用电网谐波》(GB/T 14549—1993);《三相电压允许不平衡度》(GB/T 15543—1995)和《电力系统频率允许偏差》(GB/T 15945—1995)。 本标准参考了国际电工委员会(IEC)电磁兼容(EMC)标准IEC 61000-3-7等(见参考资料),对国标GB 12326—1990进行了全面的修订。 和GB 12326—1990相比,这次修订的主要内容有: 1)将系统电压按高压(HV)、中压(MV)和低压(LV)划分,分别规定了相关的限值,以及对用户指标的分配原则。 2)将国标中闪变指标由引用日本ΔV10改为IEC的短时间闪变P st和长时间闪变P lt 指标,以和国际标准接轨,并符合中国国情。 3)将电压波(变)动限值和变动频度相关联,使标准对此指标的规定更切合实际波动负荷对电网的干扰影响。 4)将原标准中以电压波(变)动为主,改为以闪变值为主(原标准中ΔV10均为推荐值),以和国际标准相对应。 5)对于单个用户闪变允许指标按其协议容量占总供电容量的比例分配,并根据产生干扰量及系统情况分三级处理(原标准中无此内容),既使指标分配较合理,又便于实际执行。 6)引入了闪变叠加、传递等计算公式,高压系统中供电容量的确定方法以及电压变动的计算和闪变的评估等内容,并给出一些典型的实例分析。 7)对IEC 61000-4-15规定的闪变测量仪作了介绍,并作为标准的附录A,以利于测量仪器的统一。 8)整个标准按国标GB/T1.1和GB/T1.2有关规定作编写。原标准名称的引导要素“电能质量”英译为“Power quality of electric energy supply”改为国际上通用的“Power quality”,并将本标准名称改为《电能质量电压波动和闪变》。 作为电磁兼容(EMC)标准,IEC 61000-3-7等涉及的内容相对较多,论述上不够简洁。在国标修订中选取相关内容,基本上删去对概念和原理的解释部分,因为国内将陆续发布等同于IEC 61000的EMC系列标准,可作为执行电能质量国家标准参考。对于国标中所需要的一些定义、符号和缩略语,以及相关闪变测量仪规范和闪变(Pst)的表达式等,主要参考了IEC 61000-3-3、IEC 61000-4-15。 须指出,在采用IEC 61000相关内容中,本标准对于下列几点作了修改: 1)按IEC标准,对闪变P st、P lt指标,每次评定测量时间至少为一个星期,取99%概率大值衡量。这样规定,在电网中实际上难以执行。本标准中对闪变P st指标规定取1天(24h)测量,而且取95%概率大值衡量;对P lt指标,原则上规定不得超标。

系统发生单相接地时零序电流与电压之间的关系分析

系统发生单相接地时零序电流与电压之间的关系分析: 将6KV系统简化为上图:用电系统中所有正常线路不止一条,为了容易表达,我们简化为一条线路,假定第二条线路出现接地故障,零序CT安装位置如图中1、2。 下面就分别对第三条回路存在或不存在接地故障情况下,电压及对地电容电流进行分析。 对该系统电压情况分析如下: 在正常情况下一次电压,二次电压(测量、开口三角)关系如图:其中UA为一次,Ua为测量二次,Ub0为开口二次电压,各相的向量方向相同。测量线圈电压变比为UA/Ua=UB/Ub=UC/Uc=6000/√3/100/√3=60,即一二次侧相电压之比60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为100/√3,相之间电压为100V。 开口三角线圈的变比为:UA/Ua0=UB/Ub0=UC/Uc0=6000/√3/100/3=60√3,如果系统6000V,则在每只PT的开口三角形线圈中电压为100/3 我们计算零序UL0向量=Ua向量+Ub向量+Uc向量,如果我们假定其中一相电压,另俩相电压与它相差120和240度。即UL0=Umsinwt+Umsin(wt+120)+Umsin(wt+240)=Um(sinwt+sin(wt+120)+sin(wt+240)=Um(sinwt +sinwtcos120+sin120coswt+sinwtcos240+sin240coswt),计算其中cos240=-1/2,COS120=-1/2 ,SIN120=√3/2,SIN240=-√3/2代入上式中得UL0=Um(sinwt-1/2sinwt+√3/2coswt-1/2sinwt-√3/2coswt)=0 正好等于0,即系统正常时开口三角UL0(向量)为0,三相向量正好对称如图所示 如果C相保险熔断,那么C相的向量就等于0,从而有UL0向量=Ua0向量+Ub0向量即= Umsinwt+Umsin(wt+120)=Um(sinwt+sinwtcos120+sin120coswt)=Um(sinwt-1/2sinwt+√3/2coswt)=

零序电流的计算

如图2—56而所示的最简单的网络接线。在正常运行情况下,三相对地有相同的电容C ,在相电压的作用下,每相都有一超前于相电压900的电容电流流入 地中,而三相电流之和等于零。假设在A相发生了单相接地,则A相对地电压变为零、对地电容被短接,而其它两相的对地电压升高1.732倍,对地电容电流也相应地增大1.732倍,向量关系加图2-57所示。在单相接地时,由于三相中的负荷电流和线电压仍然是对称的,因此.下面不予考虑。而只分析对地关系的变化。

由此可见,由故障线路流向母线的零序电流,其数值等于全系统非故障元件对地电容电流之总和(但不包括故障线路本身),其电容性无功功率的方向为由线路流向母线,恰好与非故障线路上的相反。 根据上述分析结果,可以做出单相接地时的零序等效网络,如图2—59所示, ,而零序电流的回路是通过各个元件的对地电容构在接地点有一个零序电压U d0 成的,由于送电线路的零序阻抗远小于电容的阻抗,因此可以忽略不计,在中性点不接地电网中的零序电流,就是各元件的对地电容电流.其向量关系如图 表示线路II本身的零序电容电流),这与直接接地电网2—59(b)所示(图中I 0II 是完全不同的。 图2—59 单相接地时的零序等效网络(对应图2—58)及向量图 (a)等效网络; (b)向量图 对中性点不接地电网中的单相接地故障,利用图25-8的分析,可以给出清晰的物理慨念,但是计算比较复杂,使用不方便,而根据该图的分析方法,得出如图2—59所示的零序等效网络以后.对计算零序电流的大小和分布则是十分方便的。总结以上分析的结果,可以得出如下结论: (1)在发生单相接地时,全系统都将出现零序电压。 (2)在非故障的元件上合零序电流,其数值等于本身的对地电容电流,电容性无功率的实际方向为由母线流向线路。 (3)在故障线路上,零序电流为全系统非故障元件对地电容电流之总和,数值一般较大,电容性无功功率的实际方向为由线路流向母线。

单相接地时零序电流电压分析

下面对系统单相接地时,零序电流与电压之间的关系做简单的分析: 将某用电系统简化为上图:(将所有正常回路简化为第一条回路,假定第二条回路出现接地故障,零序CT安装位置如图中1、2) 下面就分别对第三条回路存在或不存在接地故障情况下,电压及对地电容电流进行分析。 对该系统电压情况分析如下: 一、在正常情况下一次电压,二次电压(测量、开口三角)关系如图: UA(向量)与Ua(向量)、Ua0(向量); UB(向量)与Ub(向量)、Ub0(向量); UC(向量)与Uc(向量)、Uc0(向量); 方向分别相同 在测量线圈中变比为:

即一二次侧电压比为60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为V,两相之间的电压为100V 在开口三角线圈中变比为: 即一二次侧电压比为,即如果系统线电压为6000V,则在每只PT的开口三角 二次线圈中电压为V, UL0(向量)=Ua(向量)+ Ub(向量) +Uc(向量) = = = =0 用向量图的形式表示如下, 由上图也可以看出系统正常时开口三角UL0(向量)为0 二、如果C相保险熔断,那么UC(向量)=0,有 UL0(向量)= Ua0(向量)+ Ub0(向量) = =

= = = =-Uc0(向量) 用向量图的形式表示如下, 可以看出此时开口三角电压与C相电压大小相等,方向相反。即有: 一相保险熔断(无论高压侧低压侧)开口三角电压约为33.3V 同理可知:如果一相保险熔断(无论高压侧低压侧),开口三角电压与该相二次电压大小相等,方向相反。电压约为33.3V 如果两相保险熔断(无论高压侧低压侧),开口三角电压与正常相二次电压大小相等,方向相同。电压约为33.3V 三、如果存在一相金属性接地(假设为C相金属性接地)则有: UA’(向量)=UAC(向量)=UA(向量)-UC(向量) UB’(向量)=UBC(向量)=UB(向量)-UC(向量) UA’(向量)=UAC(向量)=UA(向量)-UC(向量)

电压波动

1 概述 电压波动常给工业生产、科学研究和日常生活增添不少麻烦,有时会损坏设备,造成事故。随着现代科技的迅猛发展,电子计算机及各种电子设备的日益普及,厂矿、科研、邮电、医院等部门对供电电压的质量要求愈来愈高。但是,由于供电系统中大量冲击性负荷、间歇性负荷的存在以及各种短路故障的发生,常常导致系统电压短时、快速地变化,即电压波动。下面从以下几个方面对此问题作以浅析。 2 电压允许波动的范围 根据《供用电规则》规定,受电端的电压波动幅度不应超过:35kV及以下供电和对电压质量有特殊要求的用户为额定电压的±5%;10kV及以下高压供电和低电力用户为额定电压的± 7%;低压照明用户为额定电压的+5%~-10%。 3 电压波动对电气设备的影响 各种电气设备都设计在额定电压下工作。只有电网内各级电压符合标准,才能使用电设备处于最佳工况运行。当用户端电压波动超过允许值时,则用电设备的性能、生产效率、产品质量等都将受到不同程度的影响,发、供、用电设备的出力降低,供电线路损耗增加,电动机起动困难,另外还将影响通信、广播电视质 量等。 电压波动对电气设备的影响如下: 1)荧光灯及电视亮度随电压波动而变化,当电压在较大范围内持续波动时有闪烁感。 2)白炽灯电压高于额定值10%,寿命要缩短70%;电压低于额定值时,发光效率急剧下降。 3)高压水银灯当电压降低20%~30%,持续时间为0 05~1s时,便会熄灭。 4)试验设备这些设备要求有高度的输出精度,当输入电压波动时,其精度不能保证。 5)电热设备电压低于额定电压10%;供热量减少20%以上,升温时间延长;电压高于额定值会影响发热元件的寿命。 6)感应电动机电压波动会使其转矩、滑差率、负荷电流都受到影响,造成转速不稳或过负荷现象。当电压低于额定电压10%,电动机电磁转矩约下降为额定转矩的81%,而且起动时间延长、电流增大,造成绕组线圈发热、损耗增加、效率降低以及功率因数下降,影响电动机的寿命。对于用电磁起动器控制或装有失压保护的异步电动机瞬时电压降低会导致这些保护装置动作,设备就要停止运转,再起动需花时间。

电压瞬时波动的解决方案

1引言 目前,变频器技术广泛地运用到工业生产控制中,极大地提高了生产的综合效率;同时对其稳定性提出了更高的要求。在变频器的使用中经常受到瞬时电压波动的影响,特别是在连续生产工艺中遇到这种情况时,将会造成大面积的停车事故,造成较大的生产损失。本文就针对电压波动对变频器的影响,以siemen公司的6se70系列的变频器为例,充分使用变频器的功能,对变频器应用中如何解决瞬时电压波动问题提出了详细的解决方案和相关的重要参数设置。 2电压瞬时波动引起变频器停机的原因 电压瞬时波动产生的原因大致分为两种: (1)雷击电网引起的电压瞬时波动 雷雨季节时,如果高压电网受到雷击,高压侧避雷器动作,大量的雷击电流引向大地,引起电压瞬时下降,电压下降波形图如图1所示。 图1电压下降波形图 (2)电网设备发生事故引起的电压瞬时波动 如电网关系如图2所示。当bc线发生故障(如相间短路故障)时,变电站b和变电站c的保护装置保护性动作,用户站d 的电压出现瞬间波动,电压会在短时间瞬时下降。

以上两种情况出现的电压瞬时下降,会引起变频器的直流母线电压下降,变频器出现直流母线欠压(f008)故障使系统跳闸;如果瞬间电压下降达到了变频器控制回路继电器的断开电压时,控制回路继电器断开,变频器也会出现故障停车。 3柔性响应功能的原理 对于电压波动对变频器控制系统的影响,目前普遍都使用大型ups电源系统来解决。但如果只针对瞬间的电压下降而引起的直流母线下降问题,可以充分利用变频器的柔性响应功能即可实现。在电源出现瞬时电压下降的情况下,变频器按当时的电源电压降低输出电压,可以继续运行直到直流母线电压低于50%的额定值。当柔性响应功能激活时,控制深度被限制在异步电机空间矢量调节的范围内(最大输出电压减小)。同时,通过控制深度的限制,在电源不掉电的情况下,变频器可以按照设定的柔性响应最小输出电压(vflr min)的高值持续运行。如图3所示[1],当电源电压瞬间从额定运转电压(v drated)下降到柔性响应启动阀值(vdflr on),柔性响应启动。当电源恢复时,电源电压值达到柔性响应关闭阀值(vdflr off )时,柔性响应关闭。可以有效的预防电源瞬时电压下降引起的变频器直流母线欠压故障。柔性响应开关门坎值,一般在65%~115%,关闭门坎值位于超过开/关门坎值的5%处。flr调节器只在v/f开环/闭环控制模式和释放柔性响应用v/f=常数时被释放。调节器保证v/f比值为常数。在电压瞬间下降时变频器输出频率以及电机转速降低。 图3柔性响应功能的原理

零序电流互感器原理作用及如何使用

零序电流互感器原理作用及如何使用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一零序电流互感器原理、作用及如何使用 答:原理:零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。 作用:当电路中发生触电或漏电故障时,保护动作,切断电源。 使用:可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和. 二零序电流互感器它的零序的涵义是什么?它主要的功能与作用是什么? 答:如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流) 这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。

产生零序电流的两个条件: 1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生; 2、零序电流有通路。 以上两个条件缺一不可。因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。 零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC 三:在矿用开关里的馈电开关中,零序电流互感器与三相电抗器的作用分别是什么零序电流与零序电压的区别是什么选择性漏电是怎么实现的答:零序电流互感器的作用是使电流实现方向保护,真正实现选择性漏电保护,三相电抗器的作用是能在电路中起到阻抗的作用的。零序电流是三相电流不平衡所产生的,如漏电、三相电压不平衡时所产生。选择性漏电是通过电流的方向实现的,在总开关时,电流是从电源到负荷端流入进行检测,在分开关时,电流是从负荷端到电源端流入进行检测,零序电流互感器一般都用在检测零序电流从负荷端流入时实现选择性漏电的。

零序电压

零序电压 当中性点直接接地系统(又称大接地电流系统)中发生接地短路时,将出现很大的零序电流。还有在中性点不直接接地系统中当发生单相接地时,也会产生零序电压。 零序电源在故障点,故障点的零序电压最高,系统中距离故障点越远处的零序电压就越低,取决于测量点到大地间阻抗的大小。 正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了毛病(特别是单相接地时的零序分量)。 零序电压是三相线路中一相或者两相接地产生的,大小取决于接地的程度,是金属接地,非金属接地,就是接地电阻了。 零序电流和零序电压配电所或变电站中的后台监控软件中一般被用做故障信号来处理,其在正常情况下值为零,如果出现故障,电脑会自动报警。 零序电流 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0。如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)。这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件跳闸。 这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。

什么叫零序电流

什么叫零序电流 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0。如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)。这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流 什么是零序电流?什么是零序电抗? 1、零序电流: 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 2、零序电抗:零序参数(阻抗)与网络结构特别是和变压器的接线方式及中性点接地方式有关。一般情况下零序参数(阻抗)及零序网络结构与正、负序网络不一样。对于变压器零序电抗则与其结构(三个单相变压器组还是三柱变压器)、绕组的连接(△或Y)和接地与否等有关。当三相变压器的一侧接成三角形或中性点不接地的星形时从这一侧来看变压器的零序电抗总是无穷大的。因为不管另一侧的接法如何在这一侧加以零序电压时总不能把零序电流送入变压器。所以只有当变压器的绕组接成星形并且中性点接地时从这星形侧来看变压器零序电抗才是 有限的(虽然有时还是很大的)。对于输电线路零序电抗与平行线路的回路数有无架空地线及地线的导电性能等因素有关。零序电流在三相线路中是同相的互感很大因而零序电抗要比正序电抗大而且零序电流将通过地及架空地线返回架空地线对三相导线起屏蔽作用使零序磁链减少即使零序电抗减小。平行架设的两回三相架空输电线路中通过方向相同的零序电流时不仅第一回路的任意两相对第三相的互感产生助磁作用而且第二回路的所有三相对第一回路的第三相的互感也产生助磁作用反过来也一样.这就使这种线路的零序阻抗进一步增大。 1.用最简单的语言概括如下: 当今全球的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC 三相的顺序来定的。 正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。 负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。 零序:ABC三相相位相同,哪一相也不领先,也不落后。 系统里面什么时候分别用到什么保护? 三相短路故障和正常运行时,系统里面是正序。 单相接地故障时候,系统有正序负序和零序分量。 两相短路故障时候,系统有正序和负序分量。 两相短路接地故障时,系统有正序负序和零序分量。

相关文档
最新文档