专题9 有条件的分式的化简与求值(含答案)
初中数学化简求值专题

初中数学化简求值专题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-初中数学化简求值个性化教案3、整体代入例练:已知:x+x 1=3,求代数式(x+x 1)2+x+6+x1的值 例练:已知当x=7时,代数式ax 5+bx-8=8,求x=7时,8225++x bx a 的值.例练: 若ab=1,求11+++b ba a 的值 例练:已知y xy x y xy x y x ---+=-2232311,求的值 4、归一代入例练:已知a=3b,c=4a 求代数式cb a cb a -++-65292的值5、利用性质代入例练:已知a,b 互为相反数,c,d 互为倒数,x 的绝对值等于1,求代数式a+b+x 2-cdx 的值6、取特殊值代入例练:设a+b+c=0,abc >0,求ac b ++b a c ++c ba +的值是 A -3 B 1 C 3或-1 D-3或-1解决本类问题的关键在于化简,可能是单方向化简然后求值,即通过整式乘除,因式分解化简成一个最简单的代数式,然后代入字母对应的数字解决问题;也可能是双向化简,即从条件和问题同时入手化简。
找到两者对应关系后进行代入求值。
代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值 2.利用乘法公式求值3.设参数法与换元法求值4.利用非负数的性质求值5.利用分式、根式的性质求值举例分析1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x 的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解 已知条件可变形为3x 2+3x-1=0,所以6x 4+15x 3+10x 2=(6x 4+6x 3-2x 2)+(9x 3+9x 2-3x)+(3x 2+3x-1)+1=(3x 2+3x-1)(2z 2+3x+1)+1=0+1=1.说明 在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a ,b ,c 为实数,且满足下式: a 2+b 2+c 2=1,① 求a+b+c 的值.解 将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a 2+b 2+c 2+2(bc+ac+ab)=a 2+b 2+c 2=1, 所以 a+b+c=±1.所以a+b+c 的值为0,1,-1. 说明 本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.例6:已知1,0,x y z a b ca b c x y z++=++=求222222x y za b c++的值u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m 2x 2+m 2y 2-2mxy-2mny+y 2+n 2=0,(m 2x 2-2mxy+y 2)+(m 2y 2-2mny+n 2)=0,即 (mx-y)2+(my-n)2=0. 5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明. 例10 已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析 计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算. 同样(但请注意算术根!) 将①,②代入原式有一般题型1、先化简,再求值:12112---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1.3、先化简,再求值:,其中x=.4、先化简,再求值:,其中.※5、先化简,再求值,其中x 满足x 2﹣x ﹣1=0.6、化简:ba ba b a b 3a -++-- 7、先化简,再求值:,其中a=.8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个合适的数作为x 的值代入求值.9、先化简,再求值:(+1)÷,其中x=2.10、先化简,再求值:3x –3 – 18x 2 – 9,其中x = 10–3 11、先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (x x 1--2),其中x =2. 13、先化简,再求值:,其中.※14、先化简22()5525x x xx x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x x x x x --÷+--,其中32x =.17、先化简。
2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
专项10.1 分式有意义的条件及求值(解析版)

2020—2021八年级下学期专项冲刺卷(苏科版)专项10.1分式有意义的条件及求值姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、 选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果分式3x x +有意义,那么x 的取值范围是( ) A .x ≠3B .x ≠﹣3C .x ≠0D .x >﹣3 【答案】B【分析】根据分式有意义的条件可得x +3≠0,再解之即可得出答案.【详解】解:由题意得:x +3≠0,解得:x ≠﹣3,故选:B .【点睛】此题主要考查分式有意义的条件,解题的关键是熟知分母不为零.2.若分式13x -无意义,则x 的取值范围是( ) A .3x ≠B .3x =C .3x <D .3x > 【答案】B【分析】根据分式无意义的条件,即可求解.【详解】∵式13x -无意义, ∴x -3=0,即:3x =,故选B .【点睛】本题主要考查分式无意义的条件,掌握分式的分母不等于0.是解题的关键.3.若分式24x x -+的值为0,则x 的值是( ) A .2B .2-C .4-D .0 【答案】A【分析】根据分式的值为0的条件可直接进行求解.【详解】解:∵分式24x x -+的值为0, ∴20x -=且40x +≠,解得:2x =;故选A .【点睛】本题主要考查分式的值为零,熟练掌握分式的值为零的条件是解题的关键.4.若分式122x x -+的值为零,则x 的值等于( ) A .﹣1B .0C .2D .1 【答案】D【分析】根据分式值为零的条件列出10x -=,且值需保证220x +≠,即可得到答案.【详解】 解:要使分式122x x -+的值为零,必须10x -= ,220x +≠ , 解得,1x = ,故选:D .【点睛】本题考查的是分式的值为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.5.若分式224+-x x 有意义,则x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x ≠且2x ≠-D .2x ≠或2x ≠-【答案】C【分析】直接利用分式有意义则分母不能为0,进而得出答案.【详解】 解:分式224+-x x 有意义, 则x 2-4≠0,解得:x ≠2且x ≠-2.故选:C .【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.6.若a 2-3a +1=0,则a 2+21a 的值为( ) A .5B .6C .7D .8 【答案】C【分析】先由原等式得a 2+1=3a ,利用等式的基本性质两边同除以a ,可得13a a+=,再两边同时平方后得出222112a a a a ⎛⎫+=+- ⎪⎝⎭,即可计算出结果. 【详解】解:由a 2-3a +1=0得a 2+1=3a ,∵a ≠0,给a 2+1=3a 两边同除以a ,得13a a +=, 则22222111122a a a a a a a a ⎛⎫+=+⨯⨯+=++ ⎪⎝⎭, ∴222112927a a a a ⎛⎫+=+-=-= ⎪⎝⎭. 故选:C .【点睛】 本题考查了求分式的值,根据已知求出222112a a a a ⎛⎫+=+- ⎪⎝⎭是解题的关键.7.若1113a b -=,则ab a b-的值是( ) A .3- B .13- C .3 D .13- 【答案】A【分析】 先根据1113a b -=求出ab 与a -b 的关系,再代入所求代数式进行计算即可. 【详解】解:∵1113b a a b ab --==,即ab =-3(a -b ), ∴原式=()3a b a b ---=-3. 故选:A .【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.8.若分式211x x -+值为0,则x 的值为( ) A .1B .±1C .2-D .2【答案】A【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0,据此解答即可.【详解】 解:根据题意得,21=010x x ⎧-⎨+≠⎩, 解得:x =1,故选:A .【点睛】要注意分母的值一定不能为0,分母的值是0时分式没有意义.9.下列各式中,是分式的是( )A .1x x +B .32x y +C .3xD .1x π- 【答案】A【分析】根据分式的定义逐项分析即可.【详解】 A.1x x +的分母含字母,是分式; B.32x y +的分母不含字母,不是分式; C.3x 的分母不含字母,不是分式; D.1x π- 的分母不含字母,不是分式; 故选A .【点睛】本题主要考查分式的定义,熟练掌握分式的定义是解答本题的关键.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.10.分式31x x -+在实数范围内有意义,则x 的取值范围是( ) A .1x =-B .1x ≠-C .3x ≠D .3x ≠- 【答案】B【分析】根据分式的分母不为0即可求解.【详解】解:因为该分式有意义,∴10x +≠,∴1x ≠-.故选:B .【点睛】本题考查了分式有意义的条件,其中,牢记分母不为0是解题的关键.11.式子12x -有意义,则x 满足的条件是( ) A .x ≠0B .x >0C .x >2D .x ≠2【答案】D【分析】根据分式有意义的条件解答.【详解】解:要使分式12x-有意义,必须满足:x-2≠0,即x≠2,故选D.【点睛】本题考查分式的应用,熟练掌握分式有意义的条件是解题关键.12.要使式子32m+有意义,则m的取值范围是()A.m≥﹣2,且m≠2B.m≠2C.m≥﹣2 D.m≥2【答案】B【分析】根据立方根及分式有意义的条件列出关于m的不等式,求出m的取值范围即可.【详解】解:∵322mm+-有意义,∴m﹣2≠0,解得m≠2.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.分式261xx-+有意义的条件是________.【答案】1x≠-【分析】根据分式的分母不为0列出不等式,解不等式得到答案.【详解】解:要使分式261xx-+有意义,必须x+1≠0,解得,x≠﹣1,故答案是:x≠﹣1.此题主要考查分式有意义的条件,解题的关键是熟知分式的分母不为0.14.若分式1x有意义,则x的取值范围是_____.【答案】0x≠;【分析】根据分式有意义的条件可得x≠0.【详解】解:由题意得:x≠0,故答案为:0x≠.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.15.下列各式:15(1﹣x),43xπ-,222x y-,1x+x,23xx,其中是分式的有_____个.【答案】2【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:15(1﹣x),43xπ-,222x y-,分母中都不含字母,因此它们是整式,而不是分式.1 x +x,23xx,分母中含有字母,因此是分式.分式有两个,故答案为:2.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以43xπ-,不是分式,是整式.16.若分式32x-的值为负数,则x的取值范围是_______.【答案】2x<【分析】根据分式值为负的条件列出不等式求解即可.解:∵32x -<0 ∴x-2<0,即2x <.故填:2x <.【点睛】本题主要考查了分式值为负的条件,根据分式小于零的条件列出不等式成为解答本题的关键.17.已知x ﹣1x =1,则4221x x x-+的值为_____. 【答案】2【分析】将已知等式去分母整理后,代入原式计算即可得到结果.【详解】解:∵x ﹣1x=1 ∴x 2﹣1=x ,∴x 2=x +1,∴原式=2221)1(x x x -+ =(1)11x x x +++ =211x x x +++ =111x x x ++++ =2(1)1x x ++ =2,故答案为:2.【点睛】此题考查了分式的值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.18.若分式2824x x -+的值为正数,则x 的取值范围为_____. 【答案】4x <先说明分母是非负数,再根据分式的值是正数列式进行计算即可得解.【详解】∵20x ≥∴2+40x >∵分式2824x x -+的值为正数 ∴820x ->∴4x <故答案为4x <.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.先化简,再求值:2321(2)22m m m m m -++-÷++,从﹣2,﹣1,1,2中选取一个你认为合适的m 值代入求值. 【答案】11m m +-;0 【分析】先根据分式的混合运算法则化简,然后根据分式有意义的条件选择合适的数代入求值即可.【详解】 原式()22134222m m m m m -⎛⎫-=+÷ ⎪+++⎝⎭ ()221221m m m m -+=⨯+- ()()()211221m m m m m -++=⨯+-11m m +=- ∵要使得原分式运算有意义,∴2m ≠-和1,选择1m =-代入化简结果,原式11011-+==--. 【点睛】本题考查分式的化简求值问题,熟练掌握分式的混合运算法则,理解分式有意义的条件是解题关键.20.先化简,再求值:(21a a +﹣2)÷2222a a a a+-+,其中a 2﹣4=0. 【答案】1a -,1【分析】先根据分式的混合运算法则进行化简,然后结合条件求值即可.【详解】 原式()()()221212a a a a a a a +--+=÷+ ()211a a a a -=⨯- 1a =-∵240a -=,且原分式运算中,2a ≠-,∴2a =,代入化简结果得:原式211=-=.【点睛】本题考查分式的化简求值问题,掌握分式的混合运算法则,并注意分式有意义的条件是解题关键.21.先化简分式:(22244a a a a --+-32a -)234a a -÷-,再从2,3,4这三个数中取一个合适的数作为a 的值代入求值.【答案】a +2,6【分析】先根据分式的混合运算法则化简原式,然后结合分式有意义的条件选择合适的数字代入求解即可.【详解】解:原式()()()()22223232a a a a a a a ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()()223223a a a a a a +-⎡⎤=-⨯⎢⎥---⎣⎦ ()()22323a a a a a +--=⨯-- 2a =+由原式可得:23a ≠±,,∴符合条件的数只有4a =,代入化简结果得:原式=6.【点睛】本题考查分式的化简求值问题,掌握分式混合运算法则,并注意结合分式有意义的条件是解题关键.22.先化简,再求值:21111a a a ⎛⎫+÷ ⎪--⎝⎭,请在-1、0、1、2当中选出一个合适的数a 代入求值. 【答案】1a a +;23【分析】先根据分式的运算法则化简,然后代入一个使原分式有意义的a 的值即可.【详解】 解:原式=()()22211111111a a a a a a a a a a a ⎛⎫-+-÷=⨯= ⎪-+-+-⎝⎭, ∵a ≠-1、0、1,∴当a =2时,原式22213==+. 【点睛】此题考查的是分式的化简求值,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键. 23.先化简再求值:22293(4)232y x y y x y x y x y y x--+÷--+-,x 2=4y 2. 【答案】2x x y -;12【分析】根据分式的运算法则先化简,然后代入条件求解即可.【详解】原式()()()()2423332232x y x y x y x y y y x y x y x y y x --+-⎡⎤=+÷-⎢⎥--+-⎣⎦ ()2313232x y y x yx y y x -=⨯---- 3322x y y x y y x-=--- 2x x y=- 由条件可得:2x y =±,且由分式有意义的条件可得:2x y ≠,∴2x y =-,代入化简结果得: 原式21222y y y -==--. 【点睛】本题考查分式的化简求值问题,掌握分式的运算法则并注意分式有意义的条件是解题关键. 24.已知y =,求2x y 的值. 【答案】18【分析】由y =可得:3x =且3,x ≠ 可得x 的值,再求解,y 从而可得答案.【详解】 解:y =303030x x x ⎧-≥⎪∴-≥⎨⎪-≠⎩3x ∴=且3,x ≠3,x ∴=-0+0+122,33y ∴==--- ()()223218.x y ∴=-⨯-=-【点睛】本题考查的是算术平方根的非负性的应用,分式有意义的条件,代数式的值,掌握以上知识是解题的关键.。
第初中数学竞赛五讲有条件的分式的化简与求值(含答案)

第五讲 有条件的分式的化简与求值给出一定的条件,在此条件下求分式的值称为有条件的分式求值.而分式的化简与求值是紧密相连的,求值之前必须先化简,化简的目的是为了求值,先化筒后求值是解有条件的分式的化简与求值的基本策略.解有条件的分式化简与求值问题时,既要瞄准目标.又要抓住条件,既要根据目标变换条件.又要依据条件来调整目标,除了要用到整式化简求值的知识方法外,还常常用到如下技巧:1.恰当引入参数;2.取倒数或利用倒数关系; 3.拆项变形或拆分变形; 4.整体代入;5.利用比例性质等. 例题求解 【例1】若a d d c cb b a ===,则dc b a dc b a +-+-+-的值是 . (第12届“希望杯”邀请赛试题)思路点拨 引入参数,利用参数寻找a 、b 、c 、d 的关系. 注:解数学题是运用巳知条件去探求未知结论的一个过程.如何运用已知条件是解题顺畅的重要前提,对巳知条件的运用有下列途径: (1)直接运用条件; (2) 变形运用条件; (3) 综合运用条件; (4)挖掘隐含条件.在解某些含多个字母的代数式问题时,如果已知与未知之间的联系不明显,为了沟通已知与未知之间的联系,则可考虑引入一个参数,参数的引入,可起到沟通变元、消元的功能.【例2】如果11=+b a ,12=+c b ,那么ac 2+等于( ) A .1 B .2 C .3 D .4(2002年全国初中数学联赛武汉选拔赛) 思路点拨 把c 、a 用b 的代效式表示.【例3】已知1=xyz ,2=++z y x ,16222=++z y x ,求代数式yzx x yz z xy 212121+++++的值. (2003年北京市竞赛题)思路点拨 直接通分,显然较繁,由x+y+z=2,得z=2-x -y ,x=2-y -z ,z =2-x -y ,从变形分母入手.【例4】不等于0的三个数a 、b 、c 满足cb ac b a ++=++1111,求证a 、b 、c 中至少有两个互为相反数.(天津市竞赛题)思路点拨 要证a 、b 、c 中至少有两个互为相反数,即要证明(a+b)(b+c)(c+a)=0,使证明的目标更加明确.【例5】 (1)已知实数a 满足a 2-a -1=0,求487-+a a 的值.(2003年河北省竞赛题) (2)汜知1325))()(())()((=+++---a c c b b a a c c b b a ,求ac cc b b b a a +++++的值. (“北京数学科普日”攻擂赛试题) 思路点拨 (1)由条件得a 2=a+1,11=-aa ,通过不断平方,把原式用较低的多项式表示是解题的关键.(2)已知条件是b a b a +-、cb c b +-、a c ac +-三个数的乘积,探求这三个数的和与这三个数的积之间的关系,从而求出b a b a +-+c b c b +-+ac ac +-的值是解本例的关键.学历训练1.已知032=-+x x ,那么1332---x x x = . (2003年淄博市中考题)2.已知712=+-x x x ,则1242++x x x = .3.若a 、b 、c 满足a+b +c=0,abc>0,且c c b b a a x ++=,y=)11()11()11(ba c a cbc b a +++++,则xy y x 32++= . (“祖冲之杯”邀请赛试题) 4.已知43322a c c b b a -=-=+,则ba cb a 98765+-+= .(第12届“五羊杯”竞赛题) 5.已知a 、b 、c 、d 都是正数,且d c b a <,给出下列4个不等式:①d c c b a a +>+;②dc cb a a +<+;③d c d b a b +>+;④ dc db a b +<+,其中正确的是( ) (2002年山东省竞赛题) A .①③ B .①④ C .②④ D .②③ 6.设a 、b 、c 是三个互不相同的正数,如果abb ac b c a =+=-,那么( ) A . 3b=2c B .3a=2b C .2b=c D .2a=b. (“祖冲之杯”邀请赛试题) 7.若4x —3y 一6z=0,x+2y -7z=0(xyz ≠0),则代数式222222103225z y x z y x ---+的值等于( ).A . 21-219- C .-15 D . -13. (2003年全国初中数学竞赛题) 8.设轮船在静水中速度为v ,该船在流水(速度为u <v )中从上游A 驶往下游B ,再返回A ,所用时间为T ,假设u =0,即河流改为静水,该船从A 至B 再返回B ,所用时间为t , 则( )A .T=tB .T<tC .T>tD .不能确定T 、t 的大小关系9.(1)化简,求值:24)44122(22+-÷++--+-a a a a a a a a ,其中a 满足0122=-+a a ; (2002年山西省中考题)(2)设0=++c b a ,求abc c ac b b bc a a +++++222222222的值.10.已知xz z y y x 111+=+=+,其中x 、y 、z 互不相等,求证:x 2y 2z 2=1.11.若0≠abc ,且b ac a c b c b a +=+=+,则abca c cb b a ))()((+++= . 12.已知a 、b 、c 满足1222=++c b a ,3)11()11()11(-=+++++ba c c abc b a ,那么 a+b+c 的值为 . 13.已知1=+y x xy ,2=+z y yz ,3=+xz zx,则x 的值为 . 14.已知x 、y 、z 满足41=+y x ,11=+z y ,371=+x z ,则xyz 的值为 . (2003年全国初中数学竞赛题)15.设a 、b 、c 满足abc ≠0,且c b a =+,则abc b a ca b a c bc a c b 222222222222-++-++-+的值为A .-1B .1C .2D .3 (2003年南通市中考题) 16.已知abc=1,a+b+c=2,3222=++c b a ,则111111-++-++-+b ca a bc c ab 的值为( ) A .-1 B .21-C .2D .32- (大原市竞赛题) 17.已知—列数1a 、2a 、3a 、4a 、5a 、6a 、7a ,且1a =8,7a =5832,766554433221a a a a a a a a a a a a =====,则5a 为( ) A .648 B . 832 C .1168 D .194418.已知0199152=--x x ,则代数式)2)(1(1)1()2(24----+-x x x x 的值为( )A .1996B .1997C .1998D .1999 19.(1)已知ac b =2,求)111(333333222cbacb ac b a ++⋅++的值;(2)已知x 、y 、z 满足1=+++++y x z x z y z y x ,求代数式yx z x z y z y x +++++222的值. (2002年北京市竞赛题)20.设a 、b 、c 满足c b a c b a ++=++1111,求证:当n 为奇数时,n n n n n n cb ac b a 1111++=++ (波兰竞赛题)21.已知012=--a a ,且1129322322324-=-++-axa a xa a ,求x 的值. (2000年上海市高中理科班招生试题)22.某企业有9个生产车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A,B两组检验员,其中A组有8名检验员,他们先用2天将第一、第二两个车间的所有成品(指原有的和后来生产的)检验完毕后,再检验第三、四两个车间的所有成品,又用去了3天时间,同时,用这5天时间,B组检验员也检验完余下的5个车间的所有成品.如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.(1)试用a、b表示B组检验员检验的成品总数;(2)求B组检验员的人数.(2001年天津市中考题) 答案:。
人教版 八年数学上册 竞赛专题:分式的化简与求值(含答案)

人教版 八年数学上册 竞赛专题:分式的化简与求值(含答案)【例l 】 已知2310a a -+=,则代数式361a a +的值为 .(“希望杯”邀请赛试题)解题思路:目前不能求出a 的值,但可以求出13a a+=,需要对所求代数式变形含“1a a +”.【例2】 已知一列数1234567,,,,,,,a a a a a a a 且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为( ) A .648 B .832 C .1168 D .1344(五城市联赛试题) 解题思路:引入参数k ,把17a a 用k 的代数式表示,这是解决等比问题的基本思路.【例3】 3(0)x y z a a ++=≠.求222()()()()()()()()()x a y a y a z a z a x a x a y a z a --+--+---+-+-.(宣州竞赛试题) 解题思路:观察发现,所求代数式是关于x a y a z a ---、、的代数式,而条件可以拆成x a y a z a ---、、的等式,因此很自然的想到用换元法来简化解题过程.【例4】 已知1,2,3,xy yz zxx y y z z x===+++求x 的值. (上海市竞赛试题)解题思路:注意到联立等式得到的方程组是一个复杂的三元一次方程组,考虑取倒数,将方程组化为简单的形式.【例5】 不等于0的三个正整数,,a b c 满足1111a b c a b c++=++,求证:,,a b c 中至少有两个互为相反数.解题思路:,,a b c 中至少有两个互为相反数,即要证明()()()0a b b c c a +++=. (北京市竞赛试题)【例6】 已知,,a b c 为正整数,满足如下两个条件:①32;a b c ++=②14b c a c a b a b c bc ac ab +-+-+-++= 解题思路:本题熟记勾股定理的公式即可解答.(全国初中数学联赛试题)能力训练1.若a b c d b c d a ===,则a b c d a b c d-+-+-+的值是 .(“希望杯”邀请赛试题)2.已知2131x x x =-+,则24291x x x =-+ . (广东竞赛试题)4.已知232325x xy y x xy y +-=--,则11x y -= .5.如果111,1a b b c+=+=,那么1c a +=( ).A .1B .2C .12 D .14(“新世纪杯”竞赛试题)6.设有理数,,a b c 都不为0,且0a b c ++=,则222222222111b c a c a b a b c +++-+-+-的值为( ).A .正数B .负数C .零D .不能确定7.已知4360,270(0)x y z x y z xyz --=+-=≠,则22222223657x y z x y z++++的值为( ). A .0 B .1 C .2 D .不能确定8.已知211x x mx =-+,则36331x x m x -+的值为( )A .1B .313m + C .2132m - D .2131m + 9.设0a b c ++=,求222222222a b c a bc b ac c ab+++++的值.10.已知111x y z y z x+=+=+其中,,x y z 互不相等,求证2221x y z =. (天津市竞赛试题)11.设,,a b c 满足1111a b c a b c++=++, 求证2121212121211111n n n n n n a b c a b c------++=++.(n 为自然数) (波兰竞赛试题)12.三角形三边长分别为,,a b c . (1)若a abc b c b c a++=+-,求证:这个三角形是等腰三角形;(2)若1111a b c a b c-+=-+,判断这个三角形的形状并证明.13.已知1ax by cz ===,求444444111111111111a b c x y z +++++++++++的值. (“华杯赛”试题)14.解下列方程(组): (1)18272938x x x x x x x x +++++=+++++; (江苏省竞赛试题) (2)596841922119968x x x x x x x x ----+=+----;(“五羊杯”竞赛试题)(3)111211131114x y z y z x z x y ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪+⎩.(北京市竞赛试题)B 级1.设,,a b c 满足0a b c ++=,0abc >,若a b c x a b c=++, 111111()()()y a b c b c c a a b=+++++,则23x y xy ++= .2.若0abc ≠,且a b b c c a c a b+++==,则()()()a b b c c a abc +++= . 3.设,,a b c 均为非零数,且2(),3(),4()ab a b bc b c ac a c =+=+=+,则a b c ++= .4.已知,,x y z 满足1x y z y z x z y x ++=+++,则222x y z y z x z y x+++++的值为 .5.设,,a b c 是三个互不相同的正数,已知a c c bb a b a-==+,那么有( ). A .32b c = B .32a b = C .2b c = D .2a b =6.如果0a b c ++=,1114a b c ++=-,那么222111a b c++的值为( ).A .3B .8C .16D .208.若615325x y x y y x y x -==-,则222245623x xy y x xy y-+-+的值为( ). A .92 B .94C .5D .6 (全国初中数学联赛试题)9.已知非零实数,,a b c 满足0a b c ++=. (1)求证:3333a b c abc ++=; (2)求()()a b b c c a c a bc a b a b b c c a---++++---的值. (北京市竞赛试题)10.已知2410a a ++=,且42321322a ma a ma a++=++.求m 的值. (北京市竞赛试题)(天津市竞赛试题)13.某商场在一楼和二楼之间安装了一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部. (1)扶梯露在外面的部分有多少级?(2)现扶梯近旁有一从二楼下到一楼的楼梯道,台阶的级数与自动扶梯的级数相等,两人各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘自动扶梯上楼(不考虑扶梯与楼梯间的距离).求男孩第一次追上女孩时走了多少级台阶? (江苏省竞赛试题)参考答案例1 181提示:3363111aa a a +=+例2 A 提示:7665544332216a a a a a a a a a a a a k ∙∙∙∙∙==71a a =58328,得k=31±,又25443322151k a a a a a a a a a a =∙∙∙=例3油x+y+z=3a ,得(x-a )+(y-a )+(z-a )=0.设x-a=m ,y-a=n ,z-a=p ,则m+n+p=0,即p=-(m+n ).原式=222p n m pm np mn ++++=()222p n m n m p mn ++++=()()2222n m n m n m mn ++++-=-21 例4 x=512 提示:由已知条件知xy ≠0,yz ≠0,取倒数,得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++,31,21,1zx x z zx z y xy y x 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+,3111,2111,111x z z y y x ①+②+③,得1211111=++z y x 例5 提示:由已知条件,得()()a bc acb abc bc ac b ab +++++++22=()()[]()c a b a c b a b ++++=()()()0=+++a c c b b a例6 由勾股定理,结论可表示为等式:a=b+c ,①或b=a+c ,②或c=b+a ,③,联立①③,只需证a=16或或b =16或c =16,即(a -16)(b -16)(c -16)=0. ④ 展开只需证明0=abc -16(ab +bc +ac )+162(a +b +c )-163=abc -16(ab +bc +ac )+163 ⑤ 将①平方、移项,有a 2+b 2+c 2=322-2(ab +bc +ca ),⑥ 又将②移项、通分,有 0=14-(++b c a bc ++c a b ac -+a b cab++) =14-(2+ab ac a abc -+2+bc ab b abc -+2ac bc c abc +-)=2228()4()4abc ab bc ac a b c abc -+++++=28()4[322()]4abc ab bc ac ab bc ca abc-+++-++把⑥代入等式中,0=316()164abc ab bc ac abc-+++①② ③=23 16()16()164abc ab bc ac a b cabc-+++++-=(16)(16)(16)4a b cabc---当a-16=0时,由①有a=16=b+c,由勾股定理逆定理知,为斜边的直角三角形.同理,当b=16或c=16时,分别有b=a+c或c=b+a角三角形.A级1. 0或-22. 15∵231x xx-+=1,∴x+1x=4.又∵42291x xx-+=5,∴24291xx x-+=153.34. A5. C 提示:b 2+c 2-a2=-2bc6.B7. C 提示:取倒数,得x+1x=1+m,原式的倒数=x3+31x-m38. 1 提示:2a2+bc=2a2+b(-a-b)=a2-ab+a2-b2=(a-b)(a+a+b)=(a-b)(a-c)9. 提示:由x+1y=y+1z,得x-y=1z-1y,得zy=y zx y--10. 提示:参见例5得(a+b)(b+c)(a+c)=011. (1)∵()a b cbc+=()b cb c a++-,∴(b+c)(ab+ac-a2-bc)=0.∴(b+c)(a-b)(c-a)=0.∵b+c≠0,∴a=b或c=a.∴这个三角形为等腰三角形.(2)∵1a+1c=1+a b c-+1b,∴a cac+=()a ca b c b+-+∴(a-b+c)=ac,∴(a-b)(b-c)=0, a=b或b=c,∴这个三角形为等腰三角形.12. 3 x =1a ,y =1b ,c =1z ,∴411a ++411x +=411a ++4111a+=1,∴原式=3. 13. (1)x =-112(2)x =12314(3)(x ,y ,z )=(2310,236,232)提示:原方程组各方程左端通分、方程两边同时取倒数.B 级1. 22. -1或8 提示:设a b c +=b c a +=c a b +=k ,则k =-1或2 3. 1128354. 0 提示:由x y z +=1-y z x +-z x y +,得:14=x -xy z x +-xz x y + 5. A 6. C 7. A 提示:由已知条件得x =3y8. (1)由a +b +c =0,得a +b =-c ∴a 3+b 3+c 3=-3ab (a +b )=3abc(2)∵(a b c -+b c a -+c a b -)·c a b -=1+22c ab , ∴同理:(a b c -+b c a -+c a b -)·a b c -=1+22a bc ,(a b c -+b c a -+c a b -)·b c a-=1+22b ac ,∴左边=3+22c ab +22a bc+22c ab =3+3332()a b c abc ++=99. ∵a 2+4a +1=0,∴a 2+1=-4a ,①a ≠0. 4232122a ma a ma a++++=2222(1)(2)2(1)a m a a a ma ++-++=3.把①代入上式中,222216(2)8a m a a ma +--+=3,消元得1692)8m m+--+=3,解得m =19.10. 设甲、乙、丙三人单独完成此项工作分别用a 天、b 天、c 天,则,,bc a p b c ac b q a c ab c x a b ⎧=⋅⎪+⎪⎪=⋅⎨+⎪⎪=⋅⎪+⎩即111,111,111p a b c q b a c x c a b ⋅=+⋅=+⋅=+解得x =14. 11.(1)设女孩速度x 级/分,电梯速度y 级/分,男孩速度2x 级/分,楼梯S 级,则 27271818.S x y S x y -⎧=⎪⎪⎨-⎪=⎪⎩,得13.5271818S S -=-,327418S S -=-,∴S =54. (2)设男孩第一次追上女孩时走过扶梯m 编,走过楼梯n 编,则女孩走过扶梯(m -1)编,走过楼梯(n -1)编,男孩上扶梯4x 级/分,女孩上扶梯3x 级/分.545454(1)54(n 1)423m m m x x x x --+=+,即114231m n m n --+=+,得6n +m =16,m ,n 中必有一个是正整数,且0≤︱m -n ︱≤1.①16mn -=,m 分别取值,则有显然,只有m =3,n =126满足条件,故男孩所走的数=3×27+126×54=198级.∴男孩第一次追上女孩时走了198级台阶.。
化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值--中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①分式的化简求值②整式的化简求值化简求值题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。
2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!一、分式1.分式的加减乘除运算,注意去括号,添括号时判断是否需要变号,分子计算时要看作整体。
2.分式有意义、无意义的条件:因为0不能做除数,所以在分式AB中,若B≠0,则分式AB有意义;若B=0,那么分式AB没有意义.3.分式的加减法同分母的分式相加减,分母不变,把分子相加减,即ac±bc=a±bc.异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即ab±cd=ad±bcbd.4.分式的乘除法分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即ab·cd=acbd.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即ab÷cd=ab·dc=adbc.5.分式的混合运算在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.二、因式分解因式分解的方法:(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a 2-b 2=(a +b )(a -b ).②运用完全平方公式:a 2±2ab +b 2=(a ±b )2.化简求值的解法第一种是直接代入求值,已知给出了字母的值或通过已知能求出字母的值。
初中数学 培优专题9 分式方程及其应用含答案

精品文档12、分式方程及其应用【知识精读】 1. 解分式方程的基本思想:把分式方程转化为整式方程。
2. 解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;()解这个整式方程;2)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于3 (零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得3.的解是否为原方程的根,以及是否符合题意。
下面我们来学习可化为一元一次方程的分式方程的解法及其应用。
【分类解析】2x解方程:例1. 1??11x?x?解首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,分析:完后记着要验根)11)(x??(x,得解:方程两边都乘以2,1)x(x?1)(?1x2?(x?)?22,1??x即x?2x?2?3?x?23经检验:x?是原方程的根。
2精品文档.精品文档5?x?1x?6x?2x解方程例2. ???6x?2x?7x?3x?分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现)x?3?x2)与((x?6)与x?7)、((,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用的值相差1 分式的等值性质求值。
1x?6x?5x?2x?解:原方程变形为:???2?3xx?6x?x?7方程两边通分,得11?)x(x?6)(x?7)(?2)(x?3)6)(x??3?2)(x7)?(x所以(x?36?即8x?9???x29??x经检验:原方程的根是。
219??1032x?3424x?2316x12x例3. 解方程:???5x?98x?74x??4x38可化为一个整数与一个简单的分因此,分析:方程中的每个分式都相当于一个假分数,数式之和。
12213解:由原方程得:???4?3??4?574x????4x38x98x2222即???7x?x?68?108xx8?9811,于是?)x?7)()(8x?108?9(8x?)(8x6所以(8x?9)(8x?6)?(8x?10)(8x?7)解得:x?1经检验:x?1是原方程的根。
分式化简求值复习ppt课件

x 1
xx 1
x
1x 1 x 12
xx 1
x 1
当x=2013时,原式=2013
x
直击中考
11.(2013本溪市)先化简,在求值:
(
m
m2 1 2 2m
1
m
m 2
m
)
(1
2 m
),其中m=-3
解:( m
m2 1 2 2m
1
m m2
m
)
(1
2 m
)
m 1m 1 m 12
m
mm 1
m m
2
4 2
] a
4
3
2
当a
3 2时,原式
1 32-2
1 3
3 3
6.(2013铁岭市)先化简,在求值:(1
7.(2013鞍山市)先化简,在求值:
a
1
) 1
a
2
4a a2 1
4
其中a=-2
(x 3 7 ) 4 x x3 x3
,其中 x
2 4
8.(2013抚顺市)先化简,在求值:(a 1
用符号语言表达: a c ac b d bd
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
a 用符号语言表达: c a d ad b d b c bc
分式的加减
同分母相加
B C BC AA A
异分母相加
B C BD CA BD AC
A D AD AD
AD
通分
在分式有关的运算中,一般总是先把分子、 分母分解因式;
足__x___3__
x3
1.分式的基本性质:
分式的分子与分母同乘以(或除以) 一个不为0的整式 分式的值 不变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题9 有条件的分式的化简与求值知识解读给出一定的条件,在此条件下求分式的值称为有条件的分式求值.而分式的化简与求值是紧密相连的,求值之前必须先化简,化简的目的是为了求值,先化简后求值是解有条件的分式的化简与求值的基本策略.解有条件的分式化简与求值问题时,既要瞄准目标,又要抓住条件,既要根据目标变换条件,又要依据条件来调整目标,除了要用到整式化简求值的知识方法外,还常常用到如下技巧:①恰当引入参数; ②取倒数或利用倒数关系; ③拆项变形或拆分变形; ④整体代入; ⑤利用比例性质等。
典例示范一、变条件或变代数式例1 已知311=-y x ,求yxy x yxy x ----2353的值. 【提示】 思路1:(条件变形)我们可以将311=-y x ,化简为y-x=3xy ,然后将中的yxy x yxy x ----2353中的y 一x 用3xy 代入化简; 思路2:(代数式变形)将y xy x y xy x ----2353的分子、分母同时除以xy ,然后将311=-yx 整体代入求值;思路3:(特殊值代入)可以令y=1,则x=41,代入代数式求值. 【解答】【技巧点评】(1)由本题的条件311=-yx 不能求出x ,y 的值,只能考虑使用整体代入的方法;(2)分式的基本性质是分式变形的主要依据,在解题过程中要加深理解,而且要运用整体思想、转化思想等数学思想,变形对象可能是变形已知条件,也可能变形待求的代数式.跟踪训练11. 已知a≠0,b≠0,且411=+b a ,求bab a bab a 323434-+-++的值。
二、“1”的妙用例2 已知非零实数a ,b ,c 满足3111111,1222-=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++b a c c a b c b a c b a ,求a+b+c的值。
【提示】.⎪⎭⎫⎝⎛++=+⎪⎭⎫ ⎝⎛+c b a a c b a 111111【解答】【技巧点评】在解题时,遇到形如abc=1的条件,常常考虑把问题中的abc 换成1,但有时候,把1换成abc ,往往可能收到意想不到的效果。
在本题中,巧妙把3变成1+1+1,而3个“1”分别替换成了a×a 1 ,b×b 1,c×c1跟踪训练22. 若abc=1,则111++++++++c ac cb bc b a ab a 的值是( ) A.2 B.1 C.0 D.-1三、倒数求值法例3 已知a ,b ,c 满足51,41,31=+=+=+a c ca c b bc b a ab ,求cabc ab abc++的值. 【提示】ca b abc ac bc ab a b ab b a 111,11++=+++=+ 【解答】【技巧点评】解数学题是运用已知条件去探求未知结论的一个过程.如何运用已知条件是解题顺畅的重要前提,灵活根据题目特征寻找相应的解题策略,是解决问题的关键.跟踪训练33.(全国竞赛试题)已知y x xy +=1,z y yz +=2,xz zx+=3,则z y x 111++的值为( ) A.6 B.61 C.1211 D.611四、分子变“和”,裂项巧解例4 若a ,b ,c 两两不相等,求abbc ac c ba c ac bc ab bc a b bc ac ab a c b a +----++----++----222222 的值。
【提示】c a b a c a b a c a b a bcac ab a c b a -+-=---+-=+----11))(()()(22 【解答】【技巧点评】化简是解决代数问题永恒的主题,而将分子、分母化成乘积的形式是化简的前提,当然本题中,分子没有化成乘积的形式,是因为分子恰好是分母各因式的和。
跟踪训练44. 已知032=-+x x ,,那么=---1332x x x .五、两个等式和三个未知数例5 已知11=+b a ,11=+c b ,则=+ac 1( ) A.11-a B.11-b C.)1(1-b a D.1【提示】已知条件中含有两个等式,a ,b ,c 共三个未知数,可考虑用含b 的代数式表示出a 和c ,然后代入ac 1+中. 【技巧点评】已知条件中有几个未知数,一般需要几个方程,如果方程的数目少于未知数的个数,可令其中多出的未知数为参数.跟踪训练55. 若4x -3y -6z=0,x +2y -7z=0(xyz≠0),则代数式222222103225z y x z y x ---+的值为( )A.21-B.219- C.-15 D.-13 六、凑xy解决问题 例6 若532-=+x yy x ,那么2222326104y x y xy x +++的值是 ( ) 【提示】将2222326104y x y xy x +++的分子、分母同时除以xy.【技巧点评】2222326104yx y xy x +++的分子、分母都是2次,当分子、分母同时除以xy 时,正好可以凑成x y和y x跟踪训练66.(江苏省数学竞赛)已知b a b a +=+511,则baa b +的值是 ( ) A.5 B.7 C.3 D.31拓居延伸七、化二次根式为有理数例7 (希望杯试题)已知122+=x ,则分式15119232----x x x x 的值是 。
【提示】 直接代入分式,计算很繁琐,本题可化122+=x 为()812=-x .跟踪训练77.已知34-=x ,求1582318262234+-++--x x x x x x 的值。
竞赛链接例8 (全国初中数学联赛试题)已知x ,y 为整数,且满足⎪⎪⎭⎫⎝⎛--=++44221132)11)(11(y x y x y x ,32)11)(11(444422=-++y x y x y x y x ,则x+y 的可能的值有 ( ) A.1个 B.2个 C.3个 D.4个【提示】将⎪⎪⎭⎫⎝⎛--=++44221132)11)(11(y xy x y x 左、右两边的分子、分母因式分解,便于约分。
【技巧点评】化简是解决代数问题永恒的主题,而因式分解是化简的前提。
跟踪训练88.(希望杯邀请赛试题)若a ,b ,c 满足a+b+c=0,abc=8,则cb a 111++的值是 ( )A.正数B.负数C.零D.正数或负数培优训练直击中考1. ★已知2111=-b a ,则ba ab-的值是 ( ) A.21 B.-21C.2D.-2 2.★已知ab b a 622=+且a>b>0,则a 的值为 ( )A.2B.2±C.2D.2±3.★★(2017·江苏扬州)若2=b a ,6=c b 则=ca. 4.★已知1=+y x xy ,2=+z y yz ,3=+x z zx,则x 的值为 .5.(2017·江苏镇江)已知实数m 满足0132=+-m m ,则代数式21922++m m 的值等于 . 6.★已知x+y=-4,xy=-12,求1111+++++y x x y 的值.7. ★★设a+b+c=0,求abc c ac b b bc a a +++++222222222的值。
挑战竞赛1.★★(江苏省竞赛试题)已知0221≠+=+b a b a ,则ba=( ) A.-1 B.1 C.2 D.不能确定 2.★★(肇庆数学竞赛试题)如果实数m≠n ,且1188++=++n m m n n m ,则m +n=( ) A.7 B.8 C.9 D.10 3.★★正实数x ,y 满足xy =1,那么44114x y +的最小值为( )A .12B .58C .1D 24.★★(全国初中数学联赛试题)设[t ]表示不超过实数t 的最大整数,令{t }=t -[t ],已知实数x 满足x 3+31x =18,则{x }+{1x}= ( ) A .12 B .35 C .(1352D .15.★★★(“祖冲之杯”邀请赛试题)若a ,b ,c 满足a+b+c=0,abc >0,且x=a b ca b c++,y=111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则x+2y+3xy = .6.★★★(北京市竞赛题)已知xyz =1,x+y+z =2,x 2+y 2+z 2=16,求代数式111222xy z yz x zx y+++++的值.。