构造函数法在导数中的巧妙应用

构造函数法在导数中的巧妙应用
构造函数法在导数中的巧妙应用

构造函数法在抽象不等式中的

巧妙应用

构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 本文从一到高考试题出发,追根溯源,研究并揭示高考试题的本质. 1 小荷才露尖尖角

真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞- B. (1,0)(1,)-+∞ C. (,1)(1,0)-∞-- D. (0,1)(1,)+∞

解析:设()

()f x F x x

=,

则2

()()

'()xf x f x F x x

'-=

. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,

即当0x >时,()F x 单调递减.

又因为()f x 为奇函数,且(1)0f -=,所以

()

()f x F x x

=为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增.

当(,1)x ∈-∞-时,()0F x <,()0f x >.

当(0,1)x ∈时,()0F x <,()0f x >. 所以()0f x >成立的x 取值范围

(,1)(0,1)-∞- ,即答案为A..

上述题为2015年课标全国Ⅱ选择题第12题,创新有难度,丰富有内涵. 此其题表面看上,不知道如何入手,解决问题. 因为这是一道没有具体函数表达式的不等式试题,且不等式中含有()f x '和

()f x ,更是难上加难. 从试题的解析可以看出,巧

妙地构造出了函数()F x ,通过分析()F x 的单调性和奇偶性,解答问题. 解题突破口不易寻找,给人一种“旧时茅店社林边,路转溪桥忽见”的感觉. 对题的解析过程进行回顾,本题是如何构造出

()

()f x F x x

=

,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析.

2 千树万树梨花开

例 1 已知函数()f x 的图像关于y 轴对称,且当

(,0)x ∈-∞时,()()0f x x f x '+<成

立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,

则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >>

解析:设()()F x xf x =,则'(

)()()F x f x x f x '=+.

因为0x <时,()()0f x xf x '+<,所以'()0F x <,则当0x <时,()F x 单调递减.

又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时,()F x 单调递减.

又因为0.2

122<<,0log 31π<<,3log 92=,

则b a c >>,即答案为A.

例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( )

A. (1)f >

B. (0)

(2)f f e <

C. (1)(2)f >

D. 2

(0)(4)f e f >

解析:设12

()2()x F x e f x =,

则111

22

21'()2[()()][()2()]2

x x x F x e f x e f x e f x f x ''=+=+.

因为()2()0f x f x '+>,所以'()0F x >,则()

F x 在定义域上单调递增,所以(1)(0)F F >,

则(1)f >

,即答案为A.

例 3 已知()f x 为定义在(,)-∞+∞上的可导函数,且()()f x f x '<对于x R ∈恒成立且e 为自然

对数的底,则( )

A. 2012

(1)(0),(2012)(0)f e f f e

f >?>? B. 2012

(1)(0),(2012)(0)f e f f e

f ? C. 2012

(1)(0),(2012)(0)f e f f e

f >?

D. 2012(1)(0),(2012)(0)f e f f e f

()x

f x F x e =

, 则22()()[()()]'()x x x

x x

f x e f x e f x f x e F x e e ''--==

. 由()()f x f x '<,得()

()f x f x '-<,则'()0F x <,()F x 在定义域上单调递减,所以(1)(0)F F >,(2012)(0)F F >

即答案为A. 例 4 定义在(0,

)2

π

上的函数()f x ,()f x '是它的

导函数,且恒有()()tan f x f x x '>成立,则( )

()()4

3

π

π

B. (1)2()sin16

f f π

>

()()64

f ππ

>

()()63

f ππ

>

解析:因为(0,)2

x π

∈,所以sin 0x >,cos 0>.

由()()tan f x f x x '>, 得()cos ()sin 0f x x f x x '->

设()

()sin f x F x x

=,

则2

()sin ()cos '()sin f x x f x x

F x x

'-=

,可得'()0F x <, 则()F x 在定义域上单调递减, 所以()()43

F F ππ

>,

()()43

ππ

,即答案为A.

评注:爱因斯坦赞叹:“数学美,本质上终究是简单性”. 那又如何构造出函数,将问题简单化,这在数学上是一个值得深究的问题.

仔细的观察和思考例1和例2的解法,它们有一个共同点:采用导数的积运算法则,即

[()()]'()()'()()f x g x f x g x g x f x '=+. 例3和例

4的解法,它们也有一个共同点:采用导数的商运

算法则,即2()()()'()()

[]'()()

f x f x

g x g x f x g x g x '-=.由此可见,对于含有()f x 和()f x '的不等式,将不等

式的右边化0,若左边是()()x f x μ和()()x f x ν'相加得形式,其中()x μ和()x ν常见的变量或常量. 此时用导数的积运算法则;若左边是()()x f x μ和

()()x f x ν'相减得形式,此时用导数的商运算法则.

当然,这只是做题的起初思想,但是要做出试题,还远远不行,而问题的关键在构造函数. 波利亚:“观察可能导致发现,观察将揭示某种规则、模式或定律.”根据我们所学习的知识,通过观察,认识数学的本质特点,灵活的运用所学知识和技巧进行求解,从而将抽象复杂的问题转化为具体简单的问题,使解法顺利的完成。以下给出例1至例4的方法技巧

例1中,()()0f x xf x '+<,根据导数的积运算法则得(箭头指向方向为函数的导函数,后面不做说明)

)

<0

可以看出(

)f x 的导数为()f x ',x 的导数为1,从而构造出函数()()F x xf x =.

例2中,()2()0f x f x '+>,根据导数的积运算法则得

)<0

可以看出()f x 的导数为()f x ',2的导数为1,显然不成立. 则不等式两边定约去了一个不为0的变量. 函数和本身的导函数有相同的变量,则猜想到函数x

y e =. 但这里还要考虑系数1和2,进一

步猜想到复合函数12

x y e =. 给上述不等式两边同

乘以12

x e

,则

12x e )<0

从而构造出函数1

2

()2()x F x e

f x =?.

例3中,()()0f x f x '->,根据导数的商运算法则得

2)

0x

e <

可以看出()f x 的导数为()f x ',x

e 的导数为

x e ,且分母为2x

e ,从而构造出函数()

()x

f x F x e

=

. 例 4 中,可得 ()cos ()sin 0f x x f x x '->且

sin 0x >,根据导数的商运算法则得

2

c o s

0s i n f x x

< 可以看出()f x 的导数为()f x ',

sin x 的导数为cos x ,且分母为2sin x ,从而构造出

()

()sin f x F x x

=

. 对于以上4个例题的不等式可以总结为

()()()()0x f x x f x μν'+<和()()()()0x f x x f x μν'-<.这里

有所疑问,当不等式的右边不是0时,那上述的构造函数方法显然不适用. 下面给出一道试题进行研究.

3青山座座皆巍峨

例 6 ()f x 是定义在R 上的函数,其导函数为

()f x '. 若()()1f x f x '-<,(0)2016f =,则不

等式()20151x f x e >?+的解集.

分析: 数学变式题的给出,都离开最初的原题. 借助例1至例6构造函数的方法,找出函数与本身导函数的关系. 并根据[()]'()f x c f x '+=,从而可以解答试题.

因为()()1f x f x '-<,

所以[()1][()

1]'0f x f x ---<. 这里把()1f x -看做一个整体,再由例4知, 设()1

()x

f x F x e -=

, 则22[()1]'[()1]{[()1]'[()1]}'()x x x

x x

f x e f x e f x f x e F x e e ------==

,得'()0F x >,则()F x 在R 上为单调递增. 因为(0)(0)12015F f =-=,

()20151x f x e >?+,所以

()1

2015x

f x e -> ()20151x f x e >?+的解集(0,)+∞.

实践表明,对于含有()()x f x μ和()()x f x ν'抽象函数的不等式,问题的本质在于巧妙地构造出原函数,这是解决问题的最有力的武器. 在构造过程中,必须掌握导数的相关知识,多加练习并反思,积累做题方法和技巧,提高解题能力,开阔视野,不断探索,通过观察、分析、对比、总结等一系列

思维活动,简化试题结构,掌握所学的基本知识和方法.

高中数学解题方法系列⑦——构造法在导数中的应用

解题方法系列⑦——构造法在导数中的应用 素养解读:此类涉及到已知f (x )与f ′(x )的一些关系式,比较有关函数式大小的问题,可通过构造新的函数,创造条件,从而利用单调性求解. 类型一:f ′(x )g (x )±f (x )g ′(x )型 常用构造形式为F (x )=f (x )·g (x )或F (x )= f (x ) g (x ) ,这类形式是对u ·v ,u v 型函数导数计算的推广及应用,u ·v 型导函数中体现的是“+”法,u v 型导函数中体现的是“-”法.因此当导函数形式中出现“+”法形式时,优先考虑构造u ·v 型,出现“-”法形式时,优先考虑构造u v 型. 【典例1】 (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<1 2,则不等式f (lg x )>lg x +1 2的解集为________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. [切入点] (1)由f ′(x )-12<0,构造函数g (x )=f (x )-1 2x ;(2)由f ′(x )g (x )+f (x )g ′(x )构造函数F (x )=f (x )g (x ). [解析] (1)设g (x )=f (x )-12x , ∵f ′(x )<12,∴g ′(x )=f ′(x )-1 2<0, ∴g (x )为R 上的减函数,又f (1)=1, ∴f (lg x )>lg x +12=12lg x +1 2, 即g (lg x )=f (lg x )-12lg x >12=g (1)=f (1)-1 2=g (lg10), ∴lg x 0,即F ′(x )>0.

导数运算中构造函数解决抽象函数问题

导数运算中构造函数解决抽象函数问题 【模型总结】 关系式为“加”型 (1)'()()0f x f x +≥ 构造[()]'['()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+ (3)'()()0xf x nf x +≥ 构造11[()]''()()['()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)'()()0f x f x -≥ 构造2()'()()'()()[]'()x x x x x f x f x e f x e f x f x e e e --== (2)'()()0xf x f x -≥ 构造2()'()()[ ]'f x xf x f x x x -= ! (3)'()()0xf x nf x -≥ 构造121 ()'()()'()()[]'()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论) 小结:1.加减形式积商定 2.系数不同幂来补 3.符号讨论不能忘 典型例题: 例1.设()()f x g x 、是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,求不等式()()0f x g x <的解集 变式:设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()0f x g x f x g x +>,(3)0g -=,求不等式()()0f x g x <的解集. 例 2.已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 . 变式:已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,

专题6.1 导数中的构造函数 高考数学选填题压轴题突破讲义(解析版)

【方法综述】 函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F n x x f x =;出现()()xf x nf x '-形式,构造函数()() F n f x x x = ;出现()()f x nf x '+形式,构造函数()()F nx x e f x =;出现()()f x nf x '-形式,构造函数()() F nx f x x e = . 【解答策略】 类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x , ()f x x ;这类形式是对u v ?,u v 型函数导数计算的推广及应用,我们对u v ?,u v 的导函数观察可得知,u v ?型导函数中体现的是“+”法,u v 型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ?型,当导函数形式出现的是“-”法形式时,优先考虑构造 u v . 例1.【2019届高三第二次全国大联考】设 是定义在上的可导偶函数,若当 时, ,则函数 的零点个数为 A .0 B .1 C .2 D .0或2 【答案】A 【解析】 设 ,因为函数 为偶函数,所以 也是上的偶函数,所以 .由已知, 时, ,可得当 时, , 故函数在上单调递减,由偶函数的性质可得函数在 上单调递增.所以

,所以方程,即无解,所以函数没有零点.故选A. 【指点迷津】设,当时,,可得当时,,故函数 在上单调递减,从而求出函数的零点的个数. 【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则 A.B. C.当时,取得极大值D.当时, 【答案】C 【解析】 设,则 则 又得 即,所以 即 , 由得,得,此时函数为增函数 由得,得,此时函数为减函数 则,即,则,故错误 ,即,则,故错误 当时,取得极小值 即当,,即,即,故错误 当时,取得极小值 此时,则取得极大值

构造函数法在高等数学中的应用

构造辅助函数在高等数学中的应用 摘要:证明等式和不等式是高等数学中的常见问题,证明方法也多种多样。论文通过几个例子,从研究题目的条件和结论人手,巧妙构造适当的辅助函数进行解题,既能简化证明,又能培养学生的创新思维能力。 构造辅助函数是数学解题的一个很好的工具,辅助函数是使问题转化的桥梁,通过恰当的构造辅助函数可以帮助我们解决很多数学问题,使问题简单化,构造辅助函数的方法是多种多样的,有时需要巧妙的灵活运用,构造辅助函数法还需要进一步探索和总结 如何构造辅助函数是高等数学解题中的难点,看似无章可循,但仔细研究不失基本方法和一般规律 文章通过详尽的实例讲明了辅助函数在中值问题不等式恒等式函数求极限讨论方程的根及计算积分求函数值中的运用 关键词:构造辅助函数;中值定理;恒等式与不等式; 在解题过程中,如果用思维定势来探求解题途径比较困难时,我们不妨换一下思维角度,从问题的结构和特点出发,构造一个与问题相关的辅助函数,实现问题的转化,从而使问题得到证明。本文通过对高等数学中中值问题、不等式的证明、恒等式的证明、函数求极限问题、讨论方程的根及计算积分求函数值这几类问题,应用构造辅助函数进行求解,从不同题型总结归纳了辅助函数的思想和具体的方法 一、有关中值定理命题的证明的应用 1.1构造辅助函数证明中值存在性问题 设()x f ,()x g 在[]b a ,连续,在()b a ,可导。()()0==b f a f 而[]b a x ,∈?,()0≠x g 证明至少存在一点∈ξ()b a ,使()()()()ξξξξf g g f ''= 分析:由于所证命题含有导数形式,我们大胆猜想它积分后的形式。为此我们分下面几步走: (一) 将结论化为()()()()x f x g x g x f ''= (二) 移项并同时除以()x g 2得:()() ()()() 0''2=-x g x f x g x g x f (三) 求积分,并令之为()x F ()()()()()() ()()()()()()x g x f a g a f x g x f dt t g t f t g t g t f x F x =-=-=?02'' 则()x F 就是我们要找的辅助函数。 证明 由于()x f ,()x g 在[]b a ,连续,在()b a ,可导且()()0==b f a f 则()x F 在[]b a ,满足罗尔中值定理,存在∈ξ()b a ,,使得()0'=ξF 即()()()()() 0''2=-ξξξξξg f g g f 也即

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

用导数的基本运算法则巧构造导函数的原函数

用导数的基本运算法则巧构造导函数的原函数 构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 本文从一到高考试题出发,追根溯源,研究并揭示高考试题的本质. 1 高考真题 真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞- B. (1,0)(1,)-+∞ C. (,1)(1,0)-∞-- D. (0,1)(1,)+∞ 解析:设()()f x F x x =,则2 ()()'()xf x f x F x x '-=. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,即当0x >时,()F x 单调递减. 又因为()f x 为奇函数,且(1)0f -=,所以()()f x F x x = 为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增.当(,1)x ∈-∞-时,()0F x <,()0f x >.当(0,1)x ∈时,()0F x <,()0f x >.所以()0f x >成立的x 取值范围(,1)(0,1)-∞-,即答案为A.. 上述题为2015年课标全国Ⅱ选择题第12题,创新有难度,丰富有内涵. 此其题表面看上,不知道如何入手,解决问题. 因为这是一道没有具体函数表达式的不等式试题,且不等式中含有()f x '和()f x ,更是难上加难. 从试题的解析可以看出,巧妙地构造出了函数()F x ,通过分析()F x 的单调性和奇偶性,解答问题. 解题突破口不易寻找,给人一种“旧时茅店社林边,路转溪桥忽见”的感觉. 对题的解析过程进行回顾,本题是如何构造出()()f x F x x = ,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析. 2 巧构导函数的原函数 例 1 已知函数()f x 的图像关于y 轴对称,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >> 解析:设()()F x xf x =,则'()()()F x f x xf x '=+.因为0x <时,()()0f x xf x '+<,所以'()0F x <,则 当0x <时,()F x 单调递减.又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时, ()F x 单调递减.又因为0.2122<<,0log 31π<<,3log 92=,则b a c >>,即答案为A. 例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( ) A. (1)f B. (0)(2)f f e < C. (1)(2)f D. 2(0)(4)f e f > 解析:设12()2()x F x e f x =,则1 112221'()2[()()][()2()]2 x x x F x e f x e f x e f x f x ''=+=+.因为()2()0f x f x '+>,所以'()0F x >,则()F x 在定义域上单调递增,所以(1)(0)F F >,则(1)f ,即答案为A. 例 3 已知()f x 为定义在(,)-∞+∞上的可导函数,且()()f x f x '<对于x R ∈恒成立且e 为自然对数的底,则( ) A. 2012(1)(0),(2012)(0)f e f f e f >?>? B. 2012(1)(0),(2012)(0)f e f f e f ? C. 2012(1)(0),(2012)(0)f e f f e f >?,(2012)(0)F F >即答案为A. 例4 定义在(0, )2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '>成立,则( ) ()()43π π B. (1)2()sin16f f π>()()64f ππ>()()63f ππ > 解析:因为(0,)2x π ∈,所以sin 0x >,cos 0>.由()()tan f x f x x '>,得()cos ()sin 0f x x f x x '->

构造函数法在导数不等式中应用

构造函数在导数不等式中的应用 构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 1 真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞-U B. (1,0)(1,)-+∞U C. (,1)(1,0)-∞--U D. (0,1)(1,)+∞U 解析:设()()f x F x x = , 则2()()'()xf x f x F x x '-=. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,即当0x >时,()F x 单调递减. 又因为()f x 为奇函数,且(1)0f -=,所以()()f x F x x = 为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增. 当(,1)x ∈-∞-时,()0F x <,()0f x >. 当(0,1)x ∈时,()0F x <,()0f x >. 所以()0f x >成立的x 取值范围 (,1)(0,1)-∞-U ,即答案为A.. 对题的解析过程进行回顾,本题是如何构造出()()f x F x x = ,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析. 【典例】 例 1 已知函数()f x 的图像关于y 轴对称,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >> 解析:设()()F x xf x =,则'()()()F x f x xf x '=+. 因为0x <时,()()0f x xf x '+<,所以'()0F x <,则当0x <时,()F x 单调递减. 又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时,()F x 单调递减. 又因为0.2122<<,0log 31π<<,3log 92=,则b a c >>,即答案为A. 例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( ) A. (1)f >

专题24 逆用导数运算法则构造函数型-2021年高考数学压轴题解法分析与强化训练

专题24 逆用导数运算法则构造函数型 [真题再现] 例1 设奇函数f (x )定义在(-π,0)∪(0,π)上其导函数为f '(x ),且f (π2)=0,当0<x <π时,f '(x )sin x -f (x )cos x <0,则关于x 的不等式 f (x )<2f (π6)sin x 的解集为 . 【答案】(-π6,0)∪(π6,π) 【分析】这是一道难度较大的填空题,它主要考查奇函数的单调性在解不等式中的应用,奇函数的图象关于坐标原点中心对称,关于原点对称的区间上具有相同的单调性;在公共定义域上两个奇函数的积与商是偶函数,偶函数的图象关于y 轴轴对称,关于原点对称的区间上具有相反的单调性,导数是研究函数单调性的重要 工具,大家知道(f g )'=f 'g -fg 'g 2,(sin x )'=cos x ,于是本题的本质是 构造f (x )sin x 来解不等式 【解析】设g(x )= f (x )sin x ,则g ' (x )= (f (x )sin x )'=f '(x )sin x -f (x )cos x sin 2x , 所以当0<x <π时,g ' (x )<0,g(x ) 在(0,π)上单调递减 又由于在(0,π)上sin x >0,考虑到sin π6=12,所以不等式f (x )< 2f (π6)sin x 等价于f (x )sin x <f (π6)sin π6 ,即g(x )< g (π6),所以此时不等式等价于π6

<x <π. 又因为f (x ) 、sin x 为奇函数,所以g(x )是偶函数,且在(-π,0)上sin x <0,所以函数g(x )在(-π,0)是单调递增函数,原不等式等价 于g(x )>g(-π6)=f (-π6)sin(-π6) ,所以此时不等式等价于-π6<x <0, 综上,原不等式的解集是(-π6,0)∪(π6,π). 例2 函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 . 【答案】(1-,+∞) 【分析】题目应归结为“解抽象函数型不等式”问题,解决方法是“逆用函数的单调性”.题目中哪个条件能让你联想到“函数的单调性”呢?注意到已知中2)(>'x f ,只需构造函数()g x ,使得()()2g x f x ''=-,不难得到()()2g x f x x c =-+(这里c 为常数,本题中取0c =),进而利用()g x 的单调性,即可找到解题的突破口. 【解析】构造函数()()2g x f x x =-,则()g x '=()20f x '->,故()g x 单调递 增,且(1)(1)214g f -=--?-=(). 另一方面所求不等式42)(+>x x f , 就转化为()()(1)g x f x x g =->-,逆用单调性定义易知1x >,则不等式的解集为(1,)-+∞. 例3 设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0,则不等式f (x +1)>x -1·f (x 2-1)的解集为________.

构造函数法证明导数不等式的八种方法Word版

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

构造法在导数中的应用

构造法在导数中的应用 此类涉及到已知f (x )与f ′(x )的一些关系式,比较有关函数式大小或解不等式的问题,可通过构造新的函数,创造条件,从而利用单调性求解. 例 (1)函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1) D .(-∞,+∞) (2)已知奇函数f (x )是定义在R 上的连续可导函数,其导函数是f ′(x ), 当x >0时,f ′(x )<2f (x )恒成立,则下列不等关系一定正确的是( ) A .e 2f (1)>-f (2) B .e 2f (-1)>-f (2) C .e 2f (-1)<-f (2) D .f (-2)<-e 2f (1) 名师点拨? (1)若知xf ′(x )+f (x )的符号,则构造函数g (x )=xf (x ); 一般地,若知xf ′(x )+nf (x )的符号,则构造函数g (x )=x n f (x ). (2)若知xf ′(x )-f (x )的符号,则构造函数g (x )=f (x ) x ; 一般地,若知xf ′(x )-nf (x )的符号,则构造函数g (x )=f (x ) x n . (3)若知f ′(x )+f (x )的符号,则构造函数f (x )=e x f (x ); 一般地,若知f ′(x )+nf (x )的符号,则构造函数g (x )=e nx ·f (x ). (4)若知f ′(x )-f (x )的符号,则构造函数f (x )=f (x ) e x ; 一般地,若知f ′(x )-nf (x )的符号,则构造函数g (x )=f (x ) e nx 〔变式训练〕 (1)已知函数f (x )满足:f (0)=1,f ′(x )0, 且g (-3)=0,则不等式f (x )g (x )<0的解集是( ) A .(-3,0)∪(3,+∞) B .(-3,0)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-∞,-3)∪(0,3) (3)定义在R 上的偶函数f (x )的导函数为f ′(x ),且当x >0,xf ′(x )+2f (x )<0.则( ) A .f (e )4>f (2)e 2 B .9f (3)>f (1) C .f (e )91,

导函数构造函数

已知函数()f x 是定义在(0,)+∞上的非负可导函数,且满足()()0xf x f x '+≤,对任意正数,a b 。 若a b <,则必有( A ) ,()(),()()()()()()A af b bf a B bf a af b C af a f b D bf b f a ≤≤≤≤ 已知(),()f x g x 分别是定义在R 上的奇函数,偶函数,若0x <时,()()()()0f x g x f x g x ''+>, 且(3)0g -=,则不等式()()0f x g x <的解集是 (,3)(0,3)-∞-? 已知函数()f x 在R 上的奇函数,且(2)0f =,当0x >时,有2 ()()0xf x f x x '-<,则2 ()0x f x >的 解集是 (,2)(0,2)-∞-? 设函数(),y f x x R =∈的导函数为()f x ',且()(),()()f x f x f x f x '-=<,则下列不等式成立的是(D ) 12212112()(0)(1)(2)()(2)(0)(1)()(2)(1)(0)()(1)(0)(2) A f e f e f B e f f e f C e f e f f D e f f e f ----<<<<<<<<已知函数2()2ln f x x x a x =++,当1t ≥时,不等式(21)2()3f t f t -≥-恒成立, 则实数a 的取值范围为 <=2 设1(),(0,1)ln f x x x x x =>≠(1)求()f x 的单调区间;(2)若不等式1 2a x x >,对任意(0,1)x ∈ 恒成立,求实数a 的取值范围; 11 11 (1)(0,) ,(,1),(1,)ln 21(2)2ln 2ln ln ln 2 ln ln 2a a x x e e a x x a x a e x x x +∞>∴>∴>∴<∴> 已知函数2 1()ln ,()2 f x x g x x == (1)设()()(),(0)F x ag x f x a =->,若()F x 没有零点,求实数a 的取值范围; (2)若120x x >>总有[]121122()()()()m g x g x x f x x f x ->-成立,求实数m 的取值范围; 2211122211 ()ln ,()2()()()() ()()()()01 a ax F x x x F x a x e mg x x f x mg x x f x h x mg x xf x h x m -'=-=∴> ->-=-''∴≥∴≥

构造法在求解微分方程中的应用

构造法在求解微分方程中的应用 刘 华 (第二炮兵工程大学,710025) 摘 要:构造法是一种常见的化归策略,在高等数学中有着重要的应用,本文将介绍构造法在不同类型微分方程求解中的应用。 关键词:构造法 微分方程 构造法是一种常用的数学方法,它指的是根据所要解决问题的具体特点构造出特定的数学形式,达到化简、转化和桥梁的作用,进而能够方便地解决问题。历史上不少数学家都曾经运用该方法,解决了数学难题,比如柯西、欧拉、费马、拉格朗日等。这种方法体现了思维的转换,有利于培养创新意识及创新能力。 构造法在高等数学中有着普遍的应用,比如通过构造函数证明等式、不等式,证明微分中值定理,通过构造级数求极限,通过构造数列、积分等解决相应问题。这种方法在微分方程求解中的应用尤为突出,从一阶线性微分方程到二阶(高阶)常系数齐次线性微分方程,再到二阶(高阶)常系数非齐次线性微分方程,无不体现出构造法的便利之处。下面介绍构造法在求解微分方程中的应用。 一、构造法在不同类型微分方程求解中的应用 1.()()dy P x y Q x dx += 通过对比一阶线性齐次微分方程和非齐次微分方程的特点,找出其内在联系,根据一阶线性齐 次微分方程的通解()()P x dx y x Ce -?=,构造出一阶线性非齐次微分方程的通解 ()()()P x dx Y x C x e -?=, 借鉴待定系数法的思想,容易求出一阶线性非齐次微分方程的通解为 ()()()[()]P x dx P x dx Y x e Q x e dx C -??=+?。 2.'''0y py qy ++= 通过对五类基本初等函数的逐一分析,考虑到指数函数求导的特点,构造该方程特解的形式为*()rx y x e =,根据构造的这种形式,可以将微分方程的求解问题转化为一元二次方程20r pr q ++=(特征方程)求根的代数问题,根据方程根的不同形式可以进一步得到该微分方程的通解。在特征方程有二等实根的情况下,进一步利用构造法构造出另一与1()rx y x e =线性无关的特解2()()rx y x u x e =,可求得这一特解为2()rx y x xe =。上述构造法的运用可以推广到高阶齐次线性微分方程。 3.'''()x m y py qy P x e λ++=(其中()m P x 为m 次多项式函数) 根据该微分方程右端自由项的特点,可以构造出特解形式为*()()x m y x Q x e λ=,将其代入微分 方程整理可得 '''2()(2)()()()() m m m m Q x p Q x p q Q x P x λλλ+++++=

高考数学(文)专题07+导数有关的构造函数方法(教师版)

专题07 导数有关的构造函数方法 一.知识点 基本初等函数的导数公式 (1)常用函数的导数 ①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________; ④???? 1x ′=________; ⑤(x )′=________. (2)初等函数的导数公式 ①(x n )′=________; ②(sin x )′=__________; ③(cos x )′=________; ④(e x )′=________; ⑤(a x )′=___________; ⑥(ln x )′=________; ⑦(log a x )′=__________. 5.导数的运算法则 (1)[f (x )±g (x )]′=________________________; (2)[f (x )·g (x )]′=_________________________; (3)???? ??f (x )g (x )′=____________________________. 6.复合函数的导数 (1)对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f (u )和u =g (x ))的复合函数为y =f (g (x )). (2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为___________________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二.题型分析 1.构造多项式函数 2.构造三角函数型 3.构造x e 形式的函数 4.构造成积的形式 5.与ln x 有关的构造 6.构造成商的形式

(完整版)在导数运算中构造函数解决问题(一)

在导数运算中构造函数解决问题(一) Ex1:设()()f x g x 、是R 上的可导函数,'()'()f x g x 、分别为()()f x g x 、的导函数,且满足'()()()'()0f x g x f x g x +<,则当a x b <<时,有( C ) .()()()()A f x g b f b g x > .()()()()B f x g a f a g x > .()()()()C f x g x f b g b > .()()()()D f x g x f b g a > 变式1:设()()f x g x 、是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,求不等式()()0f x g x <的解集. 变式2::设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()0f x g x f x g x +>,(3)0g -=,求不等式()()0f x g x <的解集. Ex2:已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 5 . 变式:已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,若若(1)(1)5(1)(1)2 f f g g -+=-,求关于x 的不等式log 1a x >的解集. Ex3:已知定义域为R 的奇函数()f x 的导函数为'()f x ,当0x ≠时,()'()0f x f x x +>,若111(),2(2),ln (ln 2)222 a f b f c f ==--=,则下列关于,,a b c 的大小关系正确的是( D ) .Aa b c >> .B a c b >> .C c b a >> .Db a c >> Ex4:(10黄冈3月检测)已知函数()f x 为定义在R 上的可导函数,且()'()f x f x <对于任意x R ∈恒成立,e 为自然对数的底数,则( C ) 2013.(1)(0)(2013)(0)A f e f f e f >??、 2013.(1)(0)(2013)(0)C f e f f e f >?>?、 2013.(1)(0)(2013)(0)D f e f f e f

构造法在导数中的应用

导数常用方法---构造法 关系式为“加”型 (1) '()()0f x f x +≥ 构造[()]'['()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+ (3)'()()0xf x nf x +≥ 构造11[()]''()()['()()]n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的 符号进行讨论) 关系式为“减”型 (1) '()()0f x f x -≥ 构造2()'()()'()() []'()x x x x x f x f x e f x e f x f x e e e --= = (2)'()()0xf x f x -≥ 构造2 ()'()() [ ]'f x xf x f x x x -= (3)'()()0xf x nf x -≥ 构造121 ()'()()'()() []'()n n n n n f x x f x nx f x xf x nf x x x x -+--== 经典例题 例1、已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函 数, (2)1=f ,则不等式()时, '()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞-U B .(1,0)(1,)-+∞U C .(,1)(1,0)-∞--U D .(0,1)(1,)+∞U 【答案】A 例2、已知 ()f x 是定义在R 上的偶函数,其导函数为()f x ',若()()f x f x '<,且(1)f x +(3)f x =-, (2015)2f =,则不等式1()2x f x e -<的解集为( )A .(1,)+∞ B .(,)e +∞ C .(,0)-∞ D .1 (, )e -∞【答案】A 试题分析:因为函数()f x 是偶函数,所以(1)(3)(3)f x f x f x +=-=-,所以(4)()f x f x +=,即函 数 ()f x 是周期为4的周期函数.因为(2015)(45041)(1)(1)2f f f f =?-=-==,所以(1)2f =.

相关文档
最新文档