偏微分方程的matlab解法

合集下载

偏微分方程Matlab数值解法(补充4)

偏微分方程Matlab数值解法(补充4)

偏微分方程Matlab 数值解法(补充4)Matlab 可以求解一般的偏微分方程,也可以利用偏微分方程工具箱中给出的函数求解一些偏微分方程。

1 偏微分方程组求解Matlab 语言提供了pdepe()函数,可以直接求解偏微分方程(,,,)[(,,,)](,,,)m mu u u u C x t u x x f x t u s x t u x t x x x-∂∂∂∂∂=+∂∂∂∂∂ (4.1)这样,偏微分方程可以编写为以下函数的描述,其入口为[,,](,,,)x c f s pdefun x t u u =其中:pdefun 为函数名。

由给定输入变量可计算出,,c f s 这三个函数。

边界条件可以用下面的函数描述(,,)(,,).*(,,,)0up x t u q x t u f x t u x∂+=∂ (4.2) 这样的边值函数可以写为Matlab 函数[,,,](,,,)a a b b x p q p q pdebc x t u u =初始条件数学描述为00(,)u x t u =,编写一个简单的函数即可0()u pdeic x =还可以选择x 和t 的向量,再加上描述这些函数,就可以用pdepe ()函数求解次偏微分方程,需要用如下格式求解(,@,@,@,,)sol pdepe m pdefun pdeic pdebc x t =【例1】 试求下列偏微分方程2111222221220.024()0.17()u u F u u t x u u F u u tx ⎧∂∂=--⎪⎪∂∂⎨∂∂⎪=+-⎪∂∂⎩ 其中: 5.7311.46()xx F x e e -=-,且满足初始条件1(,0)1u x =,2(,1)0u x =及边界条件1221(0,)0,(0,)0,(1,)1,(1,)0u u t u t u t t x x∂∂====∂∂解:对照给出的偏微分方程和(4.1),可将原方程改写为111222120.024/()1.*10.17/()u u x F u u u u x F u u t x ∂∂--⎡⎤⎡⎤⎡⎤⎡⎤∂∂=+⎢⎥⎢⎥⎢⎥⎢⎥∂∂-∂∂⎣⎦⎣⎦⎣⎦⎣⎦可知0m =,且1122120.024/()1,,10.17/()u x F u u c f s u x F u u ∂∂--⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥∂∂-⎣⎦⎣⎦⎣⎦编写下面的Matlab 函数function [c,f,s]=c7mpde(x,t,u,du)c=[1;1];y=u(1)-u(2);F=exp(5.73*y)-exp(-11.46*y);s=F*[-1;1]; f=[0.024*du(1);0.17*du(2)];套用(4.2)中的边界条件,可以写出如下的边值方程左边界2010.*00f u ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,右边界1100.*100u f -⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 编写下面的Matlab 函数function [pa,qa,pb,qb]=c7mpbc(xa,ua,xb,ub,t) pa=[0;ua(2)];qa=[1;0];pb=[ub(1)-1;0];qb=[0,1]; 另外,描述初值的函数function u0=c7mpic(x) u0=[1;0];有了这三个函数,选定x 和t 向量,则可以由下面的程序直接求此微分方程,得出解1u 和2u 。

matlab求解最简单的一阶偏微分方程

matlab求解最简单的一阶偏微分方程

matlab求解最简单的一阶偏微分方程一、引言在科学和工程领域,偏微分方程是非常重要的数学工具,用于描述各种现象和过程。

而MATLAB作为一种强大的数值计算软件,可以用来求解各种复杂的偏微分方程。

本文将以MATLAB求解最简单的一阶偏微分方程为主题,探讨其基本原理、数值求解方法以及具体实现过程。

二、一阶偏微分方程的基本原理一阶偏微分方程是指只含有一个未知函数的偏导数的微分方程。

最简单的一阶偏微分方程可以写成如下形式:\[ \frac{\partial u}{\partial t} = F(x, t, u, \frac{\partial u}{\partial x}) \]其中,\(u(x, t)\) 是未知函数,\(F(x, t, u, \frac{\partial u}{\partial x})\) 是给定的函数。

一阶偏微分方程可以描述很多实际问题,比如热传导、扩散等。

在MATLAB中,我们可以使用数值方法求解这类方程。

三、数值求解方法1. 有限差分法有限差分法是一种常用的数值求解偏微分方程的方法。

其基本思想是用离散的方式来逼近偏导数,然后将偏微分方程转化为代数方程组。

在MATLAB中,我们可以使用内置的求解器来求解离散化后的代数方程组。

2. 特征线法特征线法是另一种常用的数值求解方法,它利用特征线方程的特点来求解偏微分方程。

这种方法在求解一维情况下的偏微分方程时特别有效,可以提高求解的效率和精度。

四、MATLAB求解过程在MATLAB中,我们可以使用`pdepe`函数来求解一阶偏微分方程。

该函数可以针对特定的方程和边界条件,利用有限差分法进行离散化求解。

下面给出一个具体的例子来说明如何使用MATLAB求解最简单的一阶偏微分方程。

假设我们要求解如下的一维热传导方程:\[ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \]其中,\(\alpha\) 是热传导系数。

(完整版)偏微分方程的MATLAB解法

(完整版)偏微分方程的MATLAB解法

引言偏微分方程定解问题有着广泛的应用背景。

人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。

然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。

现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。

偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

常用的方法有变分法和有限差分法。

变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。

虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。

随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。

从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。

从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

matlab解二阶偏微分方程

matlab解二阶偏微分方程

<div align="center">一、Matlab求解二阶偏微分方程(ODE)的基本步骤</div>1. 数学模型:首先要确定求解的方程是哪一类的偏微分方程(ODE),然后建立其对应的数学模型,使其符合这类微分方程的形式;2. 确定边界条件:确定迭代范围$[a,b]$,边界条件函数 $y(a)=\alpha$ 、$y(b)=\beta$;3. 写出Matlab程序:在该类ODE中,通常会有某一种常用的数值求解方法,一般使用微分方程求解器(ODE),如ode45等;4. 获得实际结果:开始编写Matlab程序,完成参差和参数的输入以后,可以运行Matlab程序,然后求得结果,再用图像表示出来。

<div align="center">二、具体求解</div>$$\frac{d^2y}{dx^2}+y=6sin(2x)$$微分方程为二阶常微分方程,求解条件如下:$[a,b]=[0,\pi], y(0)=1,y(\pi)=3.$(1)Matlab函数表达式首先建立与二阶非齐次线性常微分方程相符合的数学模型,其Matlab函数表达式为$$ f(x,y,y')=\frac{dy}{dx}-y'-6sin2x $$其中,$y=y(x)$;(2)函数程序在Matlab中,定义函数程序 $myode.m$ ,此程序返回右端函数 $f(x,y,y')$ 的值表达式,程序内容如下。

```MATLAB% 右端函数程序function dy=myode(x,y)dy=[y(2);-y(2)-6*sin(2*x)];end```(3)调用Matlab函数olvede45调用Matlab函数 solvede45 求解二阶ODN,程序内容如下:```MATLAB% 主程序求解% maxstep表示分裂的步长大小% Tolerence表示误差,控制求解精度Maxstep=0.25;Tolerence=1e-4;a=0;b=pi;y0=[1;0];[x,y] = ode45('myode',[a,b],y0,options);```(4)结果展示输入参数之后,运行Matlab程序,得到如下图:![](../images/matlab_2_diff.png)此图为$y(x)$随$x$变化的曲线,可以看出,二阶偏微分的求解结果满足了边界条件,即$y(0)=1,y(\pi)=3$ ,如图中红色圆点所示。

(完整版)偏微分方程的MATLAB解法

(完整版)偏微分方程的MATLAB解法

引言偏微分方程定解问题有着广泛的应用背景。

人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。

然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。

现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。

偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

常用的方法有变分法和有限差分法。

变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。

虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。

随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。

从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。

从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

matlab解偏微分方程

matlab解偏微分方程

ui,j +1 − ui,j = Hui,j +1 ∆t Hui,j = a2 ui+1,j − 2ui,j + ui−1,j (∆x)2
ui,j +1 − ui,j = Hui,j ∆t 将显式与隐式相加,得平均公式 ui,j +1 − ui,j 1 1 = Hui,j + Hui,j +1 ∆t 2 2
得ui,0 = ui,2 − 2ψi
1 ui,2 = [c(ui+1,1 + ui−1,1) + 2(1 − c)ui,1 + 2ψi t] 2
3.3
例题 两端固定的弦振动
两端固定的弦, 初速为零,初位移是 h x, (0 ≤ x ≤ 2/3) 2 / 3 u(x, 0) = 1−x , (2/3 < x ≤ 1) h 1 − 2/3
作图所用程序如下,其中取c = 0.05, l = 1, h = 0.05.这里使用的方程 与初始条件表示方法与上一节相同. N=4000; c=0.05; x=linspace(0,1,420)’; u1(1:420)=0; u2(1:420)=0; u3(1:420)=0; u1(2:280)=0.05/279*(1:279)’; u1(281:419)=0.05/(419-281)*(419-(281:419)’); u2(2:419)=u1(2:419)+c/2*(u1(3:420)-2*u1(2:419)+u1(1:418)); h=plot(x,u1,’linewidth’,3); axis([0,1,-0.05,0.05]); set(h,’EraseMode’,’xor’,’MarkerSize’,18) for k=2:N set(h,’XData’,x,’YData’,u2) ; drawnow; u3(2:419)=2*u2(2:419)-u1(2:419)+c*(u2(3:420)... -2*u2(2:419)+u2(1:418)); u1=u2; u2=u3; end

【精品】偏微分的MATLAB数值解法课件

【精品】偏微分的MATLAB数值解法课件

方法一:pdepe函数实现
• x=0:1:40; • t=0:0.01:0.2; • m=0; • sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t); • b=sol(20,:); • plot(x,b); • title('the solution of u') • xlabel('x') • ylabel('y') • zlabel('u')
偏微分的MATLAB数值解法
偏微分的MATLAB数值解法
• 方法一:pdepe函数实现 • 方法二:pdetool实现 • 方法三:程序实现
方法一:pdepe函数实现
• @pdeic: • function u0=pdeic(x) • if x<10 • u0=0; • elseif x<30 • u0=1; • else • u0=0; • end

end
• end
方法三:程序实现
图 22.12 波动方程解析解的分布
偏微分的MATLAB数值解法
• 方法总结: • 1.pdede调用简单,但计算功能稍弱 • 2.pdetool使用方便,但限于四种方程类
型 • 3.程序编写较为繁琐
方法一:pdepe函数实现
方法二:pdetool实现
• 1.pdetool界面 • 2.选定求解微分方程类型(双曲线、抛物线、椭
圆、特殊值型)并设定参数 • 3.绘制求解区域 • 4.边界条件和初值条件(Dirichlet和Neumann) • 5.生成网格 • 6.求解方程并绘制图形
方法二:pdetool实现
• 应用实例:
u(ux,y)
x2 y x0

matlab 偏微分方程

matlab 偏微分方程

MATLAB是一个强大的数值计算环境,可以用来解决各种各样的数学问题,包括偏微分方程。

下面是一个简单的例子,展示如何在MATLAB中解决一维的偏微分方程。

假设我们要解决以下一维的热传导方程:
∂u∂t=∂2u∂x2
在给定的初始条件和边界条件下:
u(x,0)=sin(πx)u(0,t)=0, u(1,t)=0
我们可以使用MATLAB中的pdepe函数来求解这个问题。

以下是一个简单的MATLAB代码示例:
```matlab
定义参数
T = 1; 最终时间
h = 0.01; 空间步长
t = 0:T/h:T; 时间向量
x = 0:h:1; 空间向量
n = length(x); 空间点的数量
m = length(t); 时间点的数量
初始化矩阵存储解
U = zeros(m, n);
U(:,1) = sin(pi*x); 初始条件
定义偏微分方程
pdepe('u_tt', U, t, x, 'heat', 'periodic');
使用pdepe求解偏微分方程
[U, ~] = pdepe(U, t, x);
绘制结果
surf(x, t, U);
```
这个代码示例使用了MATLAB的pdepe函数,这是一个用于求解偏微分方程的函数。

在上面的代码中,我们首先定义了参数,然后初始化了存储解的矩阵。

然后,我们定义了偏微分方程,并使用pdepe 函数求解它。

最后,我们使用surf函数绘制了结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三步:选取边界
首先选择Boundary菜单中Boundary Mode 命令,进入边界模式.然后单击Boundary菜单 中Remove All Subdomain Borders选项。从而 去掉子域边界,如图22 2.单击Boundary菜单 中Specify Boundary Conditions选项,打开 Boundary Conditions对话框,输入边界件.本 例取默认条件,即将全部边界设为齐次Dirichlet 条件,边界显示为红色. 如果想将几何与边界信息存储,可选Boundary 菜单中的Export Decomposed Geometrv.Boundary Cond's命令,将它们分 别存储在g、b变量中,并通过MATLAB形成M文 件.
求解双曲型方程的例子
例24.2.1 用 MATLAB 求解下面波动方程定解问题并动态显示解的分布

2u (2u t 2 x2
2u ) 0 y 2

u
|x
1

u
|x1

0,
u y
y 1u Fra bibliotekyy1 0

π
π
u(x,
y, 0)

atan[ sin(
保持在100 °C,板的右边热量从板向环境空气定常流动,
t t 其他边及内孔边界保持绝缘。初始
°C ,于是概括为如下定解问题;
是板的温度为0 0
d u u0, t
u 100 ,在左边界上
u 1,在右边界上 n u = 0,其他边界上 n
u tto 0
区域的边界顶点坐标为(-0.5,-0.8), (0.5,-0.8), (-0.5,0.8), (0.5,0.8)。 内边界顶点坐标(-0.05,-0.4), (-0.05,0.4) ,(0.05,-0.4), (0.05,0.4)。
第五步:选择Mesh菜单中Initialize Mesh命令,
进行网格剖分, 选择Mesh菜单中Refine Mesh命令,使网格密集化,
如图22.3.
图 22.3 网格密集化
第六步: 解偏微分方程并显示图形解
选择Solve菜单中Solve PDE命令,解 偏微分方程并显示图形解,如图 2.4 所示
例: 解热传导方程 ut u f
边界条件是齐次类型,定解区域自定。
【解】 第一步:启动MATLAB,键入命令pdetool并回车,就 进入GUI.在Options菜单下选择Gid命令,打开栅格, 栅格使用户容易确定所绘图形的大小. 第二步:选定定解区域本题为自定区域:自拟定解区 域如图22 1所示:E1-E2+R1-E3.具体用快捷工具分别 画椭圆E1、圆E2、矩形R1、圆E3.然后在Set formula 栏中进行编辑并用算术运算符将图形对象名称连接起 来(或删去默认的表达式,直接键入E1-E2+R1-E3)
例如,对于细杆导热,虽然是一维问题, 可以将宽度y虚拟出来,对应于y的边界 条件和初始条件按照题意制定
Boundary Mode

PDE Mode
PDE Specification,确定偏 微分方程类型共有四种:
椭圆形Elliptic

抛物型Parabolic

双曲型Hyperbolic

第七步:单击Plot菜单中Parameter选项,打开Plot Selection对话框,选中Color,Height(3D plot)和 Show mesh三项.再单击Polt按钮,显示三维图形解, 如图22.5所示.
第八步:若要画等值线图和矢量场图,单击plot菜单 中parameter 选项,在plot selection对话框中选中 contour 和arrow两选项。然后单击plot按钮,可显 示解的等值线图和矢量场图,如图2.6所示。
图 2.6 解的等值线图和矢量场图
求解椭圆型方程的例子
单位圆上的poisson方程边值问题:
-u=1 , = (x, y) x2 y2 1 ,
u 0 问题的精确解为
u(x,y)= (1 x2 y2 ) . 4
求解抛物型方程的例子
考虑一个带有矩形孔的金属板上的热传导问题。板的左边
3、解的可视化.
PDEToolbox注意事项
只能解决二维模型,一维的扩成二维,三 维的缩成二维,时间维不计算在内 公式类型,只能解决部分偏微分方程,由 公式类型决定 边界条件两种,Dirichlet和Neumann 初始条件
先确定方程大类
Draw Mode
画图模式,先将处理的区域画出来,二 维,方形,圆形,支持多边形,可以手 动更改坐标,旋转rotate
图 22.2 定解问题的边界
第四步:设置方程类型
选择PDE菜单中PDE Mode命令,进入PDE模式, 再单击PDE菜单中PDE Secification选项,打开 PDE Secification对话框,设置方程类型.
本例取抛物型方程 d u (cu) au f ,
t
故参数c,a,f,d,分别是l,0,10,1.
2
x)], ut
( x,
y,
0)

2
cos(πx)

exp[cos(
2
y)]
已知求解域是方形区域,空间坐标的个数由具体问题确定.
偏微分方程的matlab解法
主要讲述如何用MATLAB实现对偏微分方程的仿 真求解.MATLAB的偏微分方程工具箱(PDE Toolbox)的出现,为偏微分方程的求解以及定 性研究提供了捷径.主要步骤为:
1、设置PDE的定解问题.即设置二维定解区域、 边界条件以及方程的形式;和系数
2、用有限元法(FEM)求解PDE.即网格的生 成、方程的离散以及求出数值解;
Mesh Mode
网格划分,细化
Solve,Plot
如果有初始条件(与t有关),则在 Solve的Parameters里有其设定,如果 没有初始条件(与t无关),则不必设 定Plot只是确定画图的参数,包括是否 动画,是否3D,是否画出等温线,是否 有箭头。。。
Save As
保存成M-file,自动生成
相关文档
最新文档