函数的使用-实验小测2

合集下载

数学实验练习二 参考答案

数学实验练习二 参考答案

数学实验二实验内容:学习matlab的m文件编写和函数的编写,体会matlab编程特点,掌握matlab 的编程基本方法。

要求:一.学习ppt教案的例题代码,能正确的输入、运行代码;二.写出如下各段代码的作用,将以下各段循环执行的代码,改为不需要循环的矩阵和数组运行,并使用tic,toc测试不同代码的执行时间:%程序1,文件名:ex2_2_1.mticdx = pi/30;nx = 1 + 2*pi/dx;for i = 1:nxx(i) = (i-1)*dx;y(i) = sin(3*x(i));endtoc以上程序实现将[0,2*pi]间隔pi/30分成60等分,x和y分别为61个元素的数组,y为计算sin(3x)的值。

以上程序可以使用简单的matlab数组计算实现:x2=0:pi/30:2*pi;y2=sin(3*x2);大家可以比较一下,x1和x2完全相同,y和y2也完全相同。

%程序2,文件名:ex2_2_2.mticA=round(2+rand(50,60)*6); 生成一个在[2,8]上均匀分布的50*60随机数组[X,Y]=size(A); 求出其大小;X=50,Y=60minA=A(1,1); 设最小值为矩阵A的第1行1列的元素for i=1:Xfor j=1:Yif A(i,j)<minAminA=A(i,j);minX=i;minY=j;endendend 以上程序按行、列搜索矩阵A的最小值,若当前值A(I,j)小,则将最小值设为当前值;[minA ,minX,minY] 输出矩阵最小值minA及矩阵最小值所在的行minX、列minY。

toc上述程序可以使用find函数及min函数实现;此时只需: minA=min(A(:));[minX,minY]=find(A ’==minA,1);%注意此处需将矩阵A 转置,因为matlab 中是按列优先搜索的,而题目的程序是按行有限搜索。

高中数学必修一第三章《函数的应用》单元测试卷及答案2套

高中数学必修一第三章《函数的应用》单元测试卷及答案2套

高中数学必修一第三章《函数的应用》单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .02.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.某企业2010年12月份的产值是这年1月份产值的P 倍,则该企业2010年度产值的月平均增长率为( )A .P P -1 B .11P -1C .11PD .P -1114.如图所示的函数图象与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④5.如图1,直角梯形OABC 中,AB∥OC,AB =1,OC =BC =2,直线l∶x=t 截此梯形所得位于l 左方图形面积为S ,则函数S =f(t)的图象大致为图中的( )图16.已知在x 克a%的盐水中,加入y 克b%的盐水,浓度变为c%,将y 表示成x 的函数关系式为( )A .y =c -ac -b x B .y =c -ab -c x C .y =c -bc -axD .y =b -cc -ax 7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( ) (下列数据仅供参考:2=1.41,3=1.73,33=1.44,66=1.38)A .38%B .41%C .44%D .73%8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:R(Q)=4Q -1200Q 2,则总利润L(Q)的最大值是________万元,这时产品的生产数量为________.(总利润=总收入-成本)( )A .250 300B .200 300C .250 350D .200 3509.在一次数学实验中,运用图形计算器采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00 y0.240.5112.023.988.02则x 、y )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?( )A .一次函数B .二次函数C .指数函数D .对数函数11.用二分法判断方程2x 3+3x -3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421875,0.6253=0.24414)( )A .0.25B .0.375C .0.635D .0.82512.有浓度为90%的溶液100g ,从中倒出10g 后再倒入10g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.3010,lg 3=0.4771)( )A .19B .20C .21D .22二、填空题(本大题共4小题,每小题5分,共20分)13.用二分法研究函数f(x)=x 3+2x -1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈________,第二次计算的f(x)的值为f(________).14.若函数f(x)=a x-x -a(a>0,且a≠1)有两个零点,则实数a 的取值范围为________.15.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为________________万元.16.函数f(x)=x 2-2x +b 的零点均是正数,则实数b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x 的取值范围.(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771)19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线AB 是函数y =ka t(t≥1,a>0,且k ,a 是常数)的图象.(1)写出服药后y 关于t 的函数关系式;(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3, (1)求f(x)的解析式;(2)判断函数g(x)=-1+lg f 2(x)在区间[0,9]上零点的个数.21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x 年后,我国人口为y 亿.(1)求y 与x 的函数关系式y =f(x);(2)求函数y =f(x)的定义域;(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)答案1.B [由1+1x =0,得1x=-1,∴x =-1.]2.B [由题意x 0为方程x 3=(12)x -2的根,令f (x )=x 3-22-x,∵f (0)=-4<0,f (1)=-1<0,f (2)=7>0, ∴x 0∈(1,2).]3.B [设1月份产值为a ,增长率为x ,则aP =a (1+x )11, ∴x =11P -1.]4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.] 5.C [解析式为S =f (t ) =⎩⎪⎨⎪⎧12t ·2t 0≤t ≤112×1×2+t -1×21<t ≤2=⎩⎪⎨⎪⎧t 20≤t ≤12t -11<t ≤2∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]6.B [根据配制前后溶质不变,有等式a %x +b %y =c %(x +y ),即ax +by =cx +cy ,故y =c -a b -cx .] 7.B [设职工原工资为p ,平均增长率为x , 则p (1+x )6=8p ,x =68-1=2-1=41%.]8.A [L (Q )=4Q -1200Q 2-Q -200=-1200(Q -300)2+250,故总利润L (Q )的最大值是250万元,这时产品的生产数量为300.]9.B [∵x =0时,b x无意义,∴D 不成立. 由对应数据显示该函数是增函数,且增幅越来越快, ∴A 不成立. ∵C 是偶函数,∴x =±1的值应该相等,故C 不成立. 对于B ,当x =0时,y =1, ∴a +1=1,a =0;当x =1时,y =b =2.02,经验证它与各数据比较接近.]10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]11.C [令f (x )=2x 3+3x -3,f (0)<0,f (1)>0,f (0.5)<0,f (0.75)>0,f (0.625)<0,∴方程2x 3+3x -3=0的根在区间(0.625,0.75)内, ∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]12.C [操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%,得n +1>-1lg 910=-12lg3-1≈21.8,∴n ≥21.] 13.(0,0.5) 0.25解析 根据函数零点的存在性定理. ∵f (0)<0,f (0.5)>0,∴在(0,0.5)存在一个零点,第二次计算找中点,即0+0.52=0.25. 14.(1,+∞)解析 函数f (x )的零点的个数就是函数y =a x与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.15.a (1-b %)n解析 第一年后这批设备的价值为a (1-b %);第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2; 故第n 年后这批设备的价值为a (1-b %)n. 16.(0,1]解析 设x 1,x 2是函数f (x )的零点,则x 1,x 2为方程x 2-2x +b =0的两正根,则有⎩⎪⎨⎪⎧Δ≥0x 1+x 2=2>0x 1x 2=b >0,即⎩⎪⎨⎪⎧4-4b ≥0b >0.解得0<b ≤1.17.解 (1)依题意得y =5x +10(1200-x ) =-5x +12000,0≤x ≤1200. (2)∵1200×65%≤x ≤1200×85%, 解得780≤x ≤1020,而y =-5x +12000在[780,1 020]上为减函数, ∴-5×1020+12000≤y ≤-5×780+12000. 即6900≤y ≤8100,∴国庆这天停车场收费的金额范围为[6 900,8 100]. 18.解 (1)依题意:y =a ·0.9x,x ∈N *. (2)依题意:y ≤13a ,即:a ·0.9x≤a3,0.9x≤13=0.91log 30.9,得x ≥log 0.913=-lg32lg3-1≈-0.47710.9542-1≈10.42.答 通过至少11块玻璃后,光线强度减弱到原来的13以下.19.解 (1)当0≤t <1时,y =8t ;当t ≥1时,⎩⎪⎨⎪⎧ka =8,ka 7=1.∴⎩⎪⎨⎪⎧a =22,k =8 2.∴y =⎩⎪⎨⎪⎧8t , 0≤t <1,8222t,t ≥1.(2)令82·(22)t≥2,解得t ≤5. ∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药. (3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y 1=82×(22)8=22(微克);含第二次服药后药量为y 2=82×(22)3=4(微克),y 1+y 2=22+4≈4.7(微克). 故第二次服药再过3小时,该病人每毫升血液中含药量为4.7微克. 20.解 (1)令f (x )=ax +b ,由已知条件得⎩⎪⎨⎪⎧a +b =22a +b =3,解得a =b =1,所以f (x )=x +1(x ∈R ).(2)∵g (x )=-1+lg f 2(x )=-1+lg (x +1)2在区间[0,9]上为增函数,且g (0)=-1<0,g (9)=-1+lg102=1>0,∴函数g (x )在区间[0,9]上零点的个数为1个. 21.解 (1)2009年底人口数:13.56亿. 经过1年,2010年底人口数:13.56+13.56×1%=13.56×(1+1%)(亿). 经过2年,2011年底人口数:13.56×(1+1%)+13.56×(1+1%)×1% =13.56×(1+1%)2(亿). 经过3年,2012年底人口数:13.56×(1+1%)2+13.56×(1+1%)2×1% =13.56×(1+1%)3(亿).∴经过的年数与(1+1%)的指数相同.∴经过x年后人口数为13.56×(1+1%)x(亿).∴y=f(x)=13.56×(1+1%)x.(2)理论上指数函数定义域为R.∵此问题以年作为时间单位.∴此函数的定义域是{x|x∈N*}.(3)y=f(x)=13.56×(1+1%)x.∵1+1%>1,13.56>0,∴y=f(x)=13.56×(1+1%)x是增函数,即只要递增率为正数,随着时间的推移,人口的总数总在增长.22.解(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+60-510.02=550.因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当0<x≤100时,P=60;当100<x<550时,P=60-0.02·(x-100)=62-x50;当x≥550时,P=51.所以P=f(x)=⎩⎪⎨⎪⎧60,0<x≤10062-x50,100<x<550,51,x≥550(x∈N).(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P-40)x=⎩⎪⎨⎪⎧20x,0<x≤10022x-x250,100<x<550,11x,x≥550(x∈N).当x=500时,L=6000;当x=1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.测试卷二(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .42.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为( )A .每个110元B .每个105元C .每个100元D .每个95元3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )A .y =log 2tB .y =12C .y =t 2-12D .y =2t -24.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是( )A .413.7元B .513.7元C .548.7元D .546.6元5.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( )A .(-235,+∞) B .(1,+∞) C .[-235,1]D .(-∞,-235]6.设f(x)是区间[a ,b]上的单调函数,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一实根7.方程x 2-(2-a)x +5-a =0的两根都大于2,则实数a 的取值范围是( )A .a<-2B .-5<a<-2C .-5<a≤-4D .a>4或a<-48.四人赛跑,其跑过的路程f(x)和时间x 的关系分别是:f 1(x)=12x ,f 2(x)=14x ,f 3(x)=log 2(x +1),f 4(x)=log 8(x +1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是( )A .f 1(x)=12xB .f 2(x)=14xC .f 3(x)=log 2(x +1)D .f 4(x)=log 8(x +1)9.函数f(x)=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)10.已知f(x)=(x -a)(x -b)-2的两个零点分别为α,β,则( )A .a<α<b<βB .α<a<b<βC .a<α<β<bD .α<a<β<b11.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f(x +1x +4)的所有x之和为( )A .-92B .-72C .-8D .812.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图所示.现给出下面说法:①前5分钟温度增加的速度越来越快; ②前5分钟温度增加的速度越来越慢; ③5分钟以后温度保持匀速增加; ④5分钟以后温度保持不变. 其中正确的说法是( )A .①④B .②④C .②③D .①③二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=⎩⎪⎨⎪⎧log 2x x>03xx≤0,且关于x 的方程f(x)+x -a =0有且只有一个实根,则实数a 的取值范围是______________.14.要建造一个长方体形状的仓库,其内部的高为3m ,长与宽的和为20m ,则仓库容积的最大值为________.15.已知函数f(x)=⎩⎪⎨⎪⎧2x-1, x>0,-x 2-2x ,x≤0.若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围为________.16.若曲线|y|=2x+1与直线y =b 没有公共点,则b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由.18.(12分)(1)已知f(x)=23x-1+m 是奇函数,求常数m 的值; (2)画出函数y =|3x-1|的图象,并利用图象回答:k 为何值时,方程|3x-1|=k 无解?有一解?有两解?19.(12分)某出版公司为一本畅销书定价如下: C(n)=⎩⎪⎨⎪⎧12n ,1≤n≤24,n ∈N *,11n ,25≤n ≤48,n ∈N *,10n ,n ≥49,n ∈N *,这里n 表示定购书的数量,C (n )是定购n 本书所付的钱数(单位:元).若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱?20.(12分)是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.21.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.22.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;③每户每月的定额损耗费a不超过5元.(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系式;(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:m,n,a的值.答案1.A [在同一坐标系中分别画出函数y1=|x2-3|和y2=a的图象,如图所示.可知方程解的个数为0,2,3或4,不可能有1个解.] 2.D [设售价为x 元,则利润y =[400-20(x -90)](x -80)=20(110-x )(x -80)=-20(x 2-190x +8800) =-20(x -95)2+4500.∴当x =95时,y 最大为4500元.]3.C [当t =4时,y =log 24=2,y =12log 4=-2,y =42-12=7.5,y =2×4-2=6.所以y =t 2-12适合,当t =1.99代入A 、B 、C 、D4个选项,y =t 2-12的值与表中的1.5接近,故选C.]4.D [购物超过200元,至少付款200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+4230.9=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]5.C [令f (x )=x 2+ax -2,则f (0)=-2<0, ∴要使f (x )在[1,5]上与x 轴有交点,则需要⎩⎪⎨⎪⎧f 1≤0f 5≥0,即⎩⎪⎨⎪⎧a -1≤023+5a ≥0,解得-235≤a ≤1.]6.D [∵f (a )·f (b )<0,∴f (x )在区间[a ,b ]上存在零点,又∵f (x )在[a ,b ]上是单调函数,∴f (x )在区间[a ,b ]上的零点唯一,即f (x )=0在[a ,b ]上必有唯一实根.]7.C [由题意知⎩⎪⎨⎪⎧Δ≥02-a2>2f 2>0,解得-5<a ≤-4.]8.B [在同一坐标系下画出四个函数的图象,由图象可知f 2(x )=14x 增长的最快.]9.B [f (2)=ln2-22=ln2-1<1-1=0,f (3)=ln3-23>1-23=13>0.故零点所在区间为(2,3).]10.B [设g (x )=(x -a )(x -b ),则f (x )是由g (x )的图象向下平移2个单位得到的,而g (x )的两个零点为a ,b ,f (x )的两个零点为α,β,结合图象可得α<a <b <β.]11.C [∵x >0时f (x )单调且为偶函数, ∴|2x |=|x +1x +4|,即2x (x +4)=±(x +1). ∴2x 2+9x +1=0或2x 2+7x -1=0. ∴共有四根.∵x 1+x 2=-92,x 3+x 4=-72,∴所有x 之和为-92+(-72)=-8.]12.B [因为温度y 关于时间t 的图象是先凸后平行直线,即5分钟前每当t 增加一个单位增量Δt ,则y 随相应的增量Δy 越来越小,而5分钟后y 关于t 的增量保持为0.故选B.]13.(1,+∞)解析 由f (x )+x -a =0, 得f (x )=a -x ,令y =f (x ),y =a -x ,如图,当a >1时,y =f (x )与y =a -x 有且只有一个交点, ∴a >1. 14.300m 3解析 设长为x m ,则宽为(20-x )m ,仓库的容积为V , 则V =x (20-x )·3=-3x 2+60x,0<x <20,由二次函数的图象知,顶点的纵坐标为V 的最大值. ∴x =10时,V 最大=300(m 3). 15.(0,1)解析 函数f (x )=⎩⎪⎨⎪⎧2x-1, x >0,-x 2-2x ,x ≤0的图象如图所示,该函数的图象与直线y =m 有三个交点时m ∈(0,1),此时函数g (x )=f (x )-m 有3个零点.16.[-1,1]解析 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件为b ∈[-1,1].17.解 令f (x )=4x 3+x -15, ∵y =4x 3和y =x 在[1,2]上都为增函数. ∴f (x )=4x 3+x -15在[1,2]上为增函数,∵f (1)=4+1-15=-10<0,f (2)=4×8+2-15=19>0, ∴f (x )=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解. 18.解 (1)∵f (x )=23x -1+m 是奇函数,∴f (-x )=-f (x ),∴23-x -1+m =-23x -1-m .∴2·3x1-3x +m =21-3x -m , ∴23x -11-3x+2m =0. ∴-2+2m =0,∴m =1.(2)作出直线y =k 与函数y =|3x-1|的图象,如图.①当k <0时,直线y =k 与函数y =|3x-1|的图象无交点,即方程无解;②当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解;③当0<k <1时,直线y =k 与函数y =|3x-1|的图象有两个不同的交点,所以方程有两解.19.解 设甲买n 本书,则乙买(60-n )本(不妨设甲买的书少于或等于乙买的书),则n ≤30,n ∈N *.①当1≤n ≤11且n ∈N *时,49≤60-n ≤59,出版公司赚的钱数f (n )=12n +10(60-n )-5×60=2n +300; ②当12≤n ≤24且n ∈N *时,36≤60-n ≤48, 出版公司赚的钱数f (n )=12n +11(60-n )-5×60=n +360;③当25≤n ≤30且n ∈N *时,30≤60-n ≤35, 出版公司赚的钱数f (n )=11×60-5×60=360. ∴f (n )=⎩⎪⎨⎪⎧2n +300, 1≤n ≤11,n ∈N *,n +360,12≤n ≤24,n ∈N *,360,25≤n ≤30,n ∈N *.∴当1≤n ≤11时,302≤f (n )≤322; 当12≤n ≤24时,372≤f (n )≤384; 当25≤n ≤30时,f (n )=360.故出版公司最少能赚302元,最多能赚384元. 20.解 若实数a 满足条件, 则只需f (-1)f (3)≤0即可.f (-1)f (3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1, 所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a ≠1. (2)当f (3)=0时a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).21.解 当a =0时,函数为f (x )=2x -3,其零点x =32不在区间[-1,1]上.当a ≠0时,函数f (x )在区间[-1,1]分为两种情况: ①函数在区间[-1,1]上只有一个零点,此时:⎩⎪⎨⎪⎧Δ=4-8a -3-a ≥0f -1·f 1=a -5a -1≤0或⎩⎪⎨⎪⎧Δ=4-8a -3-a =0-1≤-12a ≤1,解得1≤a ≤5或a =-3-72.②函数在区间[-1,1]上有两个零点,此时⎩⎪⎨⎪⎧Δ>0-1<-12a <1f -1f 1≥0,即⎩⎪⎨⎪⎧8a 2+24a +4>0-1<-12a<1a -5a -1≥0.解得a ≥5或a <-3-72.综上所述,如果函数在区间[-1,1]上有零点,那么实数a 的取值范围为(-∞,-3-72]∪[1,+∞). 22.解 (1)依题意,得y =⎩⎪⎨⎪⎧9+a ,0<x ≤m , ①9+n x -m +a ,x >m .②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②,得⎩⎪⎨⎪⎧17=9+n 4-m +a , ③23=9+n 5-m +a .④③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16. 又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13,这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.将⎩⎪⎨⎪⎧x =2.5,y =11代入①,得11=9+a ,由⎩⎪⎨⎪⎧a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.。

C语言实验二报告

C语言实验二报告

北京电子科技学院(BESTI)实验报告课程:程序设计基础班级:姓名:学号:成绩:指导教师:张晓昆实验日期:实验密级:预习程度:实验时间:15:30~18:30仪器组次:必修/选修:必修实验序号: 2实验名称:函数编程练习实验目的与要求:主函数通常只处理输入和输出;掌握定义函数的方法;掌握函数实参与形参的对应关系,以及“值传递”的方式;掌握全局变量、局部变量、动态变量、静态变量的概念和使用方法,、了解函数的嵌套调用方法和递归调用方法。

观察堆栈窗口call stack,注意函数调用过程堆栈的动态变化。

有兴趣的同学可以将几个函数分别放到不同的.C文件中,分别编译,再利用Project建立工程文件,然后连接执行,观察结果。

实验内容素数(Prime Number),又称为质数,它是不能被1和它本身以外的其他整数整除的正整数。

按照这个定义,负数、0和1都不是素数,而17之所以是素数,是因为除了1和17以外,它不能被2~16之间的任何整数整除。

任务1:试商法是最简单的判断素数的方法。

用i=2~m-1之间的整数去试商,若存在某个m能被1与m本身以外的整数i整除(即余数为0),则m不是素数,若上述范围内的所有整数都不能整除m,则m是素数。

采用试商法,分别用goto语句、break语句和采用设置标志变量并加强循环测试等三种方法编写素数判断函数IsPrime(),从键盘任意输入一个整数m,判断m是否为素数,如果m是素数,则按"%d is a prime number\n"格式打印该数是素数,否则按"%d is not a prime number\n"格式打印该数不是素数。

然后分析哪一种方法可读性更好。

1、goto语句#include <stdio.h>#include <stdlib.h>int IsPrime(int n); //判断是否是素数的函数原型int main(){int m;printf("Please enter a integer:");scanf("%d", &m); //用户输入欲判断的数if( IsPrime(m) == 1){ //调用判断是否是素数的函数并输出结果printf("%d is a prime number!\n", m);}else{printf("%d is not a prime number!\n", m);}return 0; //返回0} //主函数结束int IsPrime(int n) //判断是否是素数的函数{int i = 2;int j = 0;if(n < 2){ //若n小于2,返回0值return 0;}if(n == 2){return 1;}loop:if(n % i == 0){ //利用goto语句i++;j++;goto loop;}if(j >= 1){ //若j大于2,则说明能被2~n-1之间的数整除,返回0;否则返回1 return 0;}else{return 1;}} //子函数结束2、break语句#include <stdio.h>#include <stdlib.h>int IsPrime(int n); //判断是否是素数的函数原型int main(){int m;printf("Please enter a integer:");scanf("%d", &m); //用户输入欲判断的数if( IsPrime(m) == 1){ //调用判断是否是素数的函数并输出结果printf("%d is a prime number\n", m);}else{printf("%d is not a prime number\n,", m);}return 0; //返回0} //主函数结束int IsPrime(int n) //判断是否是素数的函数{int i;int j = 0;if( n < 2 ){ //若n小于2,返回0值return 0;}for(i = 2; i <= n - 1; i++){if( n % i == 0){ //利用试商法判断是否能被2~n-1之间的数整除j++;}if(j > 1){ //若j大于2,则说明能被2~n-1之间的数整除,返回0;否则返回1 return 0;break;}}if( j == 0)return 1;} //子函数结束3、采用设置标志变量并加强循环测试#include <stdio.h>#include <stdlib.h>int IsPrime(int n); //判断是否是素数的函数原型int main(){int m;printf("Please enter a integer:");scanf("%d", &m); //用户输入欲判断的数if( IsPrime(m) == 1){ //调用判断是否是素数的函数并输出结果printf("%d is a prime number\n", m);}else{printf("%d is not a prime number\n,", m);}return 0; //返回0} //主函数结束int IsPrime(int n) //判断是否是素数的函数{int i;int j = 0;if( n < 2 ){ //若n小于2,返回0值return 0;}for(i = 2; i <= n - 1; i++){if( n % i == 0){ //利用试商法判断是否能被2~n-1之间的数整除j++;}}if(j >= 1){ //若j大于2,则说明能被2~n-1之间的数整除,返回0;否则返回1 return 0;}else{return 1;}} //子函数结束任务2:用数学的方法可以证明,不能被2取整)之间的数整除的数,一定不能被1和它本身之外的其他任何整数整除。

实验二数据类型、输入输出函数的使用

实验二数据类型、输入输出函数的使用
}
(5)ex3_5.c
#include <stdio.h>
main()
{
int x,y;
float a,b;
char num1,num2;
scanf("x=%d,y=%d",&x,&y);
scanf("%f,%e",&a,&b);
scanf("%c%c",&num1,&num2);
printf("x=%d,y=%d,a=%f,b=%f,num1=%c,num2=%c\n",x,y,a,b,num1,num2);
2、格式输出函数printf( )中格式控制字符与附加格式说明符(修饰符)的
使用;
3、格式输入函数scanf( )中格式控制字符与附加格式说明符(修饰符)的
使用;
4、使用赋值语句和输入/输出函数进行顺序结构程序设计。
【实验思考】
1、请分别说明输入、输出格式字符串的特点与作用。
2、字符串常量与字符常量有什么区别。
putchar(n2);
putchar('\n');
}
2、编程:要求从键盘输入数据,使整型变量a=10,b=8,字符型c1=‘A’,c2=‘a’,实型变量x=3.1,y=64.54,
并按规定格式输出变量的值。源文件以ex3_7.c命名保存。
要求输出格式如下:
a=_10,b=_8
C1=_A,c2=__a
3、整型、浮点型、字符型变量如何定义,在内存中分别占据的存储单元是多少?
X=_3.1,y=64.54
3、编写一个程序,从键盘输入梯形的上底、下底和高的值(浮点数),计算并输出其面积,源程序以ex3_8.c命名,并保存在自己的文件夹内。

2023年中考数学高频考点训练——反比例函数的实际运用

2023年中考数学高频考点训练——反比例函数的实际运用

2023年中考数学高频考点训练——反比例函数的实际运用一、综合题1.如图,在物理知识中,压强p 与受力面积S 成反比例,点()27.5,在该函数图象上.(1)试确定P 与S 之间的函数解析式;(2)求当4P Pa =时,S 是多少2m 2.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降.水温()C y ︒和通电时间()min x 成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20C ︒,接通电源后,水温()C y ︒和通电时间()min x 之间的关系如图所示,回答下列问题:(1)分别求出当08x ≤≤和8x a <≤时,y 和x 之间的函数关系式;(2)求出图中a 的值;(3)李老师这天早上730:将饮水机电源打开,若他想在810:上课前喝到不低于40C ︒的开水,则他需要在什么时间段内接水?3.一辆客车从甲地出发前往乙地,平均速度v (千米/小时)与所用时间t (小时)的函数关系如图所示,其中60≤v≤120.(1)求出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离. 4.如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点,训练时要求A、B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线y=4x上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A、B两船恰好在直线y=x上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A(,)、B(,)和C(,);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由.5.某学校要修建一个占地面积为64平方米的矩形体育活动场地,四周要建上高为1米的围挡.学校准备了可以修建45米长的围挡材料(可以不用完).设矩形地面的边长AB x=米,BC y=米.(1)求y关于x的函数关系式(不写自变量的取值范围);(2)能否建造20AB=米的活动场地?请说明理由;(3)若矩形地面的造价为1千元/平方米,侧面围挡的造价为0.5千元/平方米,建好矩形场地的总费用为80.4千元,求出x 的值.(总费用=地面费用+围挡费用)6.通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段:当2045x ≤≤时,图象是反比例函数的一部分.(1)求出点A 对应的指标值及AB 段所对应的函数解析式.(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.7.某燃气公司计划在地下修建一个容积为V (V 为定值,单位:m 3)的圆柱形天然气储存室,储存室的底面积S (单位:m 2)与其深度d (单位:m )是反比例函数关系,它的图象如图所示.(1)求储存室的容积V 的值;(2)受地形条件限制,储存室的深度d 需要满足16≤d≤25,求储存室的底面积S 的取值范围.8.某种消毒药喷洒释放完毕开始计时,药物浓度()3mg/m y 与时间()x min 之间的关系如下:时间()x min 2412药物浓度()3mg/m y 1893(1)求y 关于x 的关系式;(2)当药物浓度不低于36mg/m 并且持续时间不少于5min 时消毒算有效,问这次消毒是否有效?.9.五一黄金周,小张一家自驾去某景点旅行.已知汽车油箱的容积为50L ,小张爸爸把油箱加满油后到了离加油站200km 的某景点,第二天沿原路返回.(1)油箱加满油后,求汽车行驶的总路程s (单位:km )与平均耗油量b(单位L/km)的函数关系式;(2)小张爸爸以平均每千米耗油0.1L 的速度驾驶到达目的地,返程时由于下雨,降低了车速,此时平均每千米的耗油量增加了一倍.如果小张爸爸始终以此速度行驶,不需要加油能否返回原加油站?如果不能,至少还需加多少油?10.码头工人每天往一艘轮船上装载货物,装载速度y (吨/天)与装完货物所需时间x (天)之间的函数关系如图.(1)求y 与x 之间的函数表达式,并写出自变量x 的取值范围;(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?11.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作.经过8min 时,材料温度降为600℃.煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图,已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y 与x 的函数关系式,并写出自变量工的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?12.近年来随着科技的发展,药物制剂正朝着三效,即高效、速效、长效;以及三小,即毒性小、副作用小、剂量小的方向发展.缓释片是通过一些特殊的技术和手段,使药物在体内持续释放,从而使药物在体内能长时间的维持有效血药浓度,药物作用更稳定持久.某医药研究所研制了一种具有缓释功能的新药,在试验药效时发现:成人按规定剂量服用后,检测到从第0.5小时起开始起效,第2小时达到最高12微克/毫升,并维持这一最高值直至第4小时结束,接着开始衰退,血液中含药量y (微克)与时间x (小时)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1)分别求①当0.5≤x≤2时,y 与x 之间的函数表达式为;②当x >4时,y 与x 之间的函数表达式为.(2)如果每毫升血液中含药量不低于4微克时有效,求一次服药后的有效时间是多少小时.13.通过实验研究发现:初中生在体育课上运动能力指标(后简称指标)随上课时间的变化而变化.上课开始时,学生随着运动,指标开始增加,中间一段时间,指标保持平稳状态,随后随着体力的消耗,指标开始下降.指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2040x ≤≤时,图象是反比例函数的一部分.(1)求这个分段函数的表达式;(2)杨老师想在一节课上进行某项运动的教学需要18分钟,这项运动需要学生的运动能力指标不低于48才能达到较好的效果,他的教学设计能实现吗?请说明理由.14.市政府计划建设一项惠民工程,工程需要运送的土石方总量为105m 3,经招投标后,先锋运输公司承担了运送土石方的任务.(1)直接写出运输公司平均每天运送速度v (单位:m 3/天)与完成任务所需时间t (单位:天)之间的函数关系式;(2)如果每辆车每天平均运送102m 3的土石方,要求不超过50天完成任务,求运输公司平均每天至少安排多少辆车.15.某疫苗生产企业于2021年1月份开始技术改造,其月生产数量y (万支)与月份x 之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,请根据图中数据解答下列问题:(1)该企业4月份的生产数量为多少万支?(2)该企业有几个月的月生产数量不超过90万支?16.如图,在平面直角坐标系中,O 为坐标原点,点A 坐标为(3,0),四边形OABC为平行四边形,反比例函数y=kx (x >0)的图象经过点C ,与边AB 交于点D ,若,tan ∠AOC=1.(1)求反比例函数解析式;(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.17.某小组进行漂洗实验,每次漂洗的衣服量和添加洗衣粉量固定不变实验发现,当每次漂洗用水量v(升)一定时,衣服中残留的洗衣粉量y(克)与漂洗次数x(次)满足y=2.5kvx(k为常数),已知当使用5升水,漂洗1次后,衣服中残留洗衣粉2克.(1)求k的值.(2)如果每次用水5升,要求漂洗后残留的洗衣粉量小于0.8克,求至少漂洗多少次?(3)现将20升水等分成x次(x>1)漂洗,要使残留的洗衣粉量降到0.5克,求每次漂洗用水多少升?18.解题方法回顾:在求某边上的高之类问题时,常常利用同一个图形面积不变或等底等高面积不变或多个图形面积之和不变的原理来解决,称为“等积法”.解题方法应用:(1)已知:如图1,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,求PE+PF的值.小陈同学想到了利用“等积法”解决本题,过程如下:(如图2)解:连接PO,∵矩形ABCD的两边AB=5,BC=12,∴60ABCD S AB BC =⋅=矩形,OA =OC ,OB =OD ,AC =BD ,∴13AC ==,∴1154AOD ABCD S S == 矩形,11322OA OD AC ===,∴()111222AOD AOP DOP S S S OA PE OD PF OA PE PF =+=⋅+⋅=+ ()1131522PE PF =⨯⨯+=,∴PE +PF =.(请你填上小陈计算的正确答案)(2)如图,正方形ABCD 的边长为2,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ',C ',D '.①设AP =x ,BB CC DD y ''++'=,求y 与x 的函数关系式,并求出x 取值范围;②直接写出y 的最大值为▲,最小值为▲.19.王老师驾驶小汽车从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶的平均速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)王老师上午8点驾驶小汽车从A 地出发.①王老师需要在当天13点至14点(含13点和14点)间到达B 地,求小汽车行驶的平均速度v 需达到的范围;②王老师能否在当天11点30分前到达B 地?说明理由.20.某一农家计划利用已有的一堵长为8m 的墙,用篱笆圈成一个面积为12m 2的矩形ABCD 花园,现在可用的篱笆总长为11m.(1)若设AB x =,BC y =.请写出y 关于x 的函数表达式;(2)若要使11m 的篱笆全部用完,能否围成面积为15m 2的花园?若能,请求出长和宽;若不能,请说明理由;(3)若要使11m 的篱笆全部用完,请写出y 关于x 的第二种函数解析式.请在坐标系中画出两个函数的图象,观察图象,满足条件的围法有几种?请说明理由.答案解析部分1.【答案】解:设kP S =,把()27.5,代入得27.515k =⨯=,∴15P S =,()2求当4P Pa =时,S 是多少2m 解:当4P =Pa 时,有154S =,∴2154S m =.(1)解:设kP S =,把()27.5,代入得27.515k =⨯=,∴15P S =,(2)解:当4P =Pa 时,有154S =,∴2154S m =.【解析】【分析】(1)设P=kS ,将(2,7.5)代入求解可得k ,进而可得P 与S 之间的函数解析式;(2)将P=4代入(1)中的关系式中求解就可得到S.2.【答案】(1)解:当08x ≤≤1y k x b =+,将(020),,(8100),的坐标分别代入1y k x b =+得1208100b k b =⎧⎨+=⎩,解得110k =,20b =.∴当08x ≤≤时,1020y x =+.当8x a <≤时,设2k y x =,将(8100),的坐标代入2k y x =,得2800k =.∴当8x a <≤时,800y x =.综上,当08x ≤≤时,1020y x =+;当8x a <≤时,800y x =;(2)解:将20y =代入800y x=,解得40x =,即40a =;(3)解:当40y =时,8002040x ==.∴要想喝到不低于40C ︒的开水,x 需满足820x ≤≤,即李老师要在7:38到7:50之间接水.【解析】【分析】(1)直接利用反比例函数解析式和一次函数解析式求法得出答案;(2)利用(1)中所求解析式,当y=20时,得出答案;(3)当y=40时,代入反比例函数解析式,结合水温的变化得出答案.3.【答案】(1)解:设函数关系式为v=kt,∵t=5,v=120,∴k=120×5=600,∴v 与t 的函数关系式为v=600t(5≤t≤10);(2)解:①依题意,得3(v+v-20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v-20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A 加油站在甲地和B 加油站之间时,110t-(600-90t )=200,解得t=4,此时110t=110×4=440;当B 加油站在甲地和A 加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B 加油站的距离为220或440千米.【解析】【分析】(1)利用时间t 与速度v 成反比例可以得到反比例函数的解析式;(2)①由客车的平均速度为每小时v 千米,得到货车的平均速度为每小时(v-20)千米,根据一辆客车从甲地出发前往乙地,一辆货车同时从乙地出发前往甲地,3小时后两车相遇列出方程,解方程即可;②分两种情况进行讨论:当A 加油站在甲地和B 加油站之间时;当B加油站在甲地和A加油站之间时;都可以根据甲、乙两地间有两个加油站A、B,它们相距200千米列出方程,解方程即可.4.【答案】(1)2;2;-2;-2;2;-2;(2)解:作AD⊥x轴于D,连AC、BC和OC,∵A(2,2),∴∠AOD=45°,AO=2,∵C在O的东南45°方向上,∴∠AOC=45°+45°=90°,∵AO=BO,∴AC=BC,又∵∠BAC=60°,∴△ABC为正三角形,∴AC=BC=AB=2AO=4,∴2OC=⋅=,由条件设教练船的速度为3m,A、B两船的速度都为4m,则教练船所用时间为263m,A、B两船所用时间均为424m=2m,∵263m=243m,2m=183m,∴3m>m;∴教练船没有最先赶到.【解析】【解答】解:(1)CE ⊥x 轴于E ,解方程组4y x y x =⎧⎪⎨=⎪⎩得1122x y =⎧⎨=⎩,2222x y =-⎧⎨=-⎩∴A (2,2),B (-2,-2),在等边△ABC 中可求OA=2,则OC=OA=2,在Rt △OCE中,sin 45OE CE OC ==⋅︒=,∴C (2,-2);【分析】(1)A 、B 两点直线y=x 上和双曲线y=4x,列方程组可求A 、B 两点坐标,在依题意判断△ABC 为等边三角形,OA=2,则OC=OA=2,过C 点作x 轴的垂线CE ,垂足为E ,利用OC 在第四象限的角平分线上求OE ,CE ,确定C 点坐标;(2)分别求出AC 、OC 的长,分别表示教练船与A 、B 两船的速度与时间,比较时间的大小即可.5.【答案】(1)解:∵矩形体育场占地面积为64平方米,∴64y x=.(2)解:不能.理由:把20x =代入64y x=,得3.2y =.周长为2(20 3.2)46.445+=>.∴不能建造20AB =米的活动场地.(3)解:活动场地造价为646410.5280.4x x ⎛⎫⨯+⨯+= ⎪⎝⎭.整理得216.4640x x -+=,解得110x =,2 6.4x =.经检验,110x =,2 6.4x =均为原分式方程的解,且符合题意.当110x =时,总周长为64232.845x x ⎛⎫+=≤ ⎪⎝⎭;当2 6.4x =时,总周长为64232.845x x ⎛⎫+=≤ ⎪⎝⎭.综上可得,x 的值为10或6.4.【解析】【分析】(1)根据矩形的面积是64平方米,即可得到xy=64,即64y x=;(2)把x=12代入干壁立函数解析式求出y ,然后计算周长是否超过45即可得到答案;(3)根据题意列出总费用关于x 的方程求解,然后检验周长是否超过45即可得到答案。

c语言实验报告 (2)

c语言实验报告 (2)

C语言实验报告说明1,所有程序均用VC6。

0编译运行,文件名命名为姓名+日期,因为实验存在补做,所以并不是按照日期先后排列的。

2,为了使截图清晰,手动将运行窗口由“黑底白字"改为了“白底黑字”.实验2 数据类型、运算符和表达式一、实验目的:(1)掌握C语言数据类型,熟悉如何定义一个整型、字符型、实型变量、以及对它们赋值的方法。

(2)学会使用C的有关算术运算符,以及包含这些运算符的表达式,特别是自加(++)和自减(――)运算符的使用。

(3)掌握C语言的输入和输出函数的使用(4)进一步熟悉C程序的编辑、编译、连接和运行的过程.三、程序调试与问题解决:(1)输人并运行下面的程序#include<stdio.h>void main(){char c1,c2;c1='a’;c2=’b';printf(”%c %c\n”,c1,c2);}错误!运行此程序.错误!在上面printf语句的下面再增加一个printf语句。

printf(”%d%d\n",c1,c2);再运行,并分析结果。

输出结果如图,编译成功,无错误.错误!将第3行改为int c1,c2;再运行,并分析结果。

错误!再将第4、5行改为c1=a;c2=b;再运行,并分析结果。

a,b没有定义,编译报错。

错误!再将第4、5行改为c1=‘’a‘’;c2=‘’b‘’;再运行,并分析结果。

○6再将第4、5行改为c1=300;c2=400;再运行,并分析结果.以字符型输出时,输出的将是300,400对应的字符.(2)输人并运行教材第3章习题3. 6给出的程序#include〈stdio.h〉main (){char c1=’a’,c2=’b’,c3=’c',c4=’\101’,c5=’\116';printf("a%c b%c\tc%c\tabc\n",c1,c2,c3);printf(”\t\b%c %c\n”,c4,c5);}#include<stdio.h>void main(){int a,b;unsigned c,d;long e,f;a=100;b=-100;e=50000;f=32767;c=a;d=b;printf("%d,%d\n",a,b);printf(”%u,%u\n",a,b);printf("%u,%u\n",c,d);c=a=e; d=b=f;printf(”%d,%d\n",a,b);printf("%u,%u\n”,c,d);}请对照程序和运行结果分析:①将一个负整数斌给一个无符号的变t,会得到什么结果.画出它们在内存中的表示形式。

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用【实验目的】1. 了解示波器、函数信号发生器的工作原理。

2. 学习调节函数信号发生器产生波形及正确设置参数的方法。

3. 学习用示波器观察测量信号波形的电压参数和时间参数。

4. 通过李萨如图形学习用示波器观察两个信号之间的关系。

【实验仪器】1. 示波器DS5042型,1台。

2. 函数信号发生器DG1022型,1台。

3. 电缆线(BNC 型插头),2条。

【实验内容与步骤】1. 利用示波器观测信号的电压和频率(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。

图1-1 函数信号发生器生成的正、余弦信号的波形学生姓名/学号指导教师上课时间 第 周 节(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表表1-1 正余弦信号的电压和时间参数的测量电压参数(V)时间参数峰峰值最大值最小值频率(Hz)周期(ms)正弦信号3sin(200πt)余弦信号3cos(200πt)2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。

图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形(1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45º),观测并记录两正弦信号的李萨如图形于图1-3中。

(2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135º),观测并记录两正弦信号的李萨如图形于图1-3中。

二次函数的实际应用(典型例题分类)

二次函数与实际问题1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(求最值、最大利润、最大面积等)解决此类问题的基本思路是:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合理性,拓展等.例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系并求出绿地面积的最大值@变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式当x为多长时,花园面积最大·例二:某商店经营T恤衫,已知成批购进时单价是元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多设销售单价为x元,(0<x≤元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)@(4)所获利润可以表示为__________________;(5)当销售单价是________元时,可以获得最大利润,最大利润是__________。

~变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量其中自变量是_______,因变量是___________.(2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结_________个橙子.(3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________.(4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。

实验2 对称加密算法:DES

实验1-2 对称密码算法DES一.实验原理信息加密根据采用的密钥类型可以划分为对称密码算法和非对称密码算法。

对称密码算法是指加密系统的加密密钥和解密密钥相同,或者虽然不同,但是可以从其中任意一个推导出另一个,更形象的说就是用同一把钥匙开锁和解锁。

在对称密码算法的发展历史中曾出现过多种优秀的算法,包括DES、3DES、AES等。

下面我们以DES算法为例介绍对称密码算法的实现机制。

DES算法是有美国IBM公司在20世纪70年代提出,并被美国政府、美国国家标准局和美国国家标准协会采纳和承认的一种标准加密算法。

它属于分组加密算法,即明文加密和密文解密过程中,信息都是按照固定长度分组后进行处理的。

混淆和扩散是它采用的两个最重要的安全特性,混淆是指通过密码算法使明文和密文以及密钥的关系非常复杂,无法从数学上描述或者统计。

扩散是指明文和密钥中每一位信息的变动,都会影响到密文中许多位信息的变动,从而隐藏统计上的特性,增加密码安全。

DES将明文分成64比特位大小的众多数据块,即分组长度为64位。

同时用56位密钥对64位明文信息加密,最终形成64位的密文。

如果明文长度不足64位,则将其扩展为64位(例如补零等方法)。

具体加密过程首先是将输入的数据进行初始换位(IP),即将明文M 中数据的排列顺序按一定的规则重新排列,生成新的数据序列,以打乱原来的次序。

然后将变换后的数据平分成左右两部分,左边记为L0,右边记为R0,然后对R0施行在子密钥(由加密密钥产生)控制下的变换f,结果记为f(R0 ,K1),再与L0做逐位异或运算,其结果记为R1,R0则作为下一轮的L1。

如此循环16轮,最后得到L16、R16,再对L16、R16施行逆初始置换IP-1,即可得到加密数据。

解密过程与此类似,不同之处仅在于子密钥的使用顺序正好相反。

DES全部16轮的加密过程如图1-1所示。

DES的加密算法包括3个基本函数:1.初始换位(IP)它的作用是把输入的64位数据块的排列顺序打乱,每位数据按照下面换位规则重新组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的使用二
实验小测:
1、打开工作簿文档TEST17-A.xls, 完成后按原名存盘。

1)、在sheet1中,利用函数计算“总分”和“平均分”;根据“专业代码”用逻辑(条件)函数在J2:J48单元格中填入“专业名称”,其中专业代码“1”对应的专业名称为“房屋建筑工程”,“2”对应的专业名称为“计算机应用”,“3”对应的专业名称为“经济信息管理”。

2)、在sheet2中,在G3:H14中求出平均成绩和总分。

学号的第三个字符是表示班级,请在“学号”和“姓名”列之间加一列“班级”,用IF函数求出每个学生对应的班级,班级用汉字符“一班”,“二班”,“三班”,“四班”表示。

2、打开工作簿文档TEST17-B.XLS,完成下列操作后仍按原名保存。

1)、打开Sheet2工作表,用函数在“等级”列求每个人的等级:总分≥400为优;300≤总分<400为良;总分<300为差。

2)、在工作表sheet3的数据清单中,请使用COUNTIF函数在D1单元格求出编号第3位为"A"的记录个数。

3、打开工作簿文档TEST17-C.xls, 完成后按原名存盘。

1)在相应单元格计算每个人的总分、平均分,将平均分按四舍五入取整。

(空白作0分计)
2)在相应单元格计算每次测验、总分及平均分的最高分和最低分。

3)★利用函数(IF、MOD、MID函数),根据身份证号码来判定每个人的性别,并填在"性别"栏中;(提示:身份证第17位是奇数时为“男”,偶数时为“女”)
4)在"是否全勤"栏中用函数统计学生是否每次都参与了测试,显示“是”或“否”。

4、打开工作簿文档“TEST16-频率分布函数.xls”,利用频率分布函数列出“中
文”和“数学”成绩的分布情况。

相关文档
最新文档