9年级4.3—二次函数背景下的特殊图形问题

合集下载

初三二次函数的图像与性质

初三二次函数的图像与性质

初三二次函数的图像与性质二次函数是初中数学中的一个重要概念。

在数学学习的过程中,我们常常会接触到二次函数,并且需要了解它的图像特点以及性质。

本文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。

一、二次函数的定义及一般式二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。

它的图像是抛物线,并且开口的方向由$a$的正负决定。

当$a>0$时,抛物线开口向上;而当$a<0$时,抛物线开口向下。

二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。

其中,$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,$c$影响抛物线和$y$轴的交点。

【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图像和性质。

解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,$c=1$。

由于$a>0$,所以抛物线开口向上。

考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。

首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-\frac{b}{2a}$。

代入$a=2$,$b=-3$,我们得到$x=-\frac{-3}{2\times2}=\frac{3}{4}$。

因此,对称轴的方程为$x=\frac{3}{4}$。

接下来,我们需要计算抛物线的顶点坐标。

顶点坐标可以通过将对称轴的$x$坐标代入原函数方程计算得到。

将$x=\frac{3}{4}$代入$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。

因此,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二次函数的图像。

它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。

2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。

2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。

二次函数的图象与性质大题(五大题型)—2024年中考数学(全国通用)解析版

二次函数的图象与性质大题(五大题型)—2024年中考数学(全国通用)解析版

二次函数的图象与性质大题(五大题型)通用的解题思路:题型一.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c (a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.题型二.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.题型三.待定系数法求二次函数解析式(1)二次函数的解析式有三种常见形式:①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);(2)用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.题型四.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).题型五.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.题型一.二次函数的性质(共3小题)1.(2024•石景山区校级模拟)在平面直角坐标系xOy 中,1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上任意两点,设抛物线的对称轴为直线x h =. (1)若抛物线经过点(2,0),求h 的值;(2)若对于11x h =−,22x h =,都有12y y >,求h 的取值范围;(3)若对于121h x h −+……,221x −−……,存在12y y <,直接写出h 的取值范围. 【分析】(1)根据对称轴2bx a=−进行计算,得2b h =,再把(2,0)代入2(0)y x bx b =−+≠,即可作答.(2)因为1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上的点,所以把11x h =−,22x h =分别代入,得出对应的1y ,2y ,再根据12y y >联立式子化简,计算即可作答;(3)根据121h x h −+……,221x −−……,存在12y y <,得出当221h −<−<−或者211h −<+<−,即可作答. 【解答】解:(1)抛物线的对称轴为直线x h =, 22b bh ∴=−=−, 即2b h =,∴抛物线22y x hx =−+,把(2,0)代入22y x hx =−+, 得0422h =−+⨯, 解得1h =;(2)由(1)知抛物线22y x hx =−+,1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,221(1)2(1)1y h h h h ∴=−−+−=−,22(2)220y h h h =−+⨯=,对于11x h =−,22x h =,都有12y y >, 210h ∴−>,解得1h >或1h <−;(3)1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,对于121h x h −+……,221x −−……,存在12y y <,且1(2,)h y −关于直线x h =的对称点为1(2,)h y +,1(1,)h y +关于直线x h =的对称点为1(1,)h y −,∴当221h −<−<−时,存在12y y <,解得01h <<,当221h −<+<−时,存在12y y <, 解得43h −<<−,当211h −<+<−时,存在12y y <, 解得32h −<<−,当211h −<−<−时,存在12y y <, 解得10h −<<,综上,满足h 的取值范围为41h −<<且0h ≠.【点评】本题考查了二次函数的图象性质、增减性,熟练掌握二次函数的图象和性质是解决本题的关键. 2.(2024•鹿城区校级一模)已知二次函数223y x tx =−++. (1)若它的图象经过点(1,3),求该函数的对称轴. (2)若04x ……时,y 的最小值为1,求出t 的值.(3)如果(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点,则12x x +是否为定值?若是,请求出该定值;若不是,请说明理由.【分析】(1)把(1,3)代入解析式求出12t =,再根据对称轴公式求出对称轴; (2)根据抛物线开口向下,以及0x =时3y =,由函数的性质可知,当4x =时,y 的最小值为1,然后求t 即可;(3)(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,有对称轴公式得出1m t −=,再令2232x tx mx a −++=+,并转化为一般式,然后由根与系数的关系求出122x x +=−.【解答】解:(1)将(1,3)代入二次函数223y x tx =−++,得3123t =−++, 解得12t =, ∴对称轴直线为21122t x t =−==−⨯; (2)当0x =时,3y =,抛物线开口向下,对称轴为直线x t =, ∴当x t =时,y 有最大值,04x ……时,y 的最小值为1,∴当4x =时,16831y t =−++=,解得74t =; (3)12x x +是定值,理由:(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上, 212m mx t m −+∴===−, 1m t ∴−=,令2232x tx mx a −++=+, 整理得:22()30x m t x a +−+−=,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点, 1x ∴,2x 是方程22()30x m t x a +−+−=的两个根,122()2()21m t x x m t −∴+=−=−−=−是定值. 【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,关键是掌握二次函数的性质. 3.(2024•拱墅区一模)在平面直角坐标系中,抛物线2(2)2y ax a x =−++经过点(2,)A t −,(,)B m p . (1)若0t =,①求此抛物线的对称轴;②当p t <时,直接写出m 的取值范围;(2)若0t <,点(,)C n q 在该抛物线上,m n <且5513m n +<−,请比较p ,q 的大小,并说明理由. 【分析】(1)①当0t =时,点A 的坐标为(2,0)−,将其代入函数解析式中解得1a =−,则函数解析式为抛物线的解析式为22y x x =−−+,再根据求对称轴的公式2bx a=−即可求解; ②令0y =,求出抛物线与x 轴交于(2,0)−和(1,0),由题意可得0p <,则点B 在x 轴的下方,以此即可解答; (2)将点A 坐标代入函数解析式,通过0t <可得a 的取值范围,从而可得抛物线开口方向及对称轴,根据点B ,C 到对称轴的距离大小关系求解.【解答】解:(1)①当0t =时,点A 的坐标为(2,0)−,抛物线2(2)2y ax a x =−++经过点(2,0)A −, 42(2)20a a ∴+++=,1a ∴=−,∴抛物线的解析式为22y x x =−−+, ∴抛物线的对称轴为直线112(1)2x −=−=−⨯−;②令0y =,则220x x −−+=, 解得:11x =,22x =−,∴抛物线与x 轴交于(2,0)−和(1,0),点(2,0)A −,(,)B m p ,且0p <, ∴点(,)B m p 在x 轴的下方,2m ∴<−或1m >.(2)p q <,理由如下:将(2,)t −代入2(2)2y ax a x =−++得42(2)266t a a a =+++=+,0t <, 660a ∴+<, 1a ∴<−,∴抛物线开口向下,抛物线对称轴为直线(2)1122a x a a −+=−=+, 1a <−,110a∴−<<, 1111222a ∴−<+<, m n <且5513m n +<−,∴1312102m n +<−<−, ∴点(,)B m p 到对称轴的距离大于点(,)C n q 到对称轴的距离,p q ∴<.【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.题型二.二次函数图象与系数的关系(共8小题)4.(2023•南京)已知二次函数223(y ax ax a =−+为常数,0)a ≠. (1)若0a <,求证:该函数的图象与x 轴有两个公共点. (2)若1a =−,求证:当10x −<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<,则a 的取值范围是 .【分析】(1)证明240b ac −>即可解决问题. (2)将1a =−代入函数解析式,进行证明即可. (3)对0a >和0a <进行分类讨论即可.【解答】证明:(1)因为22(2)43412a a a a −−⨯⨯=−, 又因为0a <,所以40a <,30a −<, 所以24124(3)0a a a a −=−>,所以该函数的图象与x 轴有两个公共点. (2)将1a =−代入函数解析式得,2223(1)4y x x x =−++=−−+,所以抛物线的对称轴为直线1x =,开口向下. 则当10x −<<时,y 随x 的增大而增大, 又因为当1x =−时,0y =, 所以0y >.(3)因为抛物线的对称轴为直线212ax a−=−=,且过定点(0,3), 又因为该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<, 所以当0a >时,230a a −+<, 解得3a >, 故3a >.当0a <时,230a a ++<,解得1a <−, 故1a <−.综上所述,3a >或1a <−. 故答案为:3a >或1a <−.【点评】本题考查二次函数的图象和性质,熟知二次函数的图象和性质是解题的关键.5.(2024•南京模拟)在平面直角坐标系xOy 中,点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上. (1)求抛物线的顶点(,0)m ; (2)若12y y <,求m 的取值范围;(3)若点0(x ,0)y 在抛物线上,若存在010x −<<,使102y y y <<成立,求m 的取值范围. 【分析】(1)利用配方法将已知抛物线解析式转化为顶点式,可直接得到答案; (2)由12y y <,得到221296m m m m −+<−+,解不等式即可; (3)由题意可知012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解不等式组即可.【解答】解:(1)抛物线222()y x mx m x m =−+=−. ∴抛物线的顶点坐标为(,0)m .故答案为:(,0)m ;(2)点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上,且12y y <, 221296m m m m ∴−+<−+,2m ∴<;(3)点0(x ,0)y 在抛物线上,存在010x −<<,使102y y y <<成立, ∴012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解得302m <<. 【点评】本题考查了二次函数与系数的关系,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.6.(2024•北京一模)在平面直角坐标系中,已知抛物线23y ax bx =++经过点(2,3)a −. (1)求该抛物线的对称轴(用含有a 的代数式表示);(2)点(2,)M t m −,(2,)N t n +,(,)P t p −为该抛物线上的三个点,若存在实数t ,使得m n p >>,求a 的取值范围.【分析】(1)将点(2,3)a −代入抛物线23y ax bx =++中,然后根据二次函数的对称轴公式代入数值,即可得出答案;(2)分类讨论当0a >和0a <,利用数形结合以及二次函数的性质就可以得出a 的取值范围. 【解答】解(1)抛物线23y ax bx =++经过点(2,3)a −, ∴把(2,3)a −代入23y ax bx =++得2(2)233a a ab ⨯−−+=,22b a ∴=,2223y ax a x ∴=++,∴抛物线的对称轴222a x a a=−=−,答:抛物线的对称轴为:x a =−;(2)①当0a >时,抛物线开口方向向上,对称轴0x a =−<,在x 轴的负半轴上,所以越靠近对称轴函数值越小, ∴当0t <时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时p m n >>与题干m n p >>相矛盾,故舍去, ∴当0t >时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时m n <与题干m n p >>相矛盾,故舍去;②当0a <时,抛物线开口方向向下,对称轴0x a =−>,在x 轴的正半轴上,所以越靠近对称轴函数值越大, ∴当0t >时,点M 、N 分别在对称轴同侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+, .m n p >>,∴此时02a t <−<−,即20t a −<<,2t ∴>,∴当0t >时,点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,p m n ∴>>与题干m n p >>相矛盾,故舍去,∴当0t <时,且点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,当0t <时,且点M 、N 分别在对称轴同侧时, (2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,答:a 的取值范围为20(2)t a t −<<>.7.(2024•张家口一模)某课外小组利用几何画板来研究二次函数的图象,给出二次函数解析式2y x bx c =++,通过输入不同的b ,c 的值,在几何画板的展示区内得到对应的图象.(1)若输入2b =,3c =−,得到如图①所示的图象,求顶点C 的坐标及抛物线与x 轴的交点A ,B 的坐标; (2)已知点(1,10)P −,(4,0)Q .①若输入b ,c 的值后,得到如图②的图象恰好经过P ,Q 两点,求出b ,c 的值;②淇淇输入b ,嘉嘉输入1c =−,若得到二次函数的图象与线段PQ 有公共点,求淇淇输入b 的取值范围.【分析】(1)将2b =,3c =−,代入函数解析式,进行求解即可; (2)①待定系数法进行求解即可;②将1c =−代入解析式,得到抛物线必过点(0,1)−,求出1x =−和4x =的函数值,根据抛物线与线段PQ 有公共点,列出不等式进行求解即可. 【解答】解:(1)2y x bx c =++,解:当2b =,3c =−时,2223(1)4y x x x =+−=+−, ∴顶点C 的坐标为:(1,4)−−;当0y =时,2230x x +−=,即(3)(1)0x x +−=, 解得:13x =−,21x =, (3,0)A ∴−,(1,0)B ;(2)①抛物线恰好经过P ,Q则:1101640b c b c −+=⎧⎨++=⎩,解得:54b c =−⎧⎨=⎩;②当1c =−时,21y x bx =+−, 当0x =时,1y =−, ∴抛物线过(0,1)−,当1x =−时,11y b b =−−=−,当点(1,)b −−在点P 上方,或与点P 重合时,抛物线与线段PQ 有公共点,即:10b −…, 解得:10b −…;当4x =时,1641415y b b =+−=+,当点(4,154)b +在点Q 上方,或与点Q 重合时,抛物线与线段PQ 有公共点,即:1540b +…,154b ≥−; 综上:10b −…或154b ≥−. 【点评】本题考查二次函数的综合应用.正确的求出函数解析式,熟练掌握二次函数的图象和性质是解题的关键.8.(2024•浙江模拟)设二次函数24(y ax ax c a =−+,c 均为常数,0)a ≠,已知函数值y 和自变量x 的部分对应取值如下表所示:(1)判断m ,n 的大小关系,并说明理由; (2)若328m n −=,求p 的值;(3)若在m ,n ,p 这三个数中,只有一个数是负数,求a 的取值范围.【分析】(1)根据所给函数解析式,可得出抛物线的对称轴为直线2x =,据此可解决问题. (2)根据(1)中发现的关系,可求出m 的值,据此即可解决问题. (3)根据m 和n 相等,所以三个数中的负数只能为p ,据此可解决问题. 【解答】解:(1)m n =.因为二次函数的解析式为24y ax c =+, 所以抛物线的对称轴为直线422ax a−=−=, 又因为1522−+=, 所以点(1,)m −与(5,)n 关于抛物线的对称轴对称, 故m n =.(2)因为m n =,328m n −=, 所以8m =.将(0,3)和(1,8)−代入函数解析式得:348c a a c =⎧⎨++=⎩,解得13a c =⎧⎨=⎩所以二次函数的解析式为243y x x =−+.将2x =代入函数解析式得,224231p =−⨯+=−.(3)由(1)知,m n =, 所以m ,n ,p 中只能p 为负数. 将(0,3)代入函数解析式得,3c =, 所以二次函数解析式为243y ax ax =−+. 将1x =−代入函数解析式得,53m a =+. 将2x =代入函数解析式得,43p a =−+.则430530a a −+<⎧⎨+≥⎩,解得34a >,所以a 的取值范围是34a >. 【点评】本题考查二次函数图象与系数的关系及二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.9.(2024•北京模拟)在平面直角坐标系xOy 中,抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +.(1)若13y y =,求抛物线的对称轴; (2)若231y y y <<,求m 的取值范围. 【分析】(1)利用对称轴意义即可求解;(2m 的不等式组,解不等式组即可.【解答】解:(1)抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +,13y y =, ∴该抛物线的对称轴为:直线22m m x −++=,即直线1x =; (2)当0m >时,可知点1(,)m y −,2(,)m y ,3(2,)m y +从左至右分布, 231y y y <<,∴232232m m m m m m ++⎧−<⎪⎪⎨−++⎪−>⎪⎩,解得12m <<; 当0m <时,3m m m ∴<−<−+,21y y ∴>,不合题意,综上,m 的取值范围是12m <<.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.10.(2024•浙江模拟)在平面直角坐标系xOy 中,抛物线2(y ax bx c a =++,b ,c 为常数,且0)a ≠经过(2,4)A −−和(3,1)B 两点.(1)求b 和c 的值(用含a 的代数式表示);(2)若该抛物线开口向下,且经过(23,)C m n −,(72,)D m n −两点,当33k x k −<<+时,y 随x 的增大而减小,求k 的取值范围;(3)已知点(6,5)M −,(2,5)N ,若该抛物线与线段MN 恰有一个公共点时,结合函数图象,求a 的取值范围.【分析】(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,即可求解;(2)先求出对称轴为:直线2x =,结合开口方向和增减性列出不等式即可求解; (3)分0a >时,0a <时,结合图象即可求解.【解答】解:(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,得:424931a b c a b c −+=−⎧⎨++=⎩,解得:162b a c a =−⎧⎨=−−⎩;(2)抛物线经过(23,)C m n −,2,)m n −两点, ∴抛物线的对称轴为:直线237222m mx −+−==,抛物线开口向下,当33k x k −<<+时,y 随x 的增大而减小,32k ∴−…,即5k …; (3)①当0a >时,6x =−,5y …,即2(6)(1)(6)625a a a ⨯−+−⨯−−−…, 解得:1336a …,抛物线不经过点N ,如图①,抛物线与线段MN 只有一个交点,结合图象可知:1336a …;②当0a <时,若抛物线的顶点在线段MN 上时,则2244(62)(1)544ac b a a a a a−−−−−==,解得:11a =−,2125a =−, 当11a =−时,111112222(1)a −=−=⨯−, 此时,定点横坐标满足116222a−−……,符合题意; 当11a =−时,如图②,抛物线与线段MN 只有一个交点,如图③,当2125a =−时,11111312222()25a −=−=⨯−,此时顶点横坐标不满足116222a−−……,不符合题意,舍去; 若抛物线与线段MN 有两个交点,且其中一个交点恰好为点N 时,把(2,5)N 代入2(1)62y ax a x a =+−−−,得:252(1)262a a a =⨯+−⨯−−, 解得:54a =−,当54a =−时,如图④,抛物线和线段MN 有两个交点,且其中一个交点恰好为点N ,结合图象可知:54a <−时,抛物线与线段MN 有一个交点,综上所述:a 的取值范围为:1336a …或1a =−或54a <−.【点评】本题考查二次函数的性质和图象,根据题意画出图象,分类讨论是解题的关键.11.(2024•海淀区校级模拟)在平面直角坐标系xOy 中,点(0,3),1(6,)y 在抛物线2(0)y ax bx c a =++≠上. (1)当13y =时,求抛物线的对称轴;(2)若抛物线2(0)y ax bx c a =++≠经过点(1,1)−−,当自变量x 的值满足12x −……时,y 随x 的增大而增大,求a 的取值范围;(3)当0a >时,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上.若21y y c <<,请直接写出m 的取值范围.【分析】(1)当13y =时,(0,3),(6,3)为抛物线上的对称点,根据对称性求出对称轴;(2)把(0,3),(1,1)−−代入抛物线解析式得出a ,b 的关系,然后求出对称轴,再分0a >和0a <,由函数的增减性求出a 的取值范围;(3)先画出函数图象,再根据21y y c <<确定m 的取值范围. 【解答】解:(1)当13y =时,(0,3),(6,3)为抛物线上的对称点, 0632x +∴==, ∴抛物线的对称轴为直线3x =;(2)2(0)y ax bx c a =++≠过(0,3),(1,1)−−,3c ∴=,31a b −+=−, 4b a =+,∴对称轴为直线422b a x a a+=−=−,①当0a >时,12x −……时,y 随x 的增大而增大,∴412a a+−−…, 解得4a …,04a ∴<…;②当0a <时,12x −……时,y 随x 的增大而增大,∴422a a+−…, 解得45a −…, ∴405a −<…,综上:a 的取值范围是405a −<… 或04a <…;(3)点(0,3)在抛物线2y ax bx c =++上,3c ∴=,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上, ∴对称轴为直线422m mx m −+==−, ①如图所示:21y y c <<,6m ∴<且06232m +−>=, 56m ∴<<;②如图所示:21y y c <<,46m ∴−>, 10m ∴>,综上所述,m 的取值范围为56m <<或10m >.【点评】本题考查二次函数图象与系数的关系以及二次函数图象上点的坐标特征,关键是利用数形结合和分类讨论的思想进行解答.题型三.待定系数法求二次函数解析式(共3小题)12.(2024•保山一模)如图,抛物线2y ax bx c =++过(2,0)A −,(3,0)B ,(0,6)C 三点;点P 是第一象限内抛物线上的动点,点P 的横坐标是m ,且132m <<. (1)试求抛物线的表达式;(2)过点P 作PN x ⊥轴并交BC 于点N ,作PM y ⊥轴并交抛物线的对称轴于点M ,若12PM PN =,求m 的值.【分析】(1)将A ,B ,C 三点坐标代入函数解析式即可解决问题. (2)用m 表示出PM 和PN ,建立关于m 的方程即可解决问题. 【解答】解:(1)由题知,将A ,B ,C 三点坐标代入函数解析式得,4209306a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得116a b c =−⎧⎪=⎨⎪=⎩,所以抛物线的表达式为26y x x =−++.(2)将x m =代入抛物线得表达式得,26y m m =−++, 所以点P 的坐标为2(,6)m m m −++. 令直线BC 的函数解析式为y px q =+,则306p q q +=⎧⎨=⎩,解得26p q =−⎧⎨=⎩,所以直线BC 的函数解析式为26y x =−+. 因为132m <<,且抛物线的对称轴为直线12x =,所以12PM m =−. 又因为点N 坐标为(,26)m m −+,所以226(26)3PN m m m m m =−++−−+=−+. 因为12PM PN =, 所以211(3)22m m m −=−+,解得m =, 又因为132m <<,所以m =. 【点评】本题考查待定系数法求二次函数解析式及二次函数的图象和性质,熟知待定系数法及二次函数的图象和性质是解题的关键.13.(2024•东营区校级一模)如图,在平面直角坐标系xOy 中,直线28y x =−+与抛物线2y x bx c =−++交于A ,B 两点,点B 在x 轴上,点A 在y 轴上. (1)求抛物线的函数表达式;(2)点C 是直线AB 上方抛物线上一点,过点C 分别作x 轴,y 轴的平行线,交直线AB 于点D ,E .当38DE AB =时,求点C 的坐标.【分析】(1)根据一次函数解析式求出A ,B 两点坐标,再将A ,B 两点坐标代入二次函数解析式即可解决问题.(2)根据AOB ECD ∆∆∽得到CD 与OB 的关系,建立方程即可解决问题. 【解答】解:(1)令0x =得,8y =, 所以点A 的坐标为(0,8); 令0y =得,4x =, 所以点B 的坐标为(4,0);将A ,B 两点坐标代入二次函数解析式得,81640c b c =⎧⎨−++=⎩,解得28b c =⎧⎨=⎩,所以抛物线的函数表达式为228y x x =−++. (2)因为//CD x 轴,//CE y 轴, 所以AOB ECD ∆∆∽, 则CD DEOB AB=. 因为38DE AB =,4OB =, 所以32CD =. 令点C 坐标为2(,28)m m m −++, 则点D 坐标为21(2m m −,228)m m −++所以2211()222CD m m m m m =−−=−+,则213222m m −+=,解得1m =或3.当1m =时,2289m m −++=; 当3m =时,2285m m −++=; 所以点C 的坐标为(1,9)或(3,5).【点评】本题考查待定系数法求二次函数解析式及二次函数图象上点的坐标特征,熟知待定系数法及二次函数的图象和性质是解题的关键.14.(2024•南关区校级二模)已知二次函数2y x bx c =++的图象经过点(0,3)A −,(3,0)B .点P 在抛物线2y x bx c =++上,其横坐标为m .(1)求抛物线的解析式;(2)当23x −<<时,求y 的取值范围;(3)当抛物线2y x bx c =++上P 、A 两点之间部分的最大值与最小值的差为34时,求m 的值; (4)点M 在抛物线2y x bx c =++上,其横坐标为1m −.过点P 作PQ y ⊥轴于点Q ,过点M 作MN x ⊥轴于点N ,分别连结PM ,PN ,QM ,当PQM ∆与PNM ∆的面积相等时,直接写出m 的值. 【分析】(1)依据题意,将A 、B 两点代入解析式求出b ,c 即可得解;(2)依据题意,结合(1)所求解析式,再配方可得抛物线的最值,进而由23x −<<可以判断得解; (3)依据题意,分类讨论计算可以得解;(4)分别写出P 、Q 、M 、N 的坐标,PQM ∆与PNM ∆的面积相等,所以Q 到PM 的距离等于N 到PM 的距离,可得m 的值.【解答】解:(1)由题意,将(0,3)A −,(3,0)B 代入解析式2y x bx c =++得,3c =−,930b c ++=,2b ∴=−,3c =−,∴抛物线的解析式为223y x x =−−;(2)由题意,抛物线2223(1)4y x x x =−−=−−,∴抛物线223y x x =−−开口向上,当1x =时,y 有最小值为4−,当2x =−时,5y =;当3x =时,0y =, ∴当23x −<<时,45y −<…;(3)由题意得,2(,23)P m m m −−,(0,3)A −,①当0m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为3−, 2323(3)4m m ∴−−−−=,解得:1m =−②当02m ……时,P 、A 两点之间部分的最大值为3−,最小值为223m m −−或4−, 显然最小值是4−时不合题意, ∴最小值为223m m −−, 233(23)4m m ∴−−−−=, 解得:32m =或12m =, 32m =时,P 、A 两点之间部分的最小值为4−,故舍去, ③当2m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为4−, 2323(4)4m m ∴−−−−=,解得:1m =+,12+<,故舍去,综上,满足题意得m 的值为:1或12; (4)由题意得,2(1,4)M m m −−,(1,0)N m −,2(0,23)Q m m −−, 设PM y kx b =+,代入P 、M 两点, 2223(1)4mk b m m m k b m ⎧+=−−⎨−+=−⎩, 解得:1k =−,23b m m =−−,23PM y x m m =−+−−,PQM ∆与PNM ∆的面积相等,Q ∴到23PM y x m m =−+−−的距离与N 到23PM y x m m =−+−−的距离相等,Q 到23PM y x m m =−+−−的距离=,N 到23PMy x m m =−+−−的距离=, 2|||4|m m ∴−=−+,当2m <−时,24m m −=−,解得:m =,当20m −……时,24m m −=−,解得:m =,当02m <…时,24m m =−,解得:m =当2m <时,24m m =−,解得:m =综上,满足题意得m . 【点评】本题考查了二次函数,关键是注意分类讨论. 题型四.抛物线与x 轴的交点(共14小题)15.(2024•秦淮区校级模拟)已知函数2(2)2(y mx m x m =−−−为常数). (1)求证:不论m 为何值,该函数的图象与x 轴总有公共点.(2)不论m . (3)在22x −……的范围中,y 的最大值是2,直接写出m 的值. 【分析】(1)分两种情况讨论,利用判别式证明即可;(2)当1x =时,0y =,当0x =时,2y =−,即可得到定点坐标;(3)利用抛物线过两个定点,得到函数y 随x 增大而增大,代入解析式求出m 值即可. 【解答】解:(1)①当0m =时,函数解析式为22y x =−,此一次函数与x 轴有交点; ②当0m ≠时,函数解析式为2(2)2y mx m x =−−−,令0y =,则有2(2)20mx m x −−−=,△2222(2)4(2)44844(2)0m m m m m m m m =−−⨯−=−++=++=+…. ∴不论m 为何值,该函数的图象与x 轴总有公共点.(2)222(2)222()22y mx m x mx mx x m x x x =−−−=−+−=−+−, 当1x =时,0y =, 当0x =时,2y =−,∴不论m 为何值,该函数的图象经过的定点坐标是(1,0).(0,2)−故答案为:(1,0),(0,2)−,(3)若0m =,函数22y x =−,y 随x 增大而增大,当2x =时,2y =,与题干条件符; 当0m ≠时,函数2(2)2y mx m x =−−−是二次函数,①当0m >时,抛物线过(1,0),(0,2)−两点,当22x −……的范围中时,y 随x 的增大而增大, ∴当2x =时,2y =,即242(2)2m m =−−−,解得0m =(舍去).②当0m <时,抛物线过(1,0),(0,2)−两点,其增减性依旧是y 随x 的增大而增大和①相同.综上分析,0m =.【点评】本题考查了二次函数的图象与性质,熟练掌握二次函数的性质是解答本题的关键.16.(2024•柳州模拟)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C −,点D 为抛物线的顶点. (1)求这个二次函数的解析式; (2)求ABD ∆的面积【分析】(1)利用待定系数法求解即可; (2)先求出点A 和点D 坐标,再根据||2D ABD AB y S ∆⋅=解析求解即可.【解答】解:(1)将(3,0)B ,(0,3)C −代入2y x bx c =++得0933b c c =++⎧⎨=−⎩,解得23b c =−⎧⎨=−⎩,∴二次函数的解析式为:223y x x =−−;(2)将223y x x =−−配方得顶点式2(1)4y x =−−, ∴顶点(1,4)D −,在223y x x =−−中,当2230y x x =−−=时, 解得1x =−或3x =, (1,0)A ∴−,4AB ∴=, ∴||44822D ABD AB y S ∆⋅⨯===. 【点评】本题主要考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,熟练掌握二次函数的性质是解答本题的关键.17.(2024•安阳模拟)如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,且与x 轴交于点(1,0)−和(4,0).直线2y kx =+分别与x 轴、y 轴交于点A ,B ,交抛物线2y ax bx c =++于点C ,D (点C 在点D 的左侧). (1)求抛物线的解析式;(2)点P 是直线2y kx =+上方抛物线上的任意一点,当2k =时,求PCD ∆面积的最大值; (3)若抛物线2y ax bx c =++与线段AB 有公共点,结合函数图象请直接写出k 的取值范围.【分析】(1)根据题意直接求出二次函数解析式即可;(2)求出直线与抛物线的交点C ,D 坐标,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,设点P坐标为(m ,234)(12)m m m −++−<<,则点(,22)H m m +,求出PH ,由三角形的面积公式求出关于m 的函数解析式,再根据函数的性质求最值; (3)分0k >和0k <两种情况讨论即可.【解答】解:(1)抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,1a ∴=−,抛物线2y ax bx c =++与x 轴交于点(1,0)−和(4,0), ∴抛物线的解析式为2(1)(4)34y x x x x =−+−=−++;(2)当2k =时,联立方程组22234y x y x x =+⎧⎨=−++⎩,解得10x y =−⎧⎨=⎩或26x y =⎧⎨=⎩, (1,0)C ∴−,(2,6)D ,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,如图,设点P 坐标为(m ,234)(12)m m m −++−<<, ∴点(,22)H m m +,2234(22)2PH m m m m m ∴=−++−+=−++,221331273(2)()22228PCD S PH m m m ∆∴=⨯=−++=−−+, 302−<,12m −<<, ∴当12m =时,S 有最大值,最大值为278. PCD ∴∆面积的最大值为278; (3)令0x =,则2y =, ∴点B 坐标为(0,2),令0y =,则20kx +=, 解得2x k=−,∴点A 坐标为2(k−,0), 若抛物线2y ax bx c =++与线段AB 有公共点, 当0k >时,如图所示,则21k−<−, 解得02k <<; 当0k <时,如图所示:则24k−>, 解得102k −<<;综上所述,k 的取值范围为02k <<或102k −<<.【点评】本题考查抛物线与x 轴的交点,待定系数法求函数解析式,二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,二次函数的最值等知识,关键是对这些知识的掌握和运用.18.(2024•西湖区校级模拟)已知21()y ax a b x b =+++和22()(y bx a b x a a b =+++≠且0)ab ≠是同一直角坐标系中的两条抛物线.(1)当1a =,3b =−时,求抛物线21()y ax a b x b =+++的顶点坐标; (2)判断这两条抛物线与x 轴的交点的总个数,并说明理由;(3)如果对于抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +….当20y …时,求自变量x 的取值范围.【分析】(1)把a ,b 的值代入配方找顶点即可解题;(2)分别令10y =,20y =,解方程求出方程的解,然后根据条件确定交点的个数即可解题;(3)现根据题意得到0a <,且24()224ab a b a b a−+=+,然后得到30b a =−>,借助图象求出不等式的解集即可.【解答】解:(1)当1a =,3b =−时,2221()23(1)4y ax a b x b x x x =+++=−−=−−, ∴顶点坐标为(1,4)−;(2)3个,理由为:令10y =,则2()0ax a b x b +++=, 即()(1)0ax b x ++=, 解得:1bx a=−,21x =−, 令20y =,则2()0bx a b x a +++=, 即()(1)0bx a x ++=, 解得:1ax b=−,21x =−, 又a b ≠且0ab ≠,∴两条抛物线与x 轴的交点总个数为3个;(3)抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +…,0a ∴<,且24()224ab a b a b a−+=+,整理得:30b a =−>,∴22()y bx a b x a =+++的开口向上,且抛物线与x 轴交点的横坐标为113x =,21x =−, 如图所示,借助图象可知当13x …或1x −…时,20y ….【点评】本题考查二次函数的图象和性质,掌握配方法求顶点坐标,二次函数和一元二次方程的关系是解题的关键.19.(2024•三元区一模)抛物线23y ax bx =++与x 轴相交于点(1,0)A ,(3,0)B ,与y 轴正半轴相交于点C . (1)求抛物线的解析式;(2)点1(M x ,1)y ,2(N x ,2)y 是抛物线上不同的两点. ①当1x ,2x 满足什么数量关系时,12y y =; ②若12122()x x x x +=−,求12y y −的最小值. 【分析】(1)用待定系数法即可求解;(2)①若12y y =,则M 、N 关于抛物线对称轴对称,即可求解;②22121122121212(43)(43)()()4()y y x x x x x x x x x x −=−+−−+=+−+−,而12122()x x x x +=−,得到12y y −的函数表达式,进而求解.【解答】解:(1)设抛物线的表达式为:12()()y a x x x x =−−, 即2(1)(3)(43)y a x x a x x =−−=−+, 即33a =, 解得:1a =,故抛物线的表达式为:243y x x =−+;(2)如图,。

2023年九年级中考数学复习:二次函数(特殊四边形问题)综合题(Word版,含答案)

2023年九年级中考数学复习:二次函数(特殊四边形问题)综合题(Word版,含答案)

2023年九年级中考数学复习:二次函数(特殊四边形问题)综合题1.已知抛物线()21=++4(0)2y a x m m am -≠过点()0,4A(1)若=2m ,求a 的值;(2)如图,顶点M 在第一象限内,B 、C 是抛物线对称轴l 上的两点,且MB MC =,在直线l 右侧以BC 为边作正方形BCDE ,点E 恰好在抛物线上.①求am 的值;①试判断点E 和点A 是否关于直线l 对称,如果对称,请说明理由,如果不对称,请举出反例.2.如图,抛物线y =ax 2-2x +c (a ≠0)与直线y =x +3交于A ,C 两点,与x 轴交于点B .(1)求抛物线的解析式.(2)点P 是抛物线上一动点,且在直线AC 下方,当①ACP 的面积为6时,求点P 的坐标.(3)D 为抛物线上一点,E 为抛物线的对称轴上一点,请直接写出以A ,C ,D ,E 为顶点的四边形为平行四边形时点D 的坐标.3.如图1,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A (﹣1,0)、B (3,0),与y 轴交于点C ,连接AC 和BC ,①OAC =60°.(1)求二次函数的表达式.(2)如图2,线段BC 上有M 、N 两动点(N 在M 上方),且MN 3P 是直线BC 下方抛物线上一动点,连接PC 、PB ,当①PBC 面积最大时,连接PM 、AN ,当MN 运动到某一位置时,PM +MN +NA 的值最小,求出该最小值.(3)如图3,在(2)的条件下,连接AP ,将AP 绕着点A 逆时针旋转60°至AQ .点E 为二次函数对称轴上一动点,点F 为平面内任意一点,是否存在这样的点E 、F ,使得四边形AEFQ 为菱形,若存在,请直接写出点E 的坐标,若不存在,请说明理由.4.直线3y x =-+与x 轴相交于点A ,与y 轴相交于点B ,抛物线2y ax 2x c =++经过点A ,B ,与x 轴的另一个交点为C .(1)求抛物线的解析式;(2)如图1,若点P为直线AB上方的抛物线上的一动点,求四边形APBO的面积的最大值;D为抛物线上的一点,直线CD与AB相交于点M,点H在抛物线上,(3)如图2,(2,3)∥轴,交直线CD于点K.P是平面内一点,当以点M,H,K,P为顶点的四过H作HK y边形是正方形时,请直接写出点P的坐标.5.综合与探究如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,求CE+OE的最小值为______.(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①当ANC面积最大时的P点坐标为______;最大面积为______.①点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D、F、B、C为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.。

最新九年级中考数学复习:二次函数综合题(特殊三角形问题)

最新九年级中考数学复习:二次函数综合题(特殊三角形问题)

2023年九年级中考数学复习:二次函数综合题(特殊三角形问题)1.抛物线y=ax2+c交x轴于A、B(1,0)两点,且经过(2,3).(1)求抛物线的解析式;(2)如图1,直线y=kx+3交y轴于点G,交抛物线y=ax2+c于点E和F,F在y轴右侧,若△GOF的面积为△GOE面积的2倍,求k值;(3)如图2,点P是第二象限的动点,分别连接P A、PB,并延长交直线y=-2于M、N 两点. 若M、N两点的横坐标分别为m、n,试探究m、n之间的数量关系.2.如图,已知抛物线2=++与直线y=0.5x+3相交于A,B两点,交△轴于C,0.5y x bx cD两点,连接AC,BC,已知A(0,3),C(-3,0).(1)求抛物线的表达式;(2)在抛物线对称轴l上找一点M,使|MB一MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上的一动点,连接P A,过点P作PQ△P A交y轴于点Q,是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.3.如图,抛物线与x轴交于A和B两点(点B位于点A右侧),与y轴交于点C,对称轴是直线x=2,且OA=1,OC=3,连接AC,BC.(1)求此抛物线的函数解析式;(2)设抛物线的顶点为点P,请在x轴上找到一个点D,使以点P、B、D为顶点的三角形与△ABC相似?(3)此抛物线的对称轴和以AC为直径的圆是什么位置关系?如果是相切或相交,请直接写出切点或交点的坐标(不必写演推过程);如果是相离,请简要说明理由.4.如图1,已知抛物线y=ax2+bx+3与x轴分别交于A(−3,0),B(1,0)两点,与y轴交于点C,点D为抛物线的顶点,连接AD、CD、AC、BC.(1)请直接写出抛物线的表达式及顶点D的坐标;(2)求证:△ACD是直角三角形;(3)判断△ACB和△OAD的数量关系,并说明理由;(4)如图2,点F是线段AD上一个动点,以A,F,O为顶点的三角形是否与△ABC相似?若相似,请直接写出点F的坐标;若不相似,请说明理由.5.抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图△,点P 为直线AC 下方抛物线上的点,连接P A ,PC ,△BAF 的面积记为S 1,△P AC 的面积记为S 2,当S 2=38S 1时.求点P 的横坐标;(3)如图△,连接CD ,点Q 为平面内直线AE 下方的点,以点Q ,A ,E 为顶点的三角形与△CDF 相似时(AE 与CD 不是对应边),请直接写出符合条件的点Q 的坐标. 6.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.7.如图1,已知二次函数y =ax2+bx +c (a ≠0)的图象与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C (0,﹣2),顶点为D ,对称轴交x 轴于点E .(1)求该二次函数的解析式;(2)设M 为该抛物线上直线BC 下方一点,过点M 作x 轴的垂线,交线段BC 于点N ,线段MN 是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;(3)连接CE (如图2),设点P 是位于对称轴右侧该抛物线上一点,过点P 作PQ △x 轴,垂足为Q .连接PE ,请求出当△PQE 与△COE 相似时点P 的横坐标.8.如图,直线y kx b =+与x 轴、y 轴分别交于A ,B 两点,抛物线2y ax bx c =++经过A ,B 两点,点C 的坐标为()1,0-,3AO CO ==,点C 关于点B 的对称点M 刚好落在抛物线上,连接AM .(1)求点M 的坐标;(2)求抛物线的解析式;(3)过点M 作MD 平行于y 轴交AB 于点D ,若点E 为抛物线上的一点,点F 在x 轴上,连接AE ,AF ,EF .是否存在点F 使得△ADM 与△AEF 相似?若存在,请直接写出点F 的坐标;若不存在,请说明理由.9.如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)△求点A ,B ,C 的坐标;△求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM △AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.10.平面直角坐标系中,已知抛物线1C :()21y x m x m =-++-(m 为常数)与x 轴交于点A ,B 两点(点A 在点B 左边),与y 轴交于点C .(1)若4m =,求点A ,B ,C 的坐标;(2)如图1,在(1)的条件下,D 为抛物线x 轴上方一点,连接BD ,若90DBA ACB ∠∠+=︒,求点D 的坐标;(3)如图2,将抛物线1C 向左平移n 个单位长度(0n >)与直线AC 交于M ,N (点M 在点N 右边),若2AM CN =,求m ,n 之间的数量关系.11.如图,直线y x n =-+与x 轴交于点()3,0A ,与y 轴交于点B ,抛物线2y x bx c =-++经过点A ,B .(1)求n 的值及抛物线的解析式;(2)(),0E m 为x 轴上一动点,过点E 作ED x ⊥轴,交直线AB 于点D ,交抛物线于点P ,连接BP .△点E 在线段OA 上运动,若BPD △与ADE 相似,求点E 的坐标;△若抛物线的顶点为Q ,AQ 与CB 的延长线交于点H ,点E 在x 轴的正半轴上运动,若PBD CBO H ∠+∠=∠.请求写出m 的值.12.如图1,平面直角坐标系xOy 中,直线y =-12x -2与x 轴交于点A ,与y 轴交于点C .抛物线y =14x 2+bx +c 经过点A 、点C ,且与x 轴交于另一点B ,连接BC .(1)求抛物线的解析式;(2)点P 是抛物线上一动点.△当点P 在直线AC 下方的抛物线上运动时,如图2,连接AP ,CP .求四边形ABCP 面积的最大值及此时点P 的坐标;△当点P 在x 轴上方的抛物线上运动时,过点P 作PM △x 轴于点M ,连接BP .是否存在点P ,使△PMB 与△AOC 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.13.如图,抛物线y 2b c x ++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC.(1)求b、c的值;(2)求直线BD的直线解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.14.如图,抛物线23(0)y ax bx a=+-≠的顶点E的横坐标为1,与x轴交于A、B两点,与y轴交于点C,直线113y x=-+过点B,与y轴交于点D.(1)求抛物线的解析式;(2)证明:ABD CBE∠=∠;(3)是否存在点1O,使点1O到A,B,C,D的距离都相等,若存在,求出点1O坐标,若不存在,请说明理由.(4)设抛物线与直线DB另一交点为Q,F为线段BQ上一点(不含端点),连接AF,一动点P从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FQ个单位的速度运动到Q后停止,当点F的坐标是多少时,点P在整个运动过程中用时最少?(直接写出答案)15.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A 、B ,与y 轴交于点C ,且OC =2OB =6OA =6,点P 是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC 与OP ,交于点D ,当PD :OD 的值最大时,求点P 的坐标;(3)点P 在抛物线上运动,点N 在y 轴上运动,是否存在点P 、点N .使△CPN =90°,且△CPN 与△BOC 相似,若存在,请直接写出点P 的坐标,若不存在,说明理由.16.在平面直角坐标系xOy 中,抛物线y =﹣x 2+bx +c 与x 轴分别交于点A ,点B (3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)如图1,连接BC ,点D 是直线BC 上方抛物线上一动点,连接AD 交BC 于点E ,若AE =2ED ,求点D 的坐标;(3)直线y =kx ﹣2k +1与抛物线交于M ,N 两点,取点P (2,0),连接PM ,PN ,求△PMN 面积的最小值.17.综合与探究如图,直线3y x =-+与x 轴,y 轴分别交于B ,C 两点,抛物线2y x bx c =-++经过点B ,C ,与x 轴的另一交点为A ,顶点为D .(1)求抛物线的解析式及顶点D的坐标.(2)连接CD,BD,求点D到BC的距离h.(3)P为对称轴上一点,在抛物线上是否存在点Q,使得PDQ与BOC相似?若存在,请直接写出Q点坐标;若不存在,请说明理由.18.如图,已知直线223y x=-与x轴交于点A,与y轴交于点B,抛物线226y x bx=-++经过点A,与x轴的另一个交点为C,交y轴于点D.(1)求抛物线的函数表达式及点D的坐标;(2)点M是y轴上的点,在y轴右侧的抛物线上是否存在点P,使得PMD△与BOC相似,且点M与点O为对应点,若存在,请求出点P的坐标,若不存在,请说明理由.19.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=-2x2+bx+c过A,C两点,与x轴交于另点B.(1)求抛物线的解析式.(2)在直线AC 上方的抛物线上有一动点E ,连接BE ,与直线AC 相交于点F ,当EF =12BF 时,求sin△EBA 的值.(3)点N 是抛物线对称轴上一点,在(2)的条件下,若点E 位于对称轴左侧,在抛物线上是否存在一点M ,使以M ,N ,E ,B 为顶点的四边形是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由.20.如图,一次函数3y x =-+的图象与x 轴和y 轴分别交于点B 和点C ,二次函数2y x bx c =-++的图象经过B ,C 两点,并与x 轴交于点A .点(),0M m 是线段OB 上一个动点(不与点O 、B 重合),过点M 作x 轴的垂线,分别与二次函数图象和直线BC 相交于点D 和点E ,连接CD .(1)求这个二次函数的解析式.(2)△求DE 、CE 的值(用含m 的代数式表示).△当以C ,D ,E 为顶点的三角形与△ABC 相似时,求m 的值.(3)点F 是平面内一点,是否存在以C ,D ,E ,F 为顶点的四边形为菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.参考答案:1.(1)21y x =- (2)k =(3) 1.-2.(1)215322y x x =++(3)在点P (1,6)3.(1)y =x 2-4x +3(2)点D 的坐标是(0,0)或(73,0) (3)相交,交点的坐标是(2,1)或(2,2)4.(1)抛物线解析式为y =-x 2-2x +3;顶点D 的坐标为(-1,4);(2)见解析(3)△OAD =△ACB(4)相似,F 点的坐标为(-65,185)或(-2,2).5.(1)y =x 2﹣2x ﹣3(2)P 352(3)Q 点坐标为(﹣7,5)或(﹣12,5)或(3,﹣10)或(3,﹣5)6.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭7.(1)224233y x x =--(2)线段MN 存在最大值,最大值为32(3)点P 的横坐标为5或28.(1)(M(2)2y x x =(3)存在,()()()()()11,0,3,0,,0,5,0,7,0,13,03⎛⎫-- ⎪⎝⎭9.(1)△A (3,0),B (3,3),C (0,3);△23b c =⎧⎨=⎩ (2)2133324n m ⎛⎫=--+ ⎪⎝⎭(0≤m ≤3);3410.(1)A (1,0),B (4,0),C (0,﹣4)(2)D (83,209) (3)93m n =-11.(1)n =3,y =-x 2+2x +3.(2)△(1,0)或(2,0).△m =5或73.12.(1)211242y x x =+- (2)△四边形ABCP 面积的最大值为8,此时点P 为(-2,-2);△存在符合条件的点P ,点P 坐标为(-6,4)或(-12,28)或(4,4)13.(1)132b c ⎧=-⎪⎪⎨⎪=-⎪⎩(2)y=+(3)Q 1(,0)、Q 2(0)、Q 3,0)、Q 4(,0) 14.(1)2 2 3y x x =--(2)见解析(3)存在点()111O -,,使点P 到A ,B ,C ,D 的距离都相等(4)F 的坐标为41,3⎛⎫- ⎪⎝⎭时,点P 在整个运动过程中用时最少15.(1)y =﹣2x 2+4x +6(2)点P 的坐标为315(,)22(3)存在,点P 的坐标分别为(3,0)或(1,8)或939(,)48或755(,)4816.(1)y =﹣x 2+2x +3(2)(1,4)或(2,3)17.(1)223y x x =-++,顶点D (1,4)(2)h =(3)Q (0,3)或(2,3)18.(1)2246y x x =-++;(0,6)D(2)存在,点P 的坐标为755,48⎛⎫ ⎪⎝⎭或939,48⎛⎫ ⎪⎝⎭或(1,8)或(3,0)19.(1)抛物线的解析式为y =-2x 2-4x +6;(2)sin△EBA ; (3)M 的坐标为(2,-10)或(-4,-10)或(0,6).20.(1)223y x x =-++(2)△23DE m m =-,CE ;△m 的值为32或53(3)存在以C ,D ,E ,F 为顶点的四边形为菱形,点M 的坐标为(1,0)或(2,0)或(3,0).。

2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)

2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)

2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)1.在平面直角坐标系中,由两条与x 轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图所示,抛物线1C 与抛物线2C :()24120y mx mx m m =+->组成一个“月牙线”,相同的交点分别为M ,N (点M 在点N 的左侧),与y 轴的交点分别为A ,B ,且点A 的坐标为()0,1-.(1)求M ,N 两点的坐标及抛物线1C 的解析式;(2)若抛物线2C 的顶点为D ,当34m =时,试判断三角形MND 的形状,并说明理由;(3)在(2)的条件下,点5,4P t ⎛⎫- ⎪⎝⎭是抛物线1C 上一点,抛物线2C 第三象限上是否存在一点Q ,使得32APM ONQ S S =△△,若存在,请直接写出点Q 的坐标;若不存在,说明理由.2.如图,在平面直角坐标系中,点A ,B 分别是y 轴正半轴,x 轴正半轴上两动点,2OA k =,23OB k =+,以AO ,BO 为邻边构造矩形AOBC ,抛物线2334y x x k =-++交y 轴于点D ,P 为顶点,PM x ⊥轴于点M .(1)求OD ,PM 的长(结果均用含k 的代数式表示). (2)当PM BM =时,求该抛物线的表达式.(3)在点A 在整个运动过程中,若存在ADP △是等腰三角形,请求出所有满足条件的k 的值.3.如图1,抛物线211384y x x =--与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C .点D 在y轴正半轴上,直线AD :y x b =+与抛物线交于点E .(1)求线段BC 的长度;(2)如图2,点Р是线段AE 上的动点,过点P 作y 轴的平行线交抛物线于点Q ,求PQCD的最大值; (3)如图3,将抛物线211384y x x =--向左平移4个单位长度,将DCA △沿直线BC 平移,平移后的DCA △记为D C A '''△,在新抛物线的对称轴上找一点M ,当A C M ''△是以点A '为直角顶点的等腰直角三角形时,请直接写出所有符合条件的点M 的坐标.4.如图1,抛物线2y ax 2x c =++经过点(1,0)A -、(0,3)C ,并交x 轴于另一点B ,点(,)P x y 在第一象限的抛物线上,AP 交直线BC 于点D .(1)求该抛物线的函数表达式;(2)如图1,当点P 的坐标为(1,4)时,求四边形BOCP 的面积; (3)请利用备用图,若点Q 也是抛物线上的一点, ①当PDAD的值最大时,求此时点P 的坐标; ②当PDAD的值最大且APQ △是直角三角形时,求点Q 的横坐标.5.如图,抛物线22y ax bx =++经过点()()1040A B -,,,,交y 轴于点C .(1)求抛物线的顶点坐标;(2)点D 为抛物线上一点,是否存在点D 使23ABCABDS S =,若存在请直接给出点D 坐标;若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求直线BE 的解析式.6.已知抛物线2y x bx c =-++经过()1,0A -、()0,3B 两点,O 为坐标原点,抛物线交正方形OBDC 的边BD 于点E ,点M 为射线BD 上一动点,连接OM ,交BC 于点F .(1)求b 和c 的值及点C 的坐标; (2)求证∶BOF BDF ∠=∠(3)是否存在点M ,使MDF △为等腰三角形?若不存在,请说明理由;若存在,求ME 的长.7.在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴上,顶点B 在x 轴上,OA 、OB 的长分别是一元二次方程214480x x -+=的两个根(OA OB >).(1)求A 、B 两点坐标;(2)二次函数2y x bx c =++经过点A 和点D ,求此二次函数解析式;(3)在直线BC 上是否存在点P ,使PCD 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.8.如图①,抛物线2169y ax x c =++,与x 轴交于A ,B 两点(A 在B 的左边),与y 轴交于C 点,顶点为E ,其中,点A 坐标为(1,0)-,对称轴为2x =.(1)求此抛物线解析式;(2)在第四象限的抛物线上找一点F ,使FBC ACB S S =△△,求点F 的坐标;(3)如图②,点P 是x 轴上一点,点E 与点H 关于点P 成中心对称,点B 与点Q 关于点P 成中心对称,当以点Q ,H ,E 为顶点三角形是直角三角形时,求P 的坐标.9.如图,抛物线2y ax bx c =++经过()1,0A -、()3,0B 、()0,3C 三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式:(2)设点P 是直线l 上的一个动点,当PAC △的周长最小时,求点P 的坐标:(3)在直线l 上是否存在点M ,使MAC △为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由;(4)若点E 在x 轴上,点F 在抛物线上,是否存在以B ,C ,E ,F 为顶点且以BC 为一边的平行四边形?若存在,求点F 的坐标:若不存在,请说明理由.10.如图,在平面直角坐标系中,点O 为坐标原点,二次函数()230y ax bx a a =+-<的图象与x 轴交于A 、B (点A 在点B 左侧)两点,与y 轴交于点C ,已知点()3,0B ,P 点为抛物线的顶点,连接PC ,作直线BC .(1)点A 的坐标为 ;(2)若射线CB 平分PCO ∠,求二次函数的表达式;(3)在(2)的条件下,如果点(),0D m 是线段AB (含A 、B )上一个动点,过点D 作x 轴的垂线,分别交直线BC 和抛物线于E 、F 两点,当m 为何值时,CEF △为直角三角形?11.如图,已知抛物线2y x mx n =-++与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知()10A -,,()03C ,.(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.12.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B 作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)若点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形?若存在,求出其值;若不存在,请说明理由.13.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)①点M 在平面内,当△CDM 是以CM 为斜边的等腰直角三角形时,求出满足条件的所有点M 的坐标; ②在①的条件下,点N 在抛物线对称轴上,当∠MNC =45°时,求出满足条件的所有点N 的坐标. 14.如图1,抛物线y =ax 2+bx +3过点A (﹣1,0),点B (3,0),与y 轴交于点C .M 是抛物线任意一点,过点M 作直线l ⊥x 轴,交x 轴于点E ,设M 的横坐标为m (0<m <3).(1)求抛物线的解析式及tan ∠OBC 的值;(2)当m =1时,P 是直线l 上的点且在第一象限内,若△ACP 是直角三角形时,求点P 的坐标;(3)如图2,连接BC ,连接AM 交y 轴于点N ,交BC 于点D ,连接BM ,设△BDM 的面积为S 1,△CDN 的面积为S 2,求S 1﹣S 2的最大值.15.如图,抛物线2y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,已知抛物线的对称轴是直线=1x -,2OA OC ==.P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E .(1)求抛物线的函数表达式;(2)若点P在第三象限内,且14PE OD=,求PBE∆的面积.(3)在(2)的条件下,若M为直线BC上一点,是否存在点M,使BDM∆为等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.16.二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t32=时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t54=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.17.如图1,抛物线y2+bx+c与x轴交于A、B两点,点A、B分别位于原点左、右两侧,且AO=2BO =4,过A点的直线y=kx+c交y轴于点C.(1)求k、b、c的值;(2)在抛物线的对称轴上是否存在一点P,使△ACP为直角三角形?若存在,直接写出所有满足条件的点的坐标;若不存在,请说明理由;(3)如图2,点M为线段AC上一点,连接OM,求1AM+OM的最小值.218.如图,已知直线y=﹣2x+m与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴正方向上.(1)求抛物线的解析式;(2)若点P在抛物线第三象限的图象上,且到x轴、y轴的距离相等,①证明:POB≌POC;②直接写出OP的长;(3)若点Q是y轴上一点,且ABQ为直角三角形,求点Q的坐标.参考答案:1.(1)(6,0),(2,0)M N -,21(412)12y x x =+- (2)MND 是等腰三角形(3)存在,5(2,)6-或3(2,)2-2.(1)OD k =,3PM k =+ (2)23324y x x =-++(3)136k =或6k =或k =3.(1)(2)8156(3)()3,3-或(3,2)--4.(1)223y x x =-++ (2)152(3)①35,24P ⎛⎫⎪⎝⎭②113或1或52或765.(1)(32,258)(2)存在,共四个点,()13,或()23,或()23--,或()53-, (3)312y x =-+6.(1)2b =,3c =,()3,0C(3)存在,2或27.(1)()0,8A ,()6,0B (2)22984y x x =-+ (3)存在,()6,0P 或()22,128.(1)抛物线的解析式为241620999y x x =-++ (2)F 坐标为286,9⎛⎫- ⎪⎝⎭ (3)点P 坐标为5,06⎛⎫ ⎪⎝⎭或10,03⎛⎫- ⎪⎝⎭9.(1)223y x x =-++(2)()1,2(3)存在,点M 的坐标为(或(1,或()1,1或()1,0(4)存在,点F 的坐标为()2,3或)1,3-或()1,3-10.(1)()1,0-(2)2=+y x (3)当2m =或1-时,CEF △为直角三角形11.(1)223y x x =-++(2)存在;()1,6,(,(1, (3)518,33,22E ⎛⎫ ⎪⎝⎭12.(1)y =﹣x 2+4x(2)3(3)存在,N 点坐标为(2,0)或(﹣4,0)或(﹣2,0)或(4,0)13.(1)224233y x x =--+ (2)174(3)点N 的坐标为(﹣111,5)14.(1)y =﹣x 2+2x +3,1(2)(1,1)或(1,2)或(1,83) (3)813215.(1)211242y x x =+- (2)38(3)71,24⎛⎫-- ⎪⎝⎭或⎝⎭或⎝⎭或124,55⎛⎫-- ⎪⎝⎭16.(1)y 12=-x 232+x +2(2)2(3)D (1,3)或D (3,2)(4)Q 点坐标分别为(32,52-),(32,52)17.(1)k =﹣2,b 2,c =﹣(2)存在,点P 的坐标为(﹣1,)或(﹣111,﹣(3)12AM +OM 18.(1)223y x x ++=﹣(2)②OP =(3)Q (0,3.5)或Q (0,﹣1.5)或Q (0,1)或Q (0,3)。

九年级数学二次函数的图像解答题10道题专题训练.docx

九年级数学二次函数的图像解答题10道题专题训练学校: ____________ 姓名:_____________ 班级: ____________ 考号:_____________一、解答题1.如图,在平面直角坐标系中,二次函数的图像交坐标轴于A (-1, 0)、B (4, 0)、C(0, -4)三点,点P是直线BC下方抛物线上的一动点.(2)是否存在点P,使APOC是以OC为底边的等腰三角形?若存在,求出P点坐标; 若不存在,请说明理由;(3)动点P运动到什么位置时,四边形PBOC面积最大?求出此时点P坐标和四边形PBOC的最大面积.2.如图,二次函数y^-x^+bx + c的图像经过M(0,3), N(—2,—5)两点.(1)求该函数的解析式;(2)若该二次函数图像与x轴交于A、B两点,求的面积;(3)若点P在二次函数图像的对称轴上,当AMNP周长最短时,求点P的坐标.3.已知二次函数y = "(X - D(x-3)( a〉0)的图像与x轴交于A、B两点(A左B右), 与y轴交于C点(0, 3) .P为x轴下方二次函数y = a(x - 1)(尢-3) (a > 0)图像上一点,P点横坐标为加.(1)求a的值;(2)若P为二次函数y = a(x —l)(x —3) (a > 0)图像的顶点,求证:ZAC0=ZPCB;(3)Q ("7 + ",)'o)为二次函数歹=a(x - 1)0-3) (a > 0)图像上一点,且ZAC0 = ZQCB,求n的取值范围.4.如图,已知二次函数yi=ax2+bx + c的图像经过点4(—1,0), C(0,3),且对称轴为直线x = -2, 一次函数y2 =mx + n的图像经过4』两点.(2)若点5C关于抛物线的对称轴对称,根据图像直接写出满足^>y2时x的取值范围.5.已知如图,二次函数y="ax2"+bx+c的图像过A、B、C三点观察图像写出A、B、C三点的坐标求出二次函数的解析式6.已知二次函数y = -x2 +(m-2)x + 3(m + l)的图像如图所示.(1)当mM -4时,说明这个二次函数的图像与x轴必有两个交点;(2)如图情况下,若OAOB = 6,求点C的坐标.(1)求这个二次函数的解析式;(2)观察图像,直接写出:何时y随x的增大而增大?何时y<0?&已知二次函数的图像如图所示.(1)求这个二次函数的表达式;(2)观察图像,当-2<x< 1时,写出y的取值范围.9.如图,已知二次函数y=ax2+bx+3的图像经过点A (1, 0) , B (—2, 3).(1)求该二次函数的表达式;(2)求该二次函数的最大值;(3)结合图像,解答问题:当y>3时,x的取值范围是___________ .与y轴交于C点.(1)求A、8两点的坐标:(2)若P(m,-2)为二次函数y = x2-x-2图像上一点,求加的值.参考答案1. (1) y1=x2-3x-4; (2)存在满足条件的P点,其坐标为(3上価、_2); (3) 16.2【解析】【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE丄x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长, 则可表示出四边形PBOC的面积,利用二次函数的性质可求得四边形PBOC面积的最大值及P点的坐标【详解】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得a-b+c=O< 16a + 4b + c = 0 ,c = —4a = 1解得b = —3,c =-4抛物线解析式为y=x2-3x-4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图2,,-.PO=PC,此时P点即为满足条件的点,VC (0, -4),.•.D (0,-2),•°.P点纵坐标为-2,代入抛物线解析式可得x2-3x-4=-2,解得x上也(小于0,舍去)或x= 土位,2 2•••存在满足条件的P点,其坐标为(土戸,-2).2(3)•.•点P在抛物线上,可设P (t, t2-3t-4),过P作PE丄x轴于点E,交直线BC于点F,如图1,VB (4, 0), C (0, -4),直线BC解析式为y=x-4,.•.F (t, t-4),.•.PF= (t-4) - (t2-3t-4) =-t2+4t,• • S四边形PBOC = BCO = S pre + S PFB + S BCO=—PF«OE+ — PF«BE+ — xOC«BO= — PF(OE+BE)+ — x4x42 2 2 2 2 =丄PF9B+8 =丄(屮+盘)x4+8=-2 (t-2) 2+16,2 2.•.当t=2时,S㈣边形FBOC最大值为16,此时t2-3t-4=-6,.•.当P点坐标为(2,-6)时,四边形PBOC的最大面积为16.【点睛】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出四边形PBOC的面积是解题的关键.2. (1) y = -x2 +2x + 3 ; (2) 6; (3) P(l,l)【解析】【分析】(1)将M,N两点代入y = -.X2 + bx + c求出be值,即可确定表达式;(2)令y=0求x的值,即可确定A、B两点的坐标,求线段AB长,由三角形面积公式求解.(3)求出抛物线的对称轴,确定M关于对称轴的对称点G的坐标,直线NG与对称轴的交点即为所求P点,利用一次函数求出P点坐标.【详解】解:将点M(0,3)> N(-2,-5)代入y--x2+bx+c中得,1 = 3_4 - 2b + c = -5,b = 2解得,°,c = 3Ay与x之间的函数关系式为y = -x2 + 2x + 3;(2)如图,当y=0时,一干+2兀+ 3 = 0,.*.X1=3,X2= -1,・・・A(・l,0),B(3,0),・・・AB=4,1 o AS A ABM=— X4X3 = 6 .2即AAW 的面积是6.答案第3页,总11页(3)如图,抛物线的对称轴为直线% = - —= = 1 ,2a -2点M(0,3)关于直线x=l的对称点坐标为G(2, 3),.•.PM=PG,连MG交抛物线对称轴于点P,此时NP+PM=NP+PG最小,即AMNP周长最短.设直线NG的表达式为y=mx+n,将N(-2,-5),G(2,3)代入得,—2m+n = —52m+n=3m = 2解得,\ ° ,n = -ly=2m-l,・・・P点坐标为(1,1).【点睛】本题考查抛物线与图形的综合题,涉及待定系数法求解析式,图象的交点问题,利用对称性解决线段和的最小值问题,利用函数观点解决图形问题是解答此题的关键.如图,二次函数y=-x2 +bx+c的图像经过M(0,3), N(-2,-5炳点.3.(1) 1; (2)证明见解析;(3) -1<77<1 ^|<n< |【解析】试题分析:⑴把点C (0, 3)代Ay = a(x - l)(x - 3) (a > 0)即可求出a=l;(2)求出点P的坐标,再求出CP=2苗,BP=<2, CB=3近,判断出ABCP为直角三角形, 通过解直角三角形,得出tanZACO=tanZPCB,从而证出:ZACO=,PCB;(3)通过分类讨论,即可得出-l<n<l< n < |试题解析:(1)把点C (0, 3)代Ay = a(x - 1)(% - 3) (a > 0)得:3=3a•I a= 1即a的值为1(2) V a=l抛物线的解析式为:y = (% - 1)(% - 3) = %2 - 4x + 3 = (x — 2尸—1:.P (2, -1)•:B (3, 0) , C (0, 3):.CP=2 忑,BP^y/2, CB=3 近:.BP2 + BC2 = 20, CP? = (2A/5)2 = 20:.BP2 + BC2 = CP2.\ZCBP=90otanZPCB辔= ^ = | 连接AC•/tanZAOC=—=-OC 3tan ZPCB= tanZAOC・•・ ZAOC=ZPCB(3) ( i )当点0在BC左侧的抛物线上时由(2)可知Q (2, -1)m+n=2P为兀轴下方二次函数尸1 )(兀-3)(°>0)图像上一点l<m<3l<2-n<3 /.-l<n<l(ii)当点。

九下数学-二次函数(超经典例题讲解,习题含答案)

(C)二次函数(D)一次函数
3.若正比例函数y=(1-2m)x的图像经过点A( , )和点B( , ),当 < 时 > ,则m的取值范围是()
(A)m<0(B)m>0(C)m< (D)m>
4.函数y= kx+ 1与函数 在同一坐标系中的大致图象是( )
(A) (B) (C) (D)
5.下列各图是在同一直角坐标系内,二次函数 与一次函数y=ax+c的大致图像,有且只有一个是正确的,正确的是()
(A) , ,
(B) , ,
(C) , ,
(D) , ,
11.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()
12.二次函数y=x2-2x+2有()
A.最大值是1 B.最大值是2 C.最小值是1 D.最小值是2
(A)(B)(C)(D)
6.抛物线 的顶点坐标是( )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)
7.函数y=ax+b与y=ax2+bx+c的图象如右图所示,则下列选项中正确的是( )
A.ab>0,c>0 B.ab<0,c>0
C.ab>0,c<0 D.ab<0,c<0
8.已知a,b,c均为正数,且k= ,在下列四个点中,正比例函数
三、解答题:
(1) (2)
解:(1)如图,建立直角坐标系,设二次函数解析式为y=ax2+c
∵D(-0.4,0.7),B(0.8,2.2),∴
∴ ∴绳子最低点到地面的距离为0.2米.
(2)分别作EG⊥AB于G,FH⊥AB于H,

九年级数学第二十二章第1节《二次函数的图象和性质》解答题专题 (10)含解析

第二十二章第1节《二次函数的图象和性质》解答题专题 (10)1.已知关于x 的方程2(41)40kx k x -++=. (1)当k 取何值时,方程有两个实数根;(2)若二次函数2(41)4y kx k x =-++的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,求k 值并用配方法求出抛物线的顶点坐标.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点.(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式; (Ⅲ)若11,0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值.3.已知抛物线2y x bx c =++与x 轴交于()1,0A x ,()2,0B x 两点,且12xx <,若222133x x k +=(k 为正整数),我们把该抛物线称为“B 系抛物线”.特例感知(1)当2b =,15c =-时,请判断抛物线2y x bx c =++是否是“B 系抛物线”,并说明理由. 推广验证 (2)若234c b =-,且b 为负整数,请判断抛物线2y x bx c =++是否是“B 系抛物线”,并说明理由. 拓展应用(3)在(2)的条件下,若M 为该抛物线的顶点,且ABM ∆为等腰直角三角形,求该抛物线的解析式.4.已知:如图抛物线26y ax bx =++与x 轴交于点()6,0B ()2,0C -与y 轴交于点A .(1)求抛物线的解析式;(2)如图点P 是线段AB 上方抛物线上的一个动点连结PA 、PB .设PAB △的面积为S .点P 的横坐标为m .①试求S 关于m 的函数关系式;②请说明当点P 运动到什么位置时PAB △的面积有最大值?③过点P 作x 轴的垂线交线段AB 于点D 再过点P 做//PE x 轴交抛物线于点E 连结DE 请问是否存在点P 使PDE △为等腰直角三角形?若存在请直接写出点P 的坐标;若不存在请说明理由.5.在平面直角坐标系xOy 中抛物线()2420y axax a a =-+≠的顶点为P 且与y 轴交于点A 与直线y a =-交于点BC (点B 在点C 的左侧).(1)求抛物线()2420y axax a a =-+≠的顶点P 的坐标(用含a 的代数式表示);(2)横、纵坐标都是整数的点叫做整点记抛物线与线段AC 围成的封闭区域(不含边界)为“W 区域”.①当2a =时请直接写出“W 区域”内的整点个数;②当“W 区域”内恰有2个整点时结合函数图象直接写出a 的取值范围.6.在平面直角坐标系xOy 中,已知,点A (3,0)、B (-2,5)、C (0,-3).求经过点A 、B 、C 的抛物线的表达式.7.在平面直角坐标系xOy 中,抛物线25y ax bx a =+-与y 轴交于点A ,将点A 向左平移4个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点()1,2P a --,()4,2Q -.若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.8.如图1在平面直角坐标系xOy 中抛物线y=-(x-a )(x-4)(a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧)与y 轴交于点C 点D 为抛物线的顶点.(1)若D 点坐标为(32524,)求抛物线的解析式和点C 的坐标;(2)若点M 为抛物线对称轴上一点且点M 的纵坐标为a 点N 为抛物线在x 轴上方一点若以C 、B 、M 、N 为顶点的四边形为平行四边形时求a 的值;(3)直线y=2x+b 与(1)中的抛物线交于点D 、E (如图2)将(1)中的抛物线沿着该直线方向进行平移平移后抛物线的顶点为D′与直线的另一个交点为E′与x 轴的交点为B′在平移的过程中求D′E′的长度;当∠E′D′B′=90°时求点B′的坐标.9.二次函数y=ax 2+bx+c (a≠0)的图象向左平移4个单位,再向上平移3个单位,得到二次函数y=x 2﹣2x+1,求:b ,c 的值. 10.在平面直角坐标系中,抛物线y 14=x 2沿x 轴正方向平移后经过点A (x 1,y 2),B (x 2,y 2),其中x 1,x 2是方程x 2﹣2x =0的两根,且x 1>x 2, (1)如图.求A ,B 两点的坐标及平移后抛物线的解析式; (2)平移直线AB 交抛物线于M ,交x 轴于N ,且14AB MN =,求△MNO 的面积; (3)如图,点C 为抛物线对称轴上顶点下方的一点,过点C 作直线交抛物线于E 、F ,交x 轴于点D ,探究CD CDCE CF+的值是否为定值?如果是,求出其值;如果不是,请说明理由.11.已知:关于x 的二次函数2y x ax =-+(a >0),点A (n ,y 1)、B (n+1,y 2)、C (n+2,y 3)都在这个二次函数的图象上,其中n 为正整数.(1)y 1=y 2,请说明a 必为奇数;(2)设a=11,求使y 1≤y 2≤y 3成立的所有n 的值;(3)对于给定的正实数a ,是否存在n ,使△ABC 是以AC 为底边的等腰三角形?如果存在,求n 的值(用含a 的代数式表示);如果不存在,请说明理由.12.如图①定义:直线:(0,0)l y mx n m n =+<>与x 、y 轴分别相交于A 、B 两点将AOB ∆绕着点O 逆时针旋转90°得到COD ∆过点A 、B 、D 的抛物线P 叫做直线l 的“纠缠抛物线”反之直线l 叫做P 的“纠缠直线"两线“互为纠缠线”.(1)若:22l y x =-+则纠缠物线P 的函数解析式是____________. (2)判断并说明22y x k =-+与212y x x k k=--+是否“互为纠缠线”. (3)如图②若纠缠直线:24l y x =-+纠缠抛物线P 的对称轴与CD 相交于点E 点F 在l 上点Q 在P 的对称轴上当以点C 、E 、Q 、F 为顶点的四边形是以CE 为一边的平行四边形时求点Q 的坐标.13.已知二次函数y =ax 2(a ≠0)的图象经过点(﹣2,3) (1)求a 的值,并写出这个二次函数的解析式; (2)求出此抛物线上纵坐标为3的点的坐标. 14.关于x 的二次函数y 1=x 2+kx+k ﹣1(k 为常数) (1)对任意实数k ,函数图象与x 轴都有交点(2)若当x≥75时,函数y 的值都随x 的增大而增大,求满足条件的最小整数k 的值 (3)K 取不同的值时,函数抛物线的顶点位置也会变化,但会在某一函数图象上,求该函数图象的解析式(4)若当自变量x 满足0≤x≤3时,与其对应的函数值y 的最小值为10,求此时k 的值. 15.如图,在平面直角坐标系中,抛物线2y ax bx =+经过(2,4)A --,(2,0)B . (1)求抛物线2y ax bx =+的解析式.(2)若点M是该抛物线对称轴上的一点,求AM OM的最小值.16.在同一个直角坐标系中作出y=12x2,y=12x2-1的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y=12x2-1与抛物线y=12x2有什么关系?17.如图:已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3)与x轴交于C、D两点,点P是x轴上的一个动点.(1)求抛物线的解析式;(2)当PA+PB的值是最小时,求点P的坐标.18.在平面直角坐标系中xOy中,抛物线y=x2﹣4x+m+2的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上一点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标.②抛物线与直线y=1交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.19.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.20.如图抛物线y=-x2+bx+c与x轴交于A、B两点交y轴正半轴于C点D为抛物线的顶点A (-10)B(30).(1)求出二次函数的表达式.(2)点P在x轴上且∠PCB=∠CBD求点P的坐标.(3)在x轴上方抛物线上是否存在一点Q使得以QCBO为顶点的四边形被对角线分成面积相等的两部分?如果存在请直接写出点Q的坐标;如果不存在请说明理由.【答案与解析】1.(1)0k ≠;(2)k=1,(52,94-).(1)要使方程有两个实数根,必须满足两个条件:[]2(41)440k k k ⎧∆=-+-⨯≥⎨≠⎩从而可求出k 的取值范围;(2)令y=0,得到一个一元二次方程,用含有k 的代数式表示方程的解,根据题意求出k 的值.(1)依题意得[]2(41)4400k k k ⎧∆=-+-⨯≥⎨≠⎩,整理得24k-100k ⎧∆=≥⎨≠⎩()∵当k 取任何值时,2(41)0k -≥, ∴0k ≠∴当0k ≠时,方程总有两个实数根.(2)解方程2(41)40kx k x -++=,得14x =,21x k=. ∵12x x 和均为整数且k 为正整数,∴取k=1. ∴254y x x =-+222555()()422x x =-+-+ 259()24x =--∴抛物线的顶点坐标为(52,94-).【点睛】本题考查二次函数综合题,解题的关键是掌握根的判别式和抛物线的顶点坐标的求法.2.(Ⅰ)()0,3A ,(1,4)E ;(Ⅱ)214y x x =-++;(Ⅲ)3b = (Ⅰ)将(-1,0),(3,0)代入抛物线的解析式求得b 、c 的值,确定解析式,从而求出抛物线与y 轴交于点A 的坐标,运用配方求出顶点E 的坐标即可;(Ⅱ)先运用配方求出顶点E 的坐标,再根据顶点E 在直线y x =上得出吧b 与c 的关系,利用二次函数的性质得出当b=1时,点A 位置最高,从而确定抛物线的解析式;(Ⅲ)根据抛物线经过(-1,0)得出c=b+1,再根据(Ⅱ)中顶点E 的坐标得出E 点关于x 轴的对称点E '的坐标,然后根据A 、P 两点坐标求出直线AP 的解析式,再根据点在直线AP 上,此时PA PE +值最小,从而求出b 的值.解:(Ⅰ)把点(-1,0)和(3,0)代入函数2y x bx c =-++,有10930b c b c --+=⎧⎨-++=⎩.解得2,3b c == 2223(1)4y x x x ∴=-++=--+(0,3),(1,4)A E ∴(Ⅱ)由222424b c b y x bx c x +⎛⎫=-++=--+ ⎪⎝⎭,得24,24b c b E ⎛⎫+ ⎪⎝⎭∵点E 在直线y x =上,2424b c b+∴=221111(1)4244c b b b ∴=-+=--+2110,(1)44A b ⎛⎫∴--+ ⎪⎝⎭ 当1b =时,点A 是最高点此时,214y x x =-++(Ⅲ):抛物线经过点(1,0)-,有10b c --+=1c b ∴=+24,,(0,)24b c b E A c ⎛⎫+ ⎪⎝⎭ 2(2),,(0,1)24b b E A b ⎛⎫+∴+ ⎪⎝⎭∴E 关于x 轴的对称点E '为2(2),24b b ⎛⎫+- ⎪⎝⎭设过点A ,P 的直线为y kx t =+.把(0,1),(1,0)A b P +代入y kx t =+,得(1)(1)y b x =-+-把点2(2),24b b E '⎛⎫+- ⎪⎝⎭代入(1)(1)y b x =-+-.得2(2)(1)142b b b +⎛⎫=-+- ⎪⎝⎭,即2680b b --=解得,3b =0,3b b >∴=舍去.317b ∴=+ 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次的解析式、最短距离,数形结合思想及待定系数法的应用是解题的关键,属于中考压轴题.3.(1)是;理由见解析;(2)是;理由见解析;(3)23y 4x x =--. (1)根据“B 系抛物线”代入2b =,15c =-,然后计算与x 轴交点坐标,然后判断22213x x +的值判断即可;(2)将234c b =-代入表达式后计算与x 轴交点坐标,然后判断22213x x +的值判断即可; (3)过M 作MH ⊥AB ,然后根据(2)得到AB 长度和M 的横坐标,然后计算即可.解:(1)当2b =,15c =-时,代入2y x bx c =++即2215y x x =+-令y =0,即20215x x +=-∴(3)(x 5)0x -+= ∴125,3x x =-=∴22213x x +=2233?(-5)3k +=即28k=∴是“B 系抛物线” (2)∵234c b =-∴2234y x bx b =+-令y =0,即22304x bx b =+-∴13()()022x b x b -+= ∵b 为非负数 ∴1213,22x b x b ==- ∴2231()3?()322b b k -+=即233b k =此时2k b = ∴是“B 系抛物线”;(3)如图,当△ABM 为等腰直角三角形时,过M 作MH ⊥AB ,其中AB=2b ,点M 横坐标为2b - 将2b x =-代入2234y x bx b =+-即2223()()224b b y b b b =-+--= ∴MH=-2b∵△ABM 为等腰直角三角形 ∴MH=12AB ∴21×22b b -=解的120(),1b b ==-舍去∴抛物线的解析式234y x x =--【点睛】本题主要考查二次函数性质,理解“B 系抛物线”是解题的关键. 4.(1)2162y x bx =-++;(2)①()2327322S m =--+②当m=3时S 有最大值③点P 的坐标为(4,6)或(55-).(1)由()2(6)(2)412y a x x a x x =-+=-- 则-12a=6求得a 即可; (2)①过点P 作x 轴的垂线交AB 于点D 先求出AB 的表达式y=-x+6设点21,262P m m m ⎛⎫-++ ⎪⎝⎭则点D (m-m+6)然后再表示()222113327332669322222S PD OB PD m m m m m m ⎛⎫=⨯⨯==-+++-=-+=--+ ⎪⎝⎭即可;②由在()2327322S m =--+中32-<0故S 有最大值;③△PDE 为等腰直角三角形则PE=PD 然后再确定函数的对称轴、E 点的横坐标进一步可得|PE|=2m-4即21266242m m m m -+++-=-求得m 即可确定P 的坐标. 解:(1)由抛物线的表达式可化为()22(6)6=(2)412y a x x a x ax bx x =+-++-=- 则-12a=6解得:a=12-故抛物线的表达式为:2162y x bx =-++; (2)①过点P 作x 轴的垂线交AB 于点D由点A(0,6)、B 的坐标可得直线AB 的表达式为:y=-x+6 设点21,262P m m m ⎛⎫-++ ⎪⎝⎭则点D (m-m+6) ∴()222113327332669=322222S PD OB PD m m m m m m ⎛⎫=⨯⨯==-+++-=-+--+ ⎪⎝⎭; ②∵()2327322S m =--+32-<0 ∴当m=3时S 有最大值; ③∵△PDE 为等腰直角三角形 ∴PE=PD ∵点21,262P m m m ⎛⎫-++ ⎪⎝⎭函数的对称轴为:x=2则点E 的横坐标为:4-m 则|PE|=2m-4 即21266242m m m m -+++-=- 解得:m=4或-2或517+517-2和517 当m=4时21262m m -++=6; 当m=517-21262m m -++=3175. 故点P 的坐标为(4,6)或(5173175). 【点睛】本题属于二次函数综合应用题主要考查了一次函数、等腰三角形的性质、图形的面积计算等知识点掌握并灵活应用所学知识是解答本题的关键. 5.(1)顶点P 的坐标为()2,2a -;(2)① 6个;② 112a <≤112a -≤<-. (1)由抛物线解析式直接可求;(2)①由已知可知A (02)C (2+2 -2)画出函数图象观察图象可得;②分两种情况求:当a >0时抛物线定点经过(2-2)时a=1抛物线定点经过(2-1)时a=12则12<a≤1;当a <0时抛物线定点经过(22)时a=-1抛物线定点经过(21)时a=-12则-1≤a<-12. 解:(1)∵y=ax 2-4ax+2a=a (x-2)2-2a ∴顶点为(2-2a );(2)如图①∵a=2∴y=2x 2-8x+2y=-2 ∴A (02)C (2-2) ∴有6个整数点;②当a >0时抛物线定点经过(2-2)时a=1 抛物线定点经过(2-1)时12a =; ∴112a <≤. 当0a <时抛物线顶点经过点(22)时1a =-; 抛物线顶点经过点(21)时12a =-; ∴ 112a -≤<-. ∴综上所述:112a <≤112a -≤<-. 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.6.223y x x =--设抛物线的解析式为y=ax 2+bx+c ,再把三个已知点的坐标代入得到关于a 、b 、c 的方程组,解方程组即可得到二次函数的解析式.解:设经过点A 、B 、C 的抛物线的表达式为2(0)y ax bx c a =++≠.则9304253a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得:123a b c =⎧⎪=-⎨⎪=-⎩. ∴经过点A 、B 、C 的抛物线的表达式为223y x x =--. 【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解. 7.(1)()4,5B a --;(2)2x =-;(3)205a -≤< (1)根据解析式得到点A 的坐标,利用平移即可得到带你B 的坐标; (2)根据点A 、B 的对称性即可求出对称轴;(3)分两种情况:a>0或a<0时,分别确定点P 、Q 的位置,根据抛物线与线段PQ 恰有一个公共点求出答案.(1)∵抛物线25y ax bx a =+-与y 轴交于点A ,∴点A(0,-5a),∵将点A 向左平移4个单位长度,得到点B , ∴B(-4,-5a); (2)对称轴是x=0422-=-; (3)如图:当a<0时,∵A(0,-5a), ()1,2P a --,且-5a>-2a , ∴点P 在抛物线下方,∵()4,2Q -,抛物线与线段PQ 恰有一个公共点,B(-4,-5a), ∴点Q 在抛物线上方或是在抛物线上,即25a ≥-, 解得25a ≥-, ∴205a -≤<时抛物线与线段PQ 恰有一个公共点;当a>0时,∵A(0,-5a), ()1,2P a --,且-5a<-2a<0, ∴点P 在抛物线上方,在x 轴下方, ∵()4,2Q -,B(-4,-5a), ∴点Q 在抛物线上方,∴此时抛物线与线段PQ 没有公共点;综上,205a -≤<时抛物线与线段PQ 恰有一个公共点. 【点睛】此题考查抛物线的性质,利用解析式求点坐标,点平移的规律,抛物线对称轴,抛物线与线段交点问题.8.(1)y=-x 2+3x+4C (04);(2)a 11326221-;(3)D ′E ′5B′(-10).(1)将点D 的坐标代入函数解析式求得a 的值;利用抛物线解析式来求点C 的值. (2)需要分类讨论:BC 为边和BC 为对角线两种情况根据“平行四边形的对边平行且相等平行四边形的对角线相互平分”的性质列出方程组利用方程思想解答.(3)根据平移规律得到D ′E ′的长度、平移后抛物线的解析式然后由函数图象上点的坐标特征求得点B ′的坐标. (1)依题意得:254=-(32-a )(32-4). 解得a=-1.∴抛物线解析式为:y=-(x+1)(x-4)或y=-x 2+3x+4. ∴C (04).(2)由题意知:A (a0)B (40)C (0-4a ). 对称轴为直线x=42a +则M (42a +a ). ①MN ∥BC 且MN=BC 根据点的平移特征可知N (42a --3a ). 则-3a=-(42a --a )(42a --4). 解得:②当BC 为对角线时设N (xy ).根据平行四边形的对角线互相平分可得:4424a x a y a +⎧+=⎪⎨⎪+=-⎩.解得425a x y a-⎧=⎪⎨⎪=-⎩.则-5a=-(42a --a )(42a --4). 解得a=63±.(舍去正值) ∴a 12=63-. (3)把D (32524,)代入y=2x+b 得到:2×32+b=254.则b=134. 故直线解析式为:y=2x+134. 联立2132434y x y x x ⎧=+⎪⎨⎪=-++⎩.解得1132254x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)221294x y ⎧=-⎪⎪⎨⎪=⎪⎩.∴E (-1294)∴.根据抛物线的平移规律则平移后线段D′E′始终等于 设平移后的D′(m2m+134)则E′(m-22m-34). 平移后抛物线的解析式为:y=-(x-m )2+2m+134. 则D′B′:y=-12x+n 过点(m2m+134) ∴y=-12x+52m+134则B′(5m+1320). ∴-12(5m+132)+52m+134=0. 解得m 1=-32m 2=-138. ∴B ′1(-10)B′2(-1380)(与D′重合舍去). 综上所述B′(-10). 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来利用点的坐标的意义表示线段的长度从而求出线段之间的关系. 9.b=﹣10,c=22.此题实际上是将抛物线y=x 2﹣2x+1向下平移3个单位,向右平移4个单位得到抛物线y=ax 2+bx+c (a≠0),由此求得b ,c 的值.解:将y=x 2﹣2x+1向下平移3个单位,向右平移4个单位, 得:y=(x ﹣1﹣4)2﹣3=(x ﹣5)2﹣3=x 2﹣10x+22. 故:b=﹣10,c=22. 【点睛】本题考查了二次函数图象的平移,熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式是关键.10.(1)点A 坐标为(2,0),点B 坐标为(0,1),21(2)4y x =-;(2)12或28;(3)CD CDCE CF+为定值,定值为1. (1)解方程x 2﹣2x =0得x 1=2,x 2=0.即可求得点A 坐标为(2,0),抛物线解析式为()2124y x =- ,把x =0代入抛物线解析式得y =1,即可得点B 坐标为(0,1);(2)如图,过M 作MH ⊥x 轴,垂足为H ,由AB ∥MN ,即可得△ABO ∽△MHN ,根据相似三角形的性质可得14BO HN AB MH AO MN ===,由此求得MH =4,HN =8,将y =4代入抛物线()2124y x =-求得x 1=﹣2,x 2=6,所以M 1(﹣2,4),N 1(6,0),M 2(6,4),N 2(14,0),由此求得△MNO 的面积即可;(3)设C (2,m ),求得CD 解析式为y =kx +m ﹣2k ,令y =0得kx +m ﹣2k =0,由此求得点D 为(2k mk-,0);把CD 的解析式与抛物线的解析式联立221(2)4y kx m ky x =+-⎧⎪⎨=-⎪⎩,消去y 得,kx +m ﹣2k =14(x ﹣2)2.化简得x 2﹣4(k +1)x +4﹣4m +8k =0,由根与系数关系得,x 1+x 2=4k +4,x 1•x 2=4﹣4m +8k .过E 、F 分别作EP ⊥CA 于P ,FQ ⊥CA 于Q ,由AD ∥EP ,AD ∥FQ ,可得CD CDCE CF+=AD AD EP FQ AD EP FQ EP FQ ++=⋅⋅ =(2k mk -﹣2)×()()121212424x x x x x x +-⋅-++=()()()4444482444k m k m k k +--⋅-+-++=1,由此可得CD CD CE CF+为定值,定值为1. (1)解方程x 2﹣2x =0得x 1=2,x 2=0. ∴点A 坐标为(2,0),抛物线解析式为()2124y x =- . 把x =0代入抛物线解析式得y =1. ∴点B 坐标为(0,1).(2)如图,过M 作MH ⊥x 轴,垂足为H ∵AB ∥MN ∴△ABO ∽△MHN∴14BO HN AB MH AO MN === ∴MH =4,HN =8将y =4代入抛物线()2124y x =- 可得x 1=﹣2,x 2=6∴M 1(﹣2,4),N 1(6,0),M 2(6,4),N 2(14,0), ∴11164122M N O S ∆=⨯⨯= 221144282M N O S ∆=⨯⨯=(3)设C (2,m ),设直线CD 为y =kx +b 将C (2,m )代入上式,m =2k +b ,即b =m ﹣2k . ∴CD 解析式为y =kx +m ﹣2k , 令y =0得kx +m ﹣2k =0, ∴点D 为(2k mk-,0) 联立221(2)4y kx m k y x =+-⎧⎪⎨=-⎪⎩, 消去y 得,kx +m ﹣2k =14(x ﹣2)2. 化简得,x 2﹣4(k +1)x +4﹣4m +8k =0由根与系数关系得,x 1+x 2=4k +4,x 1•x 2=4﹣4m +8k .过E 、F 分别作EP ⊥CA 于P ,FQ ⊥CA 于Q , ∴AD ∥EP ,AD ∥FQ , ∴CD CD CE CF+=AD ADEP FQ AD EP FQ EP FQ ++=⋅⋅ =(2k mk-﹣2)×()()121212424x x x x x x +-⋅-++=()()()4444482444k mk m k k +--⋅-+-++ =1∴CD CDCE CF +为定值,定值为1. 【点睛】本题是二次函数综合题,考查了一次函数与二次函数图象的交点问题,解决第(3)问的关键是确定CD CD CE CF+=AD ADEP FQ AD EP FQ EP FQ ++=⋅⋅,再利用根与系数的关系解决. 11.解:(1)∵点A (n ,y 1)、B (n+1,y 2)都在二次函数2y x ax =-+(a >0)的图象上,∴()()2212y n an y n 1a n 1=-+=-+++,. ∵y 1=y 2,∴()()22n an n 1a n 1-+=-+++,整理得:a=2n+1. ∵n 为正整数,∴a 必为奇数. (2)当a=11时,∵y 1<y 2<y 3,∴()()()()222n 11n n 111n 1n 211n 2-+≤-+++≤-+++. 化简得:0102n 184n ≤-≤-.解得:n 4≤. ∵n 为正整数,∴n=1、2、3、4. (3)存在. 假设存在,则AB=AC ,如图所示,过点B 作BN ⊥x 轴于点N ,过点A 作AD ⊥BN 于点D ,CE ⊥BN 于点E ,∵x A =n ,x B =n+1,x C =n+2,∴AD=CE=1. 在Rt △ABD 与Rt △CBE 中,AB=BC ,AD=CE , ∴Rt △ABD ≌Rt △CBE (HL ).∴∠BAD=∠CBE ,即BN 为顶角的平分线. 由等腰三角形性质可知,点A 、C 关于BN 对称. ∴BN 为抛物线的对称轴,点B 为抛物线的顶点, ∴()a an 1212+=-=⨯-.∴a n 12=-.∴存在n ,使△ABC 是以AC 为底边的等腰三角形,an 12=-. (1)将点A 和点B 的坐标代入二次函数的解析式,利用y 1=y 2得到用n 表示a 的式子,即可得到答案;(2)将a=11代入解析式后,由题意列出不等式组,求得此不等式组的正整数解. (3)本问为存在型问题,如图所示,可以由三角形全等及等腰三角形的性质,判定点B为抛物线的顶点,点A 、C 关于对称轴对称,于是得到()a a n 1212+=-=⨯-,从而可以求出a n 12=-. 12.答案见解析.(1)若l :y=-2x+2则点A 、B 、C 、D 的坐标分别为:(10)、(02)、(01)、(-20)则抛物线的表达式为:y=a (x+2)(x-1)即可求解;(2)同理:点A 、B 、C 、D 的坐标分别为:(k0)、(02k )、(0k )、(-2k0)则抛物线的表达式为:y=a (x+2k )(x-k )即可求解;(3)以点C 、E 、Q 、F 为顶点的四边形是以CE 为一边的平行四边形时由题意得:|x Q -x F |=1即:m+1=±1即可求解.解:(1)若l :y=-2x+2则点A 、B 、C 、D 的坐标分别为:(10)、(02)、(01)、(-20)则抛物线的表达式为:y=a (x+2)(x-1)将点B 的坐标代入上式得:2=a (0+2)(0-1)解得:a=-1故答案为:y=-x 2-x+2;(2)同理:点A 、B 、C 、D 的坐标分别为:(k0)、(02k )、(0k )、(-2k0) 则抛物线的表达式为:y=a (x+2k )(x-k )将点B 的坐标代入上式并解得:a=1-k 故抛物线的表达式为:y=211-(2)()2x k x k x x k k k +-=--+ 故y=-2x+2k 与y =212x x k k--+“互为纠缠线”; 点A 、B 、C 、D 的坐标分别为:(20)、(04)、(02)、(-40) 同理可得:抛物线的表达式为:y=21--42x x + 抛物线的对称轴为:x=-1设点F (m-2m+4)点Q (-1n )将点C 、D 的坐标代入一次函数表达式并求得:直线CD 的表达式为:y=12x+2 点CE 横坐标差为1故纵坐标差为12以点C 、E 、Q 、F 为顶点的四边形是以CE 为一边的平行四边形时由题意得:|x Q -x F |=1即:m+1=±1解得:m=0或-2当m=0时点F (04)则点Q (-192);同理当m=-2时点Q (-1172); 综上点Q 坐标为:Q (-192)或Q (-1172). 【点睛】 本题考查的是二次函数综合运用涉及到一次函数、平行四边形性质等其中(3)要注意分类求解避免遗漏.13.(1)34,234y x = (2)(﹣2,3),(2,3) (1)根据二次函数图象上点的坐标满足其解析式,把点(-2,3)代入解析式得到关于a 的方程,然后解方程即可;(2)把y=3代入解析式求出x 的值即可.解:(1)∵抛物线y =ax 2经过点(﹣2,3),∴4a =3,∴a=34, ∴二次函数的解析式为234y x =; (2)∵抛物线上点的纵坐标为3, ∴3=34x 2, 解得x =±2, ∴此抛物线上纵坐标为3的点的坐标为(﹣2,3),(2,3).【点睛】考查了待定系数法求解析式,二次函数图象上点的坐标特征,函数解析式与图象上的点之间的关系,点在图象上,则满足解析式;反之,满足解析式则在函数图象上.14.(1)见解析;(2)﹣150;(3)y =﹣x 2﹣2x ﹣1;(4)11.(1)计算△,根据△的值进行判断;(2)根据二次函数的增减性即可判断;(3)得到抛物线的顶点,写成方程组,消去k 得y =-x 2-2x -1,即可判断;(4)函数配方后得y =x 2+kx +k -1=22124k k x k ⎛⎫+-+- ⎪⎝⎭,根据对称轴的位置分三种情况进行讨论可得结论.解:(1)∵△=k 2﹣4(k ﹣1)=k 2﹣4k+4=(k ﹣2)2≥0,∴对任意实数k ,函数图象与x 轴都有交点;(2)∵a=1>0,抛物线的对称轴x b k 2a 2=-=-, ∴在对称轴的右侧函数y 的值都随x 的增大而增大,即当x k 2->时,函数y 的值都随x 的增大而增大, ∵x≥75时,函数y 的值都随x 的增大而增大, ∴k 2-≤75,k≥﹣150, ∴k 的最小整数是﹣150, ∴满足条件的最小整数k 的值是﹣150;(3)∵y=x 2+kx+k ﹣1=(x k 2+)22k 4-+k ﹣1, ∴抛物线的顶点为(k 2-,2k 4-+k ﹣1), ∴2k x 2k y k 14⎧=-⎪⎪⎨⎪=-+-⎪⎩, 消去k 得,y =﹣x 2﹣2x ﹣1,由此可见,不论k 取任何实数,抛物线的顶点都满足函数y =﹣x 2﹣2x ﹣1,即抛物线的顶点在二次函数y =﹣x 2﹣2x ﹣1的图象上; (4)∵y=x 2+kx+k ﹣1=(x k 2+)22k 4-+k ﹣1, ∴抛物线的顶点为(k 2-,2k 4-+k ﹣1), 又∵0≤x≤3时,与其对应的函数值y 的最小值为10, ①当k 2-≤0时,即k≤0, 此时x =0时,y 取得最小值是10,则有10=k ﹣1,k =11. ②当k 2-≥3时,即k≤﹣6, 此时x =3时,y 取得最小值是10,则有10=32+3k+k ﹣1, k 12=,不符合题意; ③当0k 2-<<3时,即﹣6<k <0, 此时x k 2=-时,y 取得最小值是10,即2k 4-+k ﹣1=10, 此方程无实根,综上所述,k 的值是11.【点睛】本题主要考查了二次函数的性质,解决本题的关键是要熟悉函数关系式和方程的关系、函数的性质.15.(1)抛物线的解析式为212y x x =-+;(2)AM OM +的最小值为42. (1)利用待定系数法可求出该抛物线的解析式; (2)根据O 、B 两点正好关于抛物线的对称轴对称,那么只需连接A 、B ,直线AB 和抛物线对称轴的交点即为符合要求的M 点,而AM +OM 的最小值正好是AB 的长,过点A 作AN ⊥x 轴于点N .在Rt △ABN 中,根据勾股定理即可得出结论.(1)把A (﹣2,﹣4),B (2,0)两点的坐标代入y =ax 2+bx 中,得:424420a b a b -=-⎧⎨+=⎩,解方程组,得:a 12=-,b =1,∴解析式为y 12=-x 2+x . (2)由y 12=-x 2+x 12=-(x ﹣1)212+,可得抛物线的对称轴为直线x =1,并且对称轴垂直平分线段OB ,∴OM =BM ,∴OM +AM =BM +AM .连接AB 交直线x =1于M 点,则此时OM +AM 最小.过点A 作AN ⊥x 轴于点N .在Rt △ABN 中,AB 222244AN BN =+=+=42,因此OM +AM 最小值为42.【点睛】本题是二次函数的综合题,难点在于点M 位置的确定,正确理解二次函数的轴对称性以及两点之间线段最短是解题的关键.16.见解析试题分析:观察图像结合函数表达式可以得到两个函数开口向上,对称轴也都是y 轴,顶点坐标分别是(0,0),(0,-1);根据二次函数的性质及图像知道抛物线y=12x2-1与抛物线y=12x2形状相同,对称轴相同,但是位置不同,开口方向也相同,所以可以得到抛物线y=12x2-1可由抛物线y=12x2向下平移1个单位长度得到的.解:如图所示:(1)抛物线y=12x2开口向上,对称轴为y轴,顶点坐标(0,0);抛物线y=12x2-1开口向上,对称轴为y轴,顶点坐标(0,-1).(2)抛物线y=12x2-1可由抛物线y=12x2向下平移1个单位长度得到.17.(1)y=﹣(x﹣1)2+4;(2)当PA+PB的值是最小时,点P的坐标是(37,0).试题分析:(1)由题意可设抛物线解析式为“顶点式”,再代入点B的坐标可求得解析式;(2)由题意作出点B关于x轴的对称轴点E,连接AE交x轴于点P,P为所求的点,由A、E的坐标可求得直线AE的解析式,再由AE的解析式就可求得点P的坐标.试题解析:(1)∵抛物线的顶点A的坐标为(1,4),∴设抛物线的表达式为y=a(x-1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4.解得a=-1.∴二次函数的表达式为y=-(x-1)2+4,即y=-x2+2x+3.(2)作点B关于x轴的对称点E(0,-3),连接AE交x轴于点P,点P即为所求点.设AE所在直线的表达式为y=kx+b,分别代入A,E坐标,得43k bb+=⎧⎨=-⎩,解得73kb=⎧⎨=-⎩,∴y=7x-3.当y=0时,x=3 7 .∴点P 的坐标为(37,0). 18.(1)y =x 2﹣4x +4;(2)①点P 的坐标为(1,1)或(4,4);②在图象G 上存在点P ,使得∠POQ =45°,n 的取值范围为0≤n ≤4.(1)根据抛物线顶点在x 轴上,列式计算可得m 的值;(2)由∠POQ =45°,作直线y =x ,交抛物线y =x 2﹣4x +4于点P ,联立解析式求出P 点坐标即可;(3)分两种情况考虑:当点P ,Q 在y 轴右侧时与点P ,Q 在y 轴左侧时,列出不等式求解即可.解:(1)∵抛物线y =x 2﹣4x +m +2的顶点在x 轴上,∴()()2412441m ⨯⨯+--⨯=0,解得:m =2, ∴抛物线的表达式为y =x 2﹣4x +4.(2)①作直线y =x ,交抛物线y =x 2﹣4x +4于点P ,如图1所示.联立直线OP 及抛物线的表达式成方程组,得:244y x y x x =⎧⎨=+⎩﹣, 解得:1111x y =⎧⎨=⎩,2244x y =⎧⎨=⎩, ∴点P 的坐标为(1,1)或(4,4).②当y =1时,x 2﹣4x +4=1,解得:x 1=1,x 2=3,∴点E 的坐标为(1,1),点F 的坐标为(3,1).分两种情况考虑:(i )当点P ,Q 在y 轴右侧时,∵抛物线y =x 2﹣4x +4与直线y =x 交于点(1,1), ∴当1≤3﹣n ≤3时,图象G 上存在点P ,使得∠POQ =45°,解得:0≤n ≤2;(ii )当点P ,Q 在y 轴左侧时,同①可得出,抛物线y =x 2﹣4x +4与直线y =﹣x 交于点(﹣1,﹣1)或(﹣4,﹣4),∴当﹣1≤3﹣n ≤1时,图象G 上存在点P ,使得∠POQ =45°,解得:2≤n ≤4. 综上所述:若在图象G 上存在点P ,使得∠POQ =45°,n 的取值范围为0≤n ≤4.【点睛】本题考查二次函数的图像和性质,正确理解∠POQ=45°的意义,运用数形结合的思想解决问题是解题关键.19.(1)y=x2﹣4x+3;(2)存在,抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)△ACE的最大面积278,此时E点坐标为(52,34).(1)利用待定系数法求二次函数解析式解答即可.(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC 与对称轴的交点即为所求点D.(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF ,再根据直线l 与x 轴的夹角为45°求出两直线间的距离,再求出AC 间的距离,然后利用三角形的面积公式列式计算即可得解.解:(1)∵抛物线y=ax 2+bx+3经过点A (1,0),点C (4,3),∴a b 30{16a 4b 33++=++=,解得a 1{b 4==-. ∴抛物线的解析式为y=x 2﹣4x+3.(2)存在.∵点A 、B 关于对称轴对称,∴点D 为AC 与对称轴的交点时△BCD 的周长最小. ∵y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2.设直线AC 的解析式为y=kx+b (k≠0),则k b 0{4k b 3+=+=,解得:k 1{b 1==-.∴直线AC 的解析式为y=x ﹣1.当x=2时,y=2﹣1=1.∴抛物线对称轴上存在点D (2,1),使△BCD 的周长最小.(3)如图,设过点E 与直线AC 平行线的直线为y=x+m ,联立243y x my x x =+⎧⎨=-+⎩,消掉y 得,x 2﹣5x+3﹣m=0.由△=(﹣5)2﹣4×1×(3﹣m )=0得m=134-.∴m=134-时,点E 到AC 的距离最大,△ACE 的面积最大.此时x=52,y=5133244-=-.∴点E 的坐标为(52,34-).设过点E 的直线与x 轴交点为F ,则F (134,0).∴AF=139144-=.∵直线AC 的解析式为y=x ﹣1,∴∠CAB=45°.∴点F 到AC 的距离为9292428⨯=. 又∵223(41)32AC =+-=.∴△ACE 的最大面积192273228=⨯⨯=,此时E 点坐标为(52,34-). 20.(1)y=-x 2+2x+3;(2)P (60)或P 3,02⎛⎫ ⎪⎝⎭;(3)存在点Q 113113,⎛⎫++ ⎪ ⎪⎝⎭或17,24⎛⎫- ⎪⎝⎭. (1)将点A 、B 坐标代入解析式求出b 、c 的值即可得;(2)∠PCB=∠CBD 有两种情况①P 在B 的右侧时延长BD 交y 轴于点H 由∠OCB=∠OBC=45°可证明∠HCB=∠CBP 从而△PCB ≌△HBC 由直线BD 即可求得:OH=OP=6从而得到P 点坐标;②P 在B 的左侧时此时PC ∥BD 根据一次函数解析式即可求出P ; (3)分以下两种情况分别求解①点Q 在y 轴右侧时由OB=OC 可得出OQ 是∠BOC 的平分线联立二次函数解析式与直线OQ 的解析式即可求解;②点Q 在y 轴左侧时可得这条对角线只能是BQ 过点C 作x 轴的平行线EF 过点QB 分别作EF 的垂线垂足分别为FE 延长FQ 交x 轴于点G 设点Q 的坐标为(mn)根据S △BOQ =S △CBQ =S 梯形FQBE -S △FCQ -S △BEC 可得出关于mn 的关系式再与二次函数的解析式联立即可求解.解:(1)将点A (-10)B (30)代入y=-x 2+bx+c 得10930b c b c --+=⎧⎨-++=⎩解得23b c =⎧⎨=⎩∴二次函数的表达式为y=-x 2+2x+3;(2)①当点P 在点B 右侧时延长BD 交y 轴于点H∵y=-x 2+2x+3=-(x-1)2+4∴点D 的坐标为(14)设直线BD 的解析式为y=kx+b 则304k b k b +=⎧⎨+=⎩解得26k b =-⎧⎨=⎩即直线BD 的解析式为y=-2x+6 ∴点H 的坐标为(06)∵OB=OC=3∴∠OBC=∠OCB=45°∴∠HCB=∠CBP=135°又∠PCB=∠CBDBC=BC∴△PCB ≌△HBC∴CH=PB∴OH=OB=6故此时点P 的坐标为(60);②当点P (P′)在点B 左侧时直线BD 的表达式为:y=-2x+6∵∠P′CB=∠CBD 则P′C ∥BD则直线P′C 的表达式为:y=-2x+3当y=0x=32故此时点P′的坐标为3,02⎛⎫ ⎪⎝⎭综上所述点P 的坐标为(60)或3,02⎛⎫⎪⎝⎭; (3)存在.理由如下:①当点Q 在y 轴右侧时以QCBO 为顶点的四边形被对角线分成面积相等的两部分这条对角线只能是OQS △COQ =S △BOQ 如图而OB=OC 故OQ 是∠BOC 的平分线即OQ 的函数表达式为:y=x将y=x 与y=-x 2+2x+3联立得-x 2+2x+3=x 解得113+ 故此时点Q 的坐标为(1132+1132+); ②当点Q 在y 轴左侧时以QCBO 为顶点的四边形被对角线分成面积相等的两部分这条对角线只能是BQS △BOQ =S △CBQ 如图过点C 作x 轴的平行线EF 过点QB 分别作EF 的垂线垂足分别。

2023年九年级数学中考专题训练——二次函数与特殊的四边形

中考专题训练——二次函数与特殊的四边形1.已知二次函数y=a(x﹣1)2+k的图象与x轴交于A,B两点,AB=4,与y轴交于C点,E为抛物线的顶点,∠ECO=135°.(1)求二次函数的解析式;(2)若P在第四象限的抛物线上,连接AE交y轴于点M,连接PE交x轴于点N,连接MN,且S△EAP=3S△EMN,求点P的坐标;(3)过直线BC上两点P,Q(P在Q的左边)作y轴的平行线,分别交抛物线于N,M,若四边形PQMN 为菱形,求直线MN的解析式.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C,对称轴为直线x=12.(1)请用a的代数式表示C点坐标.(2)连接AC,BC,若△ABC的面积为10,求该抛物线的解析式.(3)在(2)的条件下,点P是直线y=x+2上一点(位于x轴下方),点Q是反比例函数y=kx(k>0)图象上一点,若以点A,C,P,Q为顶点的四边形是菱形,则直接写出k的值(不需要写出计算过程).3.如图,在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=x﹣3经过B,C两点.(1)求抛物线的解析式;(2)点P是第四象限内抛物线上的动点,过点P作PD⊥x轴于点D,交直线BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t.①求线段MN的长d与t之间的函数关系式(不要求写出自变量t的取值范围);②点Q是平面内一点,是否存在一点P,使以B,C,P,Q为顶点的四边形为矩形?若存在,请直接写出t 的值;若不存在,请说明理由.4.如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)M在抛物线上,线段MA绕点M顺时针旋转90°得MD,当点D在抛物线的对称轴上时,求点M的坐标;(3)P在对称轴上,Q在抛物线上,以P,Q,B,C为顶点的四边形为平行四边形,直接写出点P的坐标.5.如图,在平面直角坐标系内,抛物线223=-++与x轴交于点A,C(点A在点C的左侧),与y轴y x x交于点B,顶点为D.点Q为线段BC的三等分点(靠近点C).△的周长最(1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当MQC △面积的最大值;小时,求CME(2)在(1)的条件下,当CME △的面积最大时,过点E 作EN x ⊥轴,垂足为N ,将线段CN 绕点C 顺时针旋转90°得到点N ,再将点N 向上平移16个单位长度.得到点P ,点G 在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H ,使点D ,P ,G ,H 构成菱形.若存在,请直接写出点H 的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y =-x 2+bx +c 经过点(0,6),其对称轴为直线x =32.在x 轴上方作平行于x 轴的直线l 与抛物线交于A 、B 两点(点A 在对称轴的右侧),过点A 、B 作x 轴的垂线,垂足分别为D 、C .设A 点的横坐标为m .(1)求此抛物线所对应的函数关系式.(2)当m 为何值时,矩形ABCD 为正方形.(3)当m 为何值时,矩形ABCD 的周长最大,并求出这个最大值.7.如图1,在平面直角坐标系中,抛物线249y x bx c =-++经过点()5,0A -和点()10B ,.(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE x ⊥轴于点E ,PG y ⊥轴,交抛物线于点G ,过点G 作GF x ⊥轴于点F ,当矩形PEFG 的周长最大时,求点P 的横坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作DMN DBA ∠=∠,MN 交线段AD 于点N ,是否存在这样点M ,使得DMN ∆为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.8.如图,在平面直角坐标系xOy 中,二次函数y =x 2﹣2x +m (m >0)的对称轴与比例系数为5的反比例函数图象交于点A ,与x 轴交于点B ,抛物线的图象与y 轴交于点C ,且OC =3OB .(1)求点A 的坐标;(2)求直线AC 的表达式;(3)点E 是直线AC 上一动点,点F 在x 轴上方的平面内,且使以A 、B 、E 、F 为顶点的四边形是菱形,直接写出点F 的坐标.9.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索); (3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索)10.在平面直角坐标系中,抛物线C 1:y=x²+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3.0),与y 轴交于C (0,-3)(1)求抛物线C 1的表达式;(2)分别写出抛物线C 1关于B 点,关于A 点的对称抛物线C 2, C 3的函数表达式(3)设C 1的顶点为D ,C 2与x 轴的另一个交点为A 1顶点为D 1,C 3与x 轴的另一个交点为B 1,顶点为D 2,在以A 、B 、D 、A 1、B 1、D 1、D 2这七个点中的四个点为顶点的四边形中,求面积最大的四边形的面积.11.综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC ,(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.12.如图,在平面直角坐标系中,Rt ABC ∆的边BC 在x 轴上,90ABC ∠=,以A 为顶点的抛物线2y x bx c =-++经过点(3,0)C ,交y 轴于点(0,3)E ,动点P 在对称轴上.(1)求抛物线解析式;(2)若点P 从A 点出发,沿A B →方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD AB ⊥交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接,AQ CQ ,当t 为何值时,ACQ ∆的面积最大?最大值是多少?(3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点,,,P M E C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.13.如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.14.如图①,抛物线2y ax bx a b =+--与x 轴相交于()5,0A -、B 两点,过点A 的直线y x t =+与y 轴和抛物线相交于点C .(1)求抛物线的解析式和点C 的坐标;(2)点P 是抛物线上的一动点,当点P 在直线AC 的上方时,连接OP 、PC ,并把POC ∆沿着OC 翻折得到'P OC ∆,是否存在点P ,使得到四边形'POP C 为菱形,若存在,请求出点P 的坐标;若不存在,请说明理由.(3)如图②,动点E 在线段OA 上,过点E 作x 轴的垂线与AC 交于点M ,与拋物线交于点N ,试问:抛物线上是否存在点Q ,使EQN ∆与BEM ∆的面积相等时,线段NQ 的长度有最小值?若存在,请求出点Q 的坐标;若不存在,请说明理由.15.如图,已知抛物线1M :22y ax x =-与直线y x =的一个交点记为A ,点A 的横坐标是3.将抛物线1M :22y ax x =-向左平移3个单位,再向下平移3个单位,得到抛物线2M ,直线y x =与2M 的一个交点记为B ,点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF .(1)求抛物线1M 的表达式及顶点坐标;(2)当点C 的横坐标为2时,直线y x n =+恰好经过正方形CDEF 的顶点F ,求此时n 的值; (3)在点C 的运动过程中,若直线y x n =+与正方形CDEF 始终没有公共点,求n 的取值范围. 16.如图①,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于点A 、C ,与y 轴交于点B ,抛物线的顶点在直线4y x =-上,且横坐标为0,已知2OA =.(1)求抛物线的解析式;(2)如图②,将抛物线沿直线4y x =-平移得到新抛物线,设新抛物线顶点的横坐标为m ,在平移过程中,若新抛物线与直线AB 有且只有一个公共点,求m 的值;(3)设新抛物线的顶点为P ,在平移的过程中,在y 轴上是否存在一点Q ,使得以点A ,B ,P ,Q 为顶点的四边形为平行四边形,若存在,请求出Q 点的坐标;若不存在,请说明理由.17.如图,已知二次函数()31:430L y ax ax a a =-+>与x 轴交于A ,B 两点,与y 轴交于点C ,过点C 作直线//CD x 轴交抛物线1L 于一点D ,将抛物线1L 沿着直线CD 翻折,并向右平移m 个单位()0m ≥,得到抛物线2L ,抛物线2L 交直线CD 于E ,F 两点(E 在F 的左边),点M ,N 分别是1L ,2L 的顶点,连接CN ,NF ,FM ,MC 得到四边形CNFM.(1)当1a =,0m =时,直接写出抛物线2L 的解析式;(2)若点D ,E 是线段CF 三等分点,求m 的值;(3)在平移过程中,是否存在以点C ,N ,F ,M 为顶点的四边形是矩形的情形,若存在,求出m 应满足的关系式,若不存在,请说明理由.18.如图1,在平面直角坐标系中,抛物线y =﹣12x 2﹣72x ﹣3交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C(1)求直线AC 的解析式;(2)点P 是直线AC 上方抛物线上的一动点(不与点A ,点C 重合),过点P 作PD ⊥x 轴交AC 于点D ,求PD 的最大值;(3)将△BOC 沿直线BC 平移,点B 平移后的对应点为点B ′,点O 平移后的对应点为点O ′,点C 平移后的对应点为点C ′,点S 是坐标平面内一点,若以A ,C ,O ′,S 为顶点的四边形是菱形,求出所有符合条件的点S 的坐标.19.已知抛物线23y ax bx =+-经过点(1,1)A -,(3,3)B -.把抛物线23y ax bx =+-与线段AB 围成的封闭图形记作G .(1)求此抛物线的解析式;(2)点P 为图形G 中的抛物线上一点,且点P 的横坐标为m ,过点P 作//PQ y 轴,交线段AB 于点Q .当APQ △为等腰直角三角形时,求m 的值;(3)点C是直线AB上一点,且点C的横坐标为n,以线段AC为边作正方形ACDE,且使正方形ACDE与图形G在直线AB的同侧,当D,E两点中只有一个点在图形G的内部时,请直接写出n的取值范围.20.如图,已知二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x﹣3)2+4m﹣1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx﹣3m+1(m≥1)的顶点坐标为______;当二次函数L1,L2的y值同时随着x的增大而增大时,则x的取值范围是______;(2)当AD=MN时,判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线L1,L2均会分别经过某些定点,①求所有定点的坐标;②若抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数背景下的特殊图形问题
1.如图1,抛物线213442
y x x =
--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)求点A 、B 、C 的坐标;
(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;
(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.
2.如图1,抛物线233384
y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .
(1)求点A 、B 的坐标;
(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;
(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.
作业、在直角坐标平面内,为原点,二次函数的图像经过A (-1,0)
和点B (0,3),顶点为P 。

(1)求二次函数的解析式及点P 的坐标;
(2)如果点Q 是x 轴上一点,以点A 、P 、Q 为顶点的三角形是直角三角形,求点Q 的坐标。

O 2y x bx c =-++
1.已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).
(1)求此抛物线和直线的解析式;
(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;
(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.
备用图
2.已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 3
2-
=与边BC 相交于点D . (1)求点D 的坐标;
(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;
(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.
作业:如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为4
5. (1)求该二次函数的关系式;
(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;
(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.。

相关文档
最新文档