第十一章时序逻辑电路
数字电子技术之时序逻辑电路介绍课件

时序逻辑电路的特点
STEP1
STEP2
STEP3
STEP4
存储功能:能够存储 输入信号的状态,并 在一定条件下输出相 应的信号
反馈机制:通过反馈 机制实现对输入信号 的响应和输出信号的 控制
定时功能:能够实现 对输入信号的定时控 制,并在一定条件下 输出相应的信号
设计思路:使用D 触发器构成计数器, 每个D触发器输出 连接到下一个D触 发器的输入
设计步骤:
确定触发器的个数 和类型
设计触发器的连接 方式
编写触发器的逻辑 方程
设计电路的仿真和 测试
设计结果:实现一 个4位二进制计数器, 能够正常计数并输 出正确的计数值
谢谢
设计原则
01
正确性:保证 电路的功能正 确,满足设计 要求
02
简洁性:尽量 减少电路的复 杂度,降低成 本
03
可靠性:保证 电路在各种情 况下都能正常 工作
04
灵活性:便于 修改和扩展, 适应不同的需 求
05
性能优化:提 高电路的速度、 功耗和面积等 性能指标
设计实例
设计要求:实现一 个4位二进制计数 器
04
状态图分析步骤:绘制状态图、分析状态转换、确定输出信号
05
状态图分析优点:直观、易于理解和分析复杂电路
状态表分析法
状态表:描 述时序逻辑 电路状态的 表格
状态转换: 状态表列出 了电路在各 种输入条件 下的状态转 换关系
状态方程: 描述状态转 换关系的数 学方程
状态图:用 图形方式表 示状态转换 关系的方法
组合逻辑电路与时序 逻辑电路的区别:组 合逻辑电路只对当前 的输入信号进行响应, 而时序逻辑电路对过 去的输入信号和当前 的输入信号进行响应。
时序逻辑电路PPT课件

顺序脉冲
分类
计数型 移位型 : 计数器+译码器
6.4.1 计数型顺序脉冲发生器
一、电路组成 由四进制计数器( JK 触发器) 和译码器构成
Q1n Q0n
Y0
&
Q1nQ0n
Y1
&
Q1n Q0n
Y2 &
Q1nQ0n
Y3 &
1
Q0
1J
FF0 C1 1K
Q0
RD
1
Q1 FF1 Q1
1J C1 1K RD
三、用 MSI 构成顺序脉冲发生器
1 CP
DDDD0123
74LS163
LD CR
CCTTTP
Q0
3位二进 Q1
制计数 QQ23
CO
74LS138
SSTTAB STC
Y0 Y1 Y2
译码 YY34
Y5
YY67
74LS374
EN
0D
0Q
1D
1Q
2D 缓冲2Q
3D 4D
寄存
3Q 4Q
5D
5Q
6D
6Q
7D
Q0
Q1
Q2
FF0
FF1
FF2
1D C1 R 1D C1 R
1D C1 R
Q0n1
Q0n
Q1n
Q
n 2
Q3
Q1n1 Q0n
FF3
Q2n1 Q1n
1D C1 R
Q3n1 Q2n
CP
1
CR
CP
不需译码器。不会
Q0
产生竞争冒险。状
Q1
态利用率低。
【电工基础知识】时序逻辑电路

【电⼯基础知识】时序逻辑电路时序逻辑电路定义时序逻辑电路主要由触发器构成。
在理论中,时序逻辑电路是指电路任何时刻的稳态输出不仅取决于当前的输⼊,还与前⼀时刻输⼊形成的状态有关。
这跟相反,组合逻辑的输出只会跟⽬前的输⼊成⼀种函数关系。
换句话说,时序逻辑拥有储存器件()来存储信息,⽽组合逻辑则没有。
从时序逻辑电路中,可以建出两种形式的::输出只跟内部的状态有关。
(因为内部的状态只会在时脉触发边缘的时候改变,输出的值只会在时脉边缘有改变):输出不只跟⽬前内部状态有关,也跟现在的输⼊有关系。
时序逻辑因此被⽤来建构某些形式的的,延迟跟储存单元,以及有限状态⾃动机。
⼤部分现实的电脑电路都是混⽤组合逻辑跟时序逻辑。
按“功能、⽤途”分为:1. 寄存器;2. 计数(分频)器;3. 顺序(序列)脉冲发⽣器;4. 顺序脉冲检测器;5. 码组变换器;寄存器定义寄存器:能够暂时存放数码、指令、运算结果的数字逻辑部件,称为寄存器。
寄存器的功能是存储,它是由具有存储功能的组合起来构成的。
⼀个触发器可以存储1位⼆进制代码,故存放n位⼆进制代码的寄存器,需⽤n个触发器来构成。
[1]按照功能的不同,可将寄存器分为基本寄存器和两⼤类。
基本寄存器只能并⾏送⼊数据,也只能并⾏输出。
移位寄存器中的数据可以在移位脉冲作⽤下依次逐位右移或左移,数据既可以并⾏输⼊、并⾏输出,也可以串⾏输⼊、串⾏输出,还可以并⾏输⼊、串⾏输出,或串⾏输⼊、并⾏输出,⼗分灵活,⽤途也很⼴。
[1]知识点概述:1、寄存器,就是能够记忆或存储0和1数码的基本部件。
通常都是由各种触发器和门电路来构成的。
2、寄存器分为仅能存储0和1数码的数码寄存器,和既能存储数码同时也能实现数码的左移或右移的寄位移寄存器。
3、在实际中,通常使⽤集成寄存器。
本节讲解了寄存器的电路构成、⼯作原理、对74LS194双向移位寄存器的使⽤进⾏了介绍。
4、有点寄存器具有左移右移的功能寄存器电路如下:(1)由四个D触发器构成,因为每⼀个D触发器可以存放1位⼆进制信息,所以上述电路的寄存器可存放⼀个4位⼆进制数码,⼀般也把这种寄存器称为数码寄存器。
时序逻辑电路PPT课件

工作原理
状态表示
时序逻辑电路中的状态通常由存储元件(如触发器)来存储,根据 输入信号的变化,电路的状态会随之改变。
状态转移
时序逻辑电路中的状态转移是由输入信号和当前状态共同决定的, 根据一定的逻辑关系,电路会从一个状态转移到另一个状态。
。
02
可编程逻辑控制器(PLC)
在工业控制系统中,时序逻辑电路用于实现可编程逻辑控制器,用于自
动化控制和数据处理。
03
传感器接口
时序逻辑电路用于实现传感器接口电路,将传感器的模拟信号转换为数
字信号,并传输给微控制器或可编程逻辑控制器进行处理。
04
CATALOGUE
时序逻辑电路的优化
优化设计
设计
使用基本的逻辑门电路, 根据需求逐一设计电路。
自动化工具设计
使用EDA(电子设计自动 化)工具进行设计,提高 设计效率。
混合设计
结合手工设计和自动化工 具设计,根据具体情况选 择合适的设计方法。
设计工具
硬件描述语言
使用Verilog或VHDL等硬件描述语言进行设计。
EDA工具
时序逻辑电路
目录
• 时序逻辑电路简介 • 时序逻辑电路设计 • 时序逻辑电路的应用 • 时序逻辑电路的优化 • 时序逻辑电路的发展趋势
01
CATALOGUE
时序逻辑电路简介
定义与分类
定义
时序逻辑电路是一种具有记忆功 能的电路,它能够根据输入信号 的变化,按照一定的逻辑关系, 输出相应的信号。
分类
输出信号
时序逻辑电路的输出信号是根据当前状态和输入信号来确定的,它会 随着状态的变化而变化。
大学电子电路基础 第十一章

二.触发器的分类
I. 从电路结构不同分 1).基本触发器 2).同步触发器 3).主从触发器 4).边沿触发器 II. 从逻辑功能不同分 1). RS触发器 2). JK触发器 3). T 触发器 4). D 触发器
11.1 基本触发器
11.1.1、 基本RS触发器
1.电路结构与工作原理 (1).电路结构(以与非门构成为例) Q 端、Q 端为两个互补的输出端 ; Q = 1、Q = 0 , 定义为 1 态; RD、SD 端是触发信号引入端。 非号表示“0”触发有效, 脚标“D”表示直接触发 SD 端 是 置 1 端(置位端), RD 端 是 清 0 端(复位端), &
Q
Q ┌
Q ┌
Q ┌ C1 1T
当T触发器的输入控制端为 T=1时,称为T’触发器。
┌
1K C1 1J
CP
T
4.主从JK触发器存在的问题——一次变化现象
例 已知主从JK触发器 J 、 K 的波形如图所示,画出输出 Q 的
波形图(设初始状态为0)。
解:画出输出波形如图示。
CP J K =0
Q
由此看出,主从JK触发器在 CP=1期间,主触发器只变化(翻转)一次,
t D 0 0 设初态Q=0 t
触发器保存下来的状态是CP 作用沿到达时刻的输入状态。 特别注意:当 D 端信号和 CP 作用沿同时跳变时,触发器存 入的是 D 跳变前的状态。
Q
t
触发器的逻辑功能及其描述仿法
本节只讨论有时钟控制的触发器。
有时钟控制的触发器,从功能不同分:
RS 触发器、JK 触发器、T 触发器、 D 触发器等。
n+1 Q = D D=0 0
D = 1 1 D = 0 D=1
时序逻辑电路

3 . 异步减 法计 数器
(1)3位递减计数器的状态
(2)电路组成
二 、 十进制计数器
十进制递减计数器的状态
1.电路组成
异步十进制加法计数器
2.工作原理
(1)计数器输入0~9个计数脉冲时,工作过程与4位二进制异步加法计数器完 全相同,第9个计数脉冲后,Q3Q2Q1Q0状态为1001。 (2)第10个计数脉冲到来后,此时计数器状态恢复为0000,跳过了1010~1111 的6个状态,从而实现842lBCD码十进制递增计数的功能。
④ 最 高 位 触 发 器 FF 3 是 在 Q 0 、 Q 1 、 Q 2 同 时 为 1 时 触 发 翻 转 , 即 FF 0 ~ FF 2 原均为 1 ,作加 l 计数时,产生进位使 FF 3 翻转为 l 。
(2)电路组成
4位二进制同步加法计数器逻辑图
工
程
应
用
计数不正常的故障检测 第一步,先查工作电源是否正常;第二步,检查触 发器的复位端是否被长置成复位状态;第三步,用示波器观测计数脉冲是否加到 了触发器的CP端;第四步,替换触发器,以确定集成电路是否损坏。
第二节 计数器
在数字系统中,能统计输入脉冲个数的电路称为计数器。
一 、二进 制计 数器 1 . 异步二 进制 加法计 数器
每输入一个脉冲,就进行一次加 1 运算的计数器称为加法 计数器,也称为递增计数器。 4 个 JK 触发器构成的异步加 法计数器如下图所示。
图中 FF 0 为最低位触发器,其控制端 C l 接收输入脉冲,输 出信号 Q 0 作为触发器 FF 1 的 CP , Q 1 作为触发器 FF 2 的 CP , Q 2 作为 FF 3 的 CP 。各触发器的 J 、 K 端均悬空,相当于 J = K =1 ,处于计数状态。各触发器接收负跳变脉冲信号时 状态就翻转,它的时序图见下图。
电子教案-电子技术(第5版_付植桐)教学资源42550 第11章同步时序逻辑电路的设计方法-电子课件

J 2 Q1n Q3n
K2 Q1n
J3 Q1nQ2n
K3 Q1n
2020年6月26日星期五
7
第 11 章 时序逻辑电路
本章小结
时序逻辑不同于组合逻辑主要是其输出状态不但与输 入控制量有关,还与过程时间或历史状态有关:
Q n 1 {}
f ( X {}, Q{n})
其中X {}为输入向量, Q{n}1为次态向量, Q{n}为现态向量
2020年6月26日星期五
2
第 11 Leabharlann 时序逻辑电路11.5同步时序逻辑电路的设计方法
2. 设计举例 例11.5.1 设计一个同步六进制计数器
[解]
(1)设定状态图 由题意知N= 6 ,至少选用 3 个触发器,状态转换如下图所示:
2020年6月26日星期五
3
第 11 章 时序逻辑电路
11.5同步时序逻辑电路的设计方法 例11.5.1 设计一个同步六进制计数器
(2)确定触发器类型-------可选用JK触发器,两个输入端,较灵活。 (3)列出状态卡诺图
2020年6月26日星期五
4
第 11 章 时序逻辑电路
11.5同步时序逻辑电路的设计方法 例11.5.1 设计一个同步六进制计数器
2020年6月26日星期五
5
第 11 章 时序逻辑电路
11.5同步时序逻辑电路的设计方法 例11.5.1 设计一个同步六进制计数器
第 11 章 时序逻辑电路
11.5 同步时序逻辑电路的 设计方法
主要要求:
了解寄存器的特点和分类。 熟悉寄存器的工作原理和表示方法。
2020年6月26日星期五
1
第 11 章 时序逻辑电路
11.5同步时序逻辑电路的设计方法
时序逻辑电路讲解ppt

Q JQ C KQ
CP
J K AQn AQn ,A与Qn是异或关系
A与Qn相同时, J K 0 Qn1 Qn 具有保持原状态功能
A与Qn不同时,J K 1 Qn1 Qn 具有计数功能
时序逻辑电路
特点:
在数字电路中,凡就是任一时刻得稳定输出不仅决定 于该时刻得输入,而且还与电路原来得状态有关者,都 叫做时序逻辑电路,简称时序电路。
3、动作特点: 在CP=1得全部时间里,输入信号 得变化都对主触发器起控 制作用,所以当CP下降沿到达时从触发器得状态不仅仅由 此时刻输入信号得状态决定,还必须考虑整个CP=1期间输 入信号得变化过程。
三、 主从RS、JK触发器
主从RS触发器 的图形符号
S
1S
Q
CP C1
R
1R
Q
主从JK触发器 的图形符号
4. 根据状态转换情况总结电路功能。
例:时序电路见下图, FF1~FF3为主从JK触发器、下降沿动作。 分析其逻辑功能。输入端悬空时等同逻辑1。
1J
Q1
C1
1K
Q1 &
FF1
1J
Q2
C1
1K
Q2
FF2
& 1J Q3 &
1
Y
C1
1K
Q3
FF3 CP
J1 Q2 • Q3
K1 1
1、驱动方程 J2 Q1
RD
0–t1: RD=0、 SD=1
Q=1、Q=0
SD t1 t2 t3 t4 t5 t
t1–t2: RD= SD=0
保持Q=1、Q=0
t2 –t3: RD=1、 SD=0
Q
t
Q=0、Q=1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章时序逻辑电路
1、试用上升沿D触发器组成一个4位二进制异步加法计数器,并画出波形图.
2、试用上升沿D触发器组成一个4位二进制异步减法计数器,并画出波形图.
3、分析题图11-1所示电路的逻辑功能.
题图11-1
4、分析题图11-2所示电路的逻辑功能.
题图11-2
5、分析题图11-3所示电路的逻辑功能.
题图11-3
6、分析题图11-4所示电路的逻辑功能.
题图11-4
7、分析题图11-5所示电路的逻辑功能.
题图11-5
8、已知计数器波形如题图11-6所示,试确定该计数器的模.
题图11-6
9、试分析题图11-7所示的由74LS290构成的各电路分别组成几进制计数器.
题图11-7
10、试分析题图11-8所示的由74LS290构成的电路组成几进制计数器.
题图11-8
11、试分析题图11-9所示的由74LS161构成的电路组成几进制计数器.
题图11-9
12、试用74LS290构成九进制计数器
13、试用74LS161构成九进制计数器
14、试用74LS290构成86进制计数器
15、试用74LS161构成82进制计数器。