高一数学复习题(附答案)
新教材高一数学期末复习测试卷含详解

新教材高一数学期末复习测试卷考试时间:120分钟满分:150分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()324f x x x =+-恰有一个零点,则该零点所在区间是()A .()1,0-B .()0,1C .()1,2D .()2,32.从一副52张的扑克牌中任抽一张,“抽到K 或Q ”的概率是()A .126B .113C .326D .2133.如图,U 是全集,,,M P S 是U 的子集,则阴影部分表示的集合是()A .()M P SB .()M P SC .()U M P S ⋂⋂ðD .()U M P S⋂⋃ð4.已知按从小到大顺序排列的两组数据:甲组:27,30,37,m ,40,50;乙组:24,n ,33,44,48,52.若这两组数据的第30百分位数、第50百分位数都分别对应相等,则mn等于()A .43B .107C .127D .745.幂函数的图像过点12,2⎛⎫-- ⎪⎝⎭,则它在[]1,2上的最小值为()A .-2B .-1C .1D .126.设6log 4a =,9log 5b =,12log 8c =,则()A .a b c<<B .b a c<<C .b c a <<D .c a b<<7.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,函数322--=-x xy x x的图像大致是()A .B .C .D .8.已知函数()24a x x x f =-+,()5g x ax a =+-,若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,则实数a 的取值范围是()A .(],9-∞-B .[]9,3-C .[)3,+∞D .(][),93,-∞-+∞ 二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.某小组有2名男生和3名女生,从中任选2名同学去参加唱歌比赛,在下列各组事件中,是互斥事件的是()A .恰有1名女生和恰有2名女生B .至少有1名男生和至少有1名女生C .至少有1名女生和全是女生D .至少有1名女生和全是男生10.下列化简正确的是()A .B .21log 3223-=CD .x11.若样本1a x +,2a x +,…,n a x +的平均值是5,方差是4,样本112x +,212x +,…,12n x +的平均值是9,标准差是s ,则下列结论中正确的是()A .1a =B .2a =C .16s =D .4s =12.已知函数()221,223,2x x f x x x x +≥⎧=⎨+-<⎩,关于函数()f x 的结论正确的是()A .()f x 的单调递增区间是[)2,+∞B .()f x 的值域为[)4,-+∞C .()()412f f -=D .满足()240f x -=成立的x 的值有4个三、填空题(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)13.已知命题p :[]1,1x ∃∈-,230x x a +>-.若命题p ⌝为真命题,则实数a 的最大值是______.14.设函数()2121xf x x=-+,则使得()()31f x f x >-成立的x 的取值范围是_______。
高一数学复习题期末考试及答案

高一数学复习题期末考试及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},则A∩B等于:A. {1,2}B. {2,3}C. {1,3}D. {2,4}2. 函数f(x)=x^2-4x+3的零点是:A. 1B. 3C. 1和3D. 无零点3. 若sinθ=1/3,且θ∈(0,π),则cosθ的值为:A. 2√2/3B. √2/3C. 2√6/3D. √6/34. 根据等差数列的通项公式an=a1+(n-1)d,若a1=2,d=3,则第5项a5为:A. 17B. 14C. 11D. 85. 已知直线l:y=2x+3与直线m:y=-x+5平行,则它们的斜率k_l和k_m的关系是:A. k_l > k_mB. k_l < k_mC. k_l = k_mD. k_l ≠ k_m6. 圆的方程为(x-2)^2 + (y-3)^2 = 9,圆心坐标为:A. (2,3)B. (-2,-3)C. (0,0)D. (3,2)7. 抛物线y^2=4x的焦点坐标为:A. (1,0)B. (2,0)C. (0,1)D. (0,2)8. 已知等比数列{an}的首项为2,公比为3,第5项a5的值为:A. 162B. 243C. 486D. 7299. 函数y=|x|的图像是:A. 一个V形B. 一个倒V形C. 一个U形D. 一个正弦波形10. 已知向量a=(2,3),b=(-1,2),向量a和b的夹角θ的余弦值为:A. 1/5B. 1/3C. 1/√5D. -1/√5二、填空题(每题2分,共20分)11. 函数f(x)=x^3-3x^2+2x-1的导数为:f'(x)=________。
12. 若a=3,b=-2,则(a+b)^2的值为:________。
13. 已知三角形ABC的三边长分别为a=5,b=6,c=7,则其面积为:________。
14. 函数y=√x的值域为:________。
新教材-高一-数学-期末复习-多选题训练(含答案)

请点击修改第II卷的文字说明
参考答案
1.BD
【分析】
分别判断每组函数的定义域和对应关系是否一致即可判断.
【详解】
对于A, ,对应关系不一致,故A错误;
对于B, 和 的定义域都为 ,且 ,对应关系一致,故B正确;
对于C, 满足 ,故 的定义域为 , 满足 ,解得 或 ,即 的定义域为 ,定义域不一致,故C错误;
A. B.
C. D.
7.(多选)与 终边相同的角的表达式中,正确的是( )
A. B.
C. D.
8.已知函数 是定义在R上的奇函数,当 时, ,则下列判断正确是()
A.当 时, B. 的解集为
C.函数在R上单调递增D.函数 有3个零点
9.为预防新冠病毒感染,某学校每天定时对教室进行喷洒消毒.教室内每立方米空气中的含药量 (单位:mg)随时间 (单位:h)的变化情况如图所示:在药物释放过程中, 与 成正比;药物释放完毕后, 与 的函数关系式为 ( 为常数),则()
5.ABC
【分析】
根据指数函数、幂函数和对数函数性质对各个选项进行判断.
【详解】
由指数函数的性质可知,当 时, , 恒成立,A正确;
由对数函数的性质可知,当 时, , , 恒成立,B正确;
对于C,当 时, , ,当 时, , 则 ,C正确;
对于D,当 时, ,由对数函数与指数函数的性质可知,当 时, , ,故 ,故A正确;
对于B,当 时, ,故B正确;
对于C,当 时,由 ,知 ,
当 时,由 ,知 ,
则 ,故C错误;
对于D,浮萍每月增长的面积不相等,实际上增长速度越来越快,故D错误;
故选:AB
【点睛】
【高一】高一数学下册巩固性复习题(带答案)

【高一】高一数学下册巩固性复习题(带答案)一、1.在以下角组中,相同的端边为()(a)390°与690°(b)-330°与750°(c)480°和-420°(d)300°和-840°2、若为第一象限的角,则sin2,,,中能确定为正值的个数是()(a) 0(b)1(c)2(d)多于23、扇形的半径为r,面积为,则这个扇形的中心角的弧度数是()(a)(b)(c)2(d)4、已知α+β=3π,则下列等式中一定成立的是()(a)sinα=sinβ(b)cosα=cosβ(c)tanα=tanβ(d)cotα=cotβ 5、若角的终边落在直线x+y=0上,则=()(a) -2(b)2(c)-2或2(d)06、下列函数式能同时成立的是()(a) sin=,cos=(b)sin=0.35,cos=0.65(c)sin=,cos=-(d)tan=1,cot=-17.在以下四个数字中,与罪相等的一个是① si n(nπ+)② sin(2nπ±)③sin[(2n+1)π-]④sin[nπ+(-1)n](nz)()(a)①③(b)②③(c)②④(d)③④8、已知tanα=m,(a)(b)(c)(d)二、问题:9、终边在象限角平分线上的角的集合可表示为。
10.已知α=,然后是第四象限的点P(COS)α,sinα)。
11、cos225°+tan240°+sin(-60°)+cot(-570°)=。
12.已知cos(180°-α)=,然后是Tan(360°-α)=13、已知sin=,cos=,其中<14、圆的半径变为原来的5倍,而弧长不变,则该弧所对圆周角变为原来的倍。
15.如果Tanα+cotα=2,那么tan2α+cot2α=三、解答题16.众所周知,a、B和C是△ 美国广播公司,求证(1)cos(2a+b+c)=-cosa;(2) tan()=-tan17、求证:。
高一必修一数学期末复习题及答案

高一数学期末复习(必修一)一、选择题:本大题10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I C M N 等于 ( )A.{0,4}B.{3,4}C.{1,2}D. ∅2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于( )A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5}3、计算:9823log log ⋅=( )A 12B 10C 8D 64、函数2(01)x y a a a =+>≠且图象一定过点 ( ) X|k | b| 1 . c|o |mA (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数y =的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x |0<x ≤1}7、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++=D 1x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4)10、若0.52a =,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >> 二、填空题:本大题共4小题,每小题5分,满分20分11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫ ⎝⎛+3264=______ 13、函数212log (45)y x x =--的递减区间为______14、函数122x )x (f x -+=的定义域是______ 三、解答题 :共5小题,满分80分。
数学题高一试题及答案

数学题高一试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为a1 = 1,d = 2,求a3的值。
A. 5B. 6C. 7D. 8答案:A3. 函数y = x^3 - 3x^2 + 2x + 1的极值点个数是:A. 0B. 1C. 2D. 3答案:C二、填空题4. 计算复数(1 + 2i)(3 - 4i)的结果为______。
答案:11 - 10i5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求该圆的半径。
答案:5三、解答题6. 已知函数f(x) = x^3 - 3x^2 + 2,求证f(x)在x = 2处取得极小值。
证明:首先求导数f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0 或x = 2。
验证f''(x) = 6x - 6,代入x = 2,得到f''(2) = 6 > 0,因此f(x)在x = 2处取得极小值。
7. 解不等式:x^2 - 4x + 4 > 0。
解:将不等式转化为(x - 2)^2 > 0,由于平方项总是非负的,所以不等式成立当x ≠ 2。
因此,解集为{x|x ≠ 2}。
四、计算题8. 计算定积分∫(0到1) (2x + 3) dx。
解:首先求被积函数(2x + 3)的原函数F(x) = x^2 + 3x。
计算定积分,得到F(1) - F(0) = (1^2 + 3*1) - (0^2 + 3*0) = 4。
答案:49. 已知函数f(x) = √x,求f(x)在区间[1, 4]上的平均变化率。
解:平均变化率定义为(f(b) - f(a)) / (b - a),代入f(x) = √x,得到平均变化率= (√4 - √1) / (4 - 1) = (2 - 1) / 3 = 1/3。
高一数学上册期末复习题及详细解答

高一数学期末复习测试题一姓名: 班级:一、选择题: 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、若),1,3(),2,1(-==b a 则=-b a 2 ( )A 、 )3,5(B 、 )1,5(C 、 )3,1(-D 、 )3,5(-- 2.在单位圆中,面积为1的扇形所对的圆心角为( )弧度。
A 、 1B 、 2C 、3 D. 43、如图是函数f (x)sin(x )=+ϕ一个周期内的图像,则ϕ可能等于 ( ) A 、 56π B 、C 、 6π- D 、6π 4.化简结果是( )A B 、 C 、-5、 已知函数f (x)sin(x )cos(x )=+ϕ++ϕ为奇函数,则ϕ的一个取值为( ) A 、0 B 、2πC 、4π- D 、π6.把函数742++=x x y 的图像按向量a 经过一次平移以后得到2x y =的图像,则a 是A 、 )3,2(-B 、 )3,2(-C 、 )3,2(--D 、 )3,2(7.设),6,2(),3,4(21--P P 且P 在21P P 的延长线上,=则点P 的坐标是A 、)15,8(-B 、 (0,3)C 、)415,21(- D 、)23,1( 8.函数44f (x)sin(x)sin(x)ππ=+-是( )A 、周期为2π的奇函数B 、周期为2π的偶函数C 、周期为π的奇函数D 、周期为π的偶函数 9. 若为则ABC AB BC AB ∆=+•,02( )A 、直角三角形B 、钝角三角形C 、锐角三角形D 、等腰直角三角形 10.稳定房价是我国今年实施宏观调控的重点,国家最近出台的一系列政策已对各地的房地产市场产生了影响,温州市某房地产介绍所对本市一楼群在今年的房价作了统计与预测:发现每个季度的平均单价y (每平方面积的价格,单位为元)与第x 季度之间近似满足:y 500sin(x )9500(0)=ω+ϕ+ω>,已知第一、二季度平均单价如右表所示: 则此楼群在第三季度的平均单价大约是( )元A 、 10000B 、 9500C 、9000D 、8500二、填空题:本大题共6小题,每小题4分,满分24分.把答案填在题中横线上. 11、已知113a (,2sin ),b (cos ,),a 322=α=α且∥b ,则锐角α的值为 ; 12、m,n a 2m a n,|a |=⊥=设是两个单位向量,向量-n ,则 ; 13、函数y cos 2x 4cos x,x [,]32ππ=-∈-的值域是 ; 14、在三角形ABC 中,设a =AB ,b =AC ,点D 在线段BC 上,且DC BD 3=,则AD 用b ,a 表示为 ;15、已知偶函数f (x)2sin(x )(0,0)=ω+ϕω><ϕ<π的最小正周期是π,则f(x)的单调递减区间为 ; 16、下列命题:①若c a c b b a =⋅=⋅,则 ②若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向量:-=+,则0=⋅b a ④若a 与b 是单位向量,则1=⋅b a 其中真命题的序号为 。
新教材高一数学期末基础复习测试卷含详解

新教材高一数学期末复习测试卷考试时间:120分钟满分:150分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()ln(2)2f x x x m =++-的一个零点附近的函数值的参考数据如下表:x 00.50.531250.56250.6250.751()f x 1.307-0.084-0.009-0.0660.2150.5121.099由二分法,方程ln(2)20x x m ++-=的近似解(精确度为0.05)可能是()A .0.625B .0.009-C .0.5625D .0.0662.函数12x y -=的图像可看作是把函数2x y =经过以下哪种变换得到()A .把函数2x y =向右平移一个单位B .先把函数2x y =的图像关于x 轴对称,然后把所得函数图像向左平移一个单位C .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像向左平移一个单位D .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像上各点的纵坐标变为原来的2倍,横坐标不变3.若偶函数()f x 在(],1∞--上是增函数,则()A .()()3122f f f ⎛⎫-<-< ⎪⎝⎭B .()()3212f f f ⎛⎫<-<- ⎪⎝⎭C .()()3212f f f ⎛⎫<-<- ⎪⎝⎭D .()()3122f f f ⎛⎫-<-< ⎪⎝⎭4.已知函数()2211,2,21x ax x f x a x x ⎧---≤⎪=⎨>⎪-⎩满足对任意12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围是()A .[]3,2--B .[)3,0-C .(],2-∞-D .(],0-∞5.以下给出了四组函数:(1)y =2y =(2)y x =与=m (3)211x y x -=-与1y x =+(4)=u 与=m 其中有()组函数是同一个函数A .4B .3C .2D .16.已知22x -<<,13y <<,则2x y -的取值范围是()A .()8,0-B .()8,2-C .()4,2-D .()10,2--7.若关于x 的不等式20x bx c ++<(a ,b ,c 为常数)的解集为{}16x x -<<,则不等式20cx bx a +->(a ,b ,c 为常数)的解集为()A .1123x x ⎧⎫-<<-⎨⎬⎩⎭B .1{|3x x -<或1}2x <-C .{}32x x -<<-D .{|2x x -<或3}x <-8.使得不等式210x ax -+>对R x ∀∈恒成立的一个充分不必要条件是()A .02a <<B .02a <≤C .2a <D .2a >-二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的为前4个编号中的是()322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345A .328B .457C .253D .00710.已知函数()21,23,21x x f x x x ⎧-<⎪=⎨>⎪-⎩若方程()0f x a -=有三个不同的实数根,则实数a 的取值可能是()A .0B .12C .13D .111.在一个质地均匀的正四面体木块的四个面上分别标有数字1,2,3,4连续抛掷这个正四面体木块两次,并记录每次正四面体木块朝下的面上的数字,记事件A 为“两次记录的数字之和为偶数”,事件B 为“第一次记录的数字为偶数”;事件C 为“第二次记录的数字为偶数”,则下列结论正确的是()A .事件B 与事件C 是互斥事件B .事件A 与事件B 是相互独立事件C .事件B 与事件C 是相互独立事件D .1()4P ABC =12.已知函数)()ln2f x x =+,则()A .()f x 的定义域为()0,∞+B .()f x 在()0,∞+上是减函数C .当0x >时,()(]0,2f x ∈D .1(lg 3)lg 43f f ⎛⎫+= ⎪⎝⎭三、填空题(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)13.函数()4=-f x x 的定义域为________________.14.若任意[]1,2x ∈,不等式240x mx -+≥恒成立,则实数m 的范围为_________.15.已知x 、y 为正实数,且满足4312x y +=,则xy 的最大值为_____.16.如图,一个电路中有三个元件A ,B ,C 及灯泡D ,每个元件能正常工作的概率都是0.5,且能否正常工作不相互影响,电路的不同连接方式对灯泡D 发光的概率会产生影响,在图①所示的电路中灯泡D 发光的概率为__________;在图②所示的电路中灯泡D 发光的概率为__________.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}{}2128,340x A xB x x x =≤<=+->∣∣.(1)求集合A 与集合B ;(2)求A B ⋃及()R A B ⋃ð(3)若集合{1}C xa x a =<<+∣,且A C C ⋂=,求实数a 的取值范围.18.计算下列各式的值(1)(130.02716-;(2)21log 325log 5log 4ln(ln e)2+⋅-+;(3)已知13a a -+=,求3322a a -+的值.19.已知函数()()3312log ,log x x f x g x =-=.(1)求函数()()263y f x g x ⎡⎤=-+⎣⎦的零点;(2)讨论函数()()()2h x g x f x k ⎡⎤=---⎣⎦在[]1,27上的零点个数.20.已知甲的投篮命中率为0.6,乙的投篮命中率为0.7,丙的投篮命中率为0.5,求:(1)甲,乙,丙各投篮一次,三人都命中的概率;(2)甲,乙,丙各投篮一次,恰有两人命中的概率;(3)甲,乙,丙各投篮一次,至少有一人命中的概率.21.文明城市是反映城市整体文明水平的综合性荣誉称号,作为普通市民,既是文明城市的最大受益者,更是文明城市的主要创造者某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)40,50[)50,60,…,[]90,100,得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在[)50,60的平均成绩是54,方差是7,落在[)60,70的平均成绩为66,方差是4,求两组成绩的总平均数z 和总方差2s .22.设函数()()1(0x xf x k a a a -=-+>且1)a ≠是定义域为R 的偶函数,()512f =(1)求a 的值并用定义法证明()f x 在()0,∞+上的单调性;(2)若()()240f m f m +-->,求实数m 的取值范围;(3)若()()()2221x xg x a a m f x -=+-+在[)1,+∞上的最小值为3-,求m 的值.参考答案:1.C【分析】按照二分法的方法流程进行计算,根据()()0f a f b ⋅<的符号确定根所在的区间,当区间长度小于或等于0.05时,只需从该区间上任取一个数即可.【详解】由题意得()ln(2)2f x x x m =++-在区间(0,)+∞上单调递增,设方程ln(2)20x x m ++-=的解的近似值为0x ,由表格得(0.53125)(0.5625)0f f ⋅<,所以0(0.53125,0.5625)x ∈,因为|0.531250.5625|0.031250.05-=<,所以方程的近似解可取为0.5625.故选:C.2.D【分析】利用函数图像的平移变换法则求解即可.【详解】选项A :函数2x y =向右平移一个单位得到12x y -=;选项B :先把函数2x y =的图像关于x 轴对称得到2x y =-,然后向左平移一个单位得到12x y +=-;选项C :先把函数2x y =的图像关于y 轴对称得到2xy -=,然后向左平移一个单位得到(1)122x x y -+--==;选项D :先把函数2x y =的图像关于y 轴对称得到2xy -=,然后把各点的纵坐标变为原来的2倍,横坐标不变得到1222x x y --=⨯=;故选:D 3.B【分析】根据()f x 在(],1∞--上是增函数,且3212-<-<-,可得()2f -,32f ⎛⎫- ⎪⎝⎭,()1f -的大小关系,再根据偶函数的性质可得()2f ,32f ⎛⎫- ⎪⎝⎭,()1f -的大小关系.【详解】因为()f x 在(],1∞--上是增函数,且3212-<-<-,所以()()3212f f f ⎛⎫-<-<- ⎪⎝⎭,又()f x 为偶函数,所以()()22f f -=,则()()3212f f f ⎛⎫<-<- ⎪⎝⎭,故选:B .4.A【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】由于函数()2211,2,21x ax x f x a x x ⎧---≤⎪=⎨>⎪-⎩满足对任意12x x ≠,都有()()12120f x f x x x ->-成立,所以()f x 在R 上单调递增,所以22220241121a a a a -⎧-≥⎪-⎪<⎨⎪⎪---≤-⎩,解得32a --≤≤,所以a 的取值范围是[]3,2--.故选:A 5.D【分析】根据函数的定义域及对应关系逐项分析即得.【详解】对于(1),函数y =R,函数2y =的定义域为[)0,∞+,故不是同一函数;对于(2),y x =定义域为R,m n ==的定义域为R ,故y x =与=m 对应关系都相同,故为同一函数;对于(3),211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,故不是同一函数;对于(4),=u 的定义域为[)1,+∞,=m (][),11,-∞-⋃+∞,故不是同一函数.所以有1组函数是同一个函数.故选:D.6.A【分析】由条件,结合不等式的性质求出3x y -的取值范围即可.【详解】因为13y <<,所以622y -<-<-又22x -<<,所以820x y -<-<,所以2x y -的取值范围是()8,0-,故选:A.7.A【分析】根据不等式的解集可得-1,6为对应方程的根,将b 和c 均用a 表示,代入所求不等式解出即可.【详解】一元二次不等式20ax bx c ++<的解集为{}16x x -<<,所以0a >,且-1,6是一元二次方程20ax bx c ++=的两个实数根,所以165b a -=-+=,166ca=-⨯=-,所以5b a =-,6c a =-,且0a >;所以不等式20cx bx a +->化为2650ax ax a --->,即26510x x +<+,解得11.23x -<<-因此不等式的解集为11{|}.23x x -<<-故选:A.8.A【分析】先由不等式210x ax -+>对R x ∀∈恒成立得()2,2a ∈-,再由充分不必要条件的概念即可求解【详解】由不等式210x ax -+>对R x ∀∈恒成立,得Δ0<,即()240a --<,解得22a -<<,从选项可知02a <<是22a -<<的充分不必要条件,故选:A.9.BCD【分析】根据给定条件,利用随机数表法按要求每3位一读,求出前4个编号即可判断作答.【详解】依题意,从表中第5行第6列开始向右每3位一读取数据,记录下不超过700的号码,重复号码记第一次的,所以前4个编号是:253,313,457,007,选项A 不满足,B ,C ,D 满足.故选:BCD 10.BC【分析】作函数()f x 的图象,数形结合即可解决.【详解】由题知,函数()21,23,21x x f x x x ⎧-<⎪=⎨>⎪-⎩的图象如下,方程()0f x a -=可以看成()y f x =与y a =的交点,所以由图知方程()0f x a -=有三个不同的实数根时,01a <<,故选:BC 11.BCD【分析】根据对立事件,独立事件的概念及古典概型概率公式逐项分析即得.【详解】解:对于A ,事件B 与事件C 是相互独立事件,但不是对立事件,故A 错误;对于B ,事件A 与事件B ,1()2P A =,1()2P B =,1()4P AB =,事件A 与事件B 是相互独立事件,故B 正确;对于C ,事件B 与事件C ,1()2P B =,1()2P C =,1()4P BC =,事件B 与事件C 是相互独立事件,故C 正确;对于D ,事件ABC 表示第一次记录的数字为偶数,第二次记录的数字为偶数,故221()444P ABC ⨯==⨯,故D 正确.故选:BCD.12.BD【分析】首先求出函数的定义域,即可判断A ,再根据复合函数的单调性判断BC ,最后由()()4f x f x -+=,即可判断D.【详解】因为)()ln2f x x =+0x >x >,所以x ∈R ,故函数的定义域为R ,故A错误;)()ln 2ln 2ln 2xx f x x ⎛⎫⎛⎫=+=+=-+,因为当,()0x ∈+∞,函数y x =单调递增,又ln y x =-在定义域上单调递减,所以)()ln2f x x =+在(0,)+∞上单调递减,故B 正确;又当,()0x ∈+∞时,1y x =>,所以)ln 0y x =-<,所以()(),2f x ∈-∞,故C 错误;因为())ln2f x x-=-+,())ln2f x x =-+,所以()()4f x f x -+=所以()()1(lg 3)lg lg 3lg 343f f f f ⎛⎫+=+-= ⎪⎝⎭,故D 正确.故选:BD13.(][)(),23,44,-∞-⋃⋃+∞【分析】根据函数定义域的求法求得正确答案.【详解】依题意,26040x x x ⎧--≥⎨-≠⎩,解得2x ≤-或3x ≥,且4x ≠,所以()f x 的定义域为(][)(),23,44,-∞-⋃⋃+∞.故答案为:(][)(),23,44,-∞-⋃⋃+∞14.(],4∞-【分析】任意[]1,2x ∈,不等式240x mx -+≥恒成立等价于4m x x≤+在[]1,2上恒成立,参变分离求最值即可.【详解】任意[]1,2x ∈,不等式240x mx -+≥恒成立等价于4m x x≤+在[]1,2上恒成立,又44x x +≥=,当且仅当2x =时,取等号,∴4m ≤,即实数m 的范围为(],4∞-.故答案为:(],4∞-15.3【分析】用基本不等式求得最值,然后化简既可得最大值.【详解】由已知得1243x y =+≥,即12≥解得3xy ≤(当且仅当43x y =时取""=)故答案为:316.1838【分析】根据相互独立事件的概率乘法公式,以及对立事件的概率计算公式,结合题意,即可求解.【详解】由题意,要使得灯泡D 发光,则满足A ,B ,C 三个元件同时正常工作,根据相互独立事件的概率乘法公式,图①中灯泡D 发光的概率为11112228⨯⨯=;在在图②所示的电路中灯泡D 发光,则满足元件A 正常工作,元件B ,C 中至少要有一个正常工作,所以图②的电路中灯泡D 发光的概率为1113[1(1)(1)]2228⨯---=.故答案为:18;38.17.(1)[)0,3A =,(),4(1,)B =-∞-+∞ (2)()[),40,A B =-∞-+∞ ,()[)R 4,0A B ⋃=-ð(3)[]0,2【分析】(1)解指数不等式和一元二次不等式即可;(2)根据集合的交并补运算即可求解;(3)根据集合的包含关系求解.【详解】(1)由128x ≤<解得03x ≤<,所以[)0,3A =,由2340+->x x 解得<4x -或1x >,所以(),4(1,)B =-∞-+∞ ,(2)由(1)得()[),40,A B =-∞-+∞ ,()[)R 4,0A B ⋃=-ð.(3)因为A C C ⋂=,所以C A ⊆,且{1}C xa x a =<<+≠∅∣,所以013a a ≥⎧⎨+≤⎩,解得02x ≤≤,所以a 的取值范围是[]0,2.18.(1)10π3+(2)8(3)【分析】(1)根据指数幂的运算法则直接计算即可.(2)根据对数和指数幂的计算法则直接计算即可.(3)计算1122a a -+=()1133122221a aa a a a ---⎛⎫= ⎪⎝+++-⎭,计算得到答案.【详解】(1)(()113122113321000104100.0273131272323πππ-⎛⎫⎪⎛⎫⎝⎭+=+-++=+-++=+ ⎪⎝⎭(2)221log 3log 32525l 8og 5log 4ln(ln e o 22ln12)2l g 5log 2206+=-+⨯=-+⋅+-=⋅(3)13a a -+=,故0a >,21112225a a a a --⎛⎫+=++= ⎪⎝⎭,故1122a a -+=()()133122221131a aa a a a ---⎛⎫==-= +-⎪⎝⎭++19.(1)9(2)答案见解析.【分析】(1)由题知()2332log 5log 20x x -+=,进而解方程即可得答案;(2)根据题意,将问题转化为函数()221F t t t =-+-在[]0,3上的图像与直线y k =的交点个数,进而数形结合求解即可.【详解】(1)解:由()()2630f x g x ⎡⎤-+=⎣⎦,得()233 12log 6log 30x x --+=,化简为()2332log 5log 20x x -+=,解得3 log 2x =或31log 2x =,所以,9x =或x =所以,()()2 63y f x g x ⎡⎤=-+⎣⎦的零点为9.(2)解:由题意得()()233 log 2log 1h x x x k =-+--,令()0h x =,得()233 log 2log 1x x k -+-=,令3log t x =,[]1,27x ∈,则[]2 0,3,21t t t k ∈-+-=,所以()h x 在[]1,27上的零点个数等于函数()221F t t t =-+-在[]0,3上的图像与直线y k =的交点个数.()2 21F t t t =-+-在[]0,3上的图像如图所示.所以,当0k >或4k <-时,()F t 在[]0,3上的图像与直线y k =无交点,所以,()h x 在[]1,27上的零点个数为0;当0k =或41k -≤<-时()F t 在[]0,3上的图像与直线y k =有1个交点,所以,()h x 在[]1,27上的零点个数为1;当10k -≤<时,()F t 在[]0,3上的图像与直线y k =有2个交点,所以,()h x 在[]1,27上的零点个数为2.综上,当0k >或4k <-时,()h x 在[]1,27上的零点个数为0;当0k =或41k -≤<-时,()h x 在[]1,27上的零点个数为1;当10k -≤<时,()h x 在[]1,27上的零点个数为2.20.(1)0.21;(2)0.44;(3)0.94.【分析】(1)根据概率乘法得三人都命中概率为0.60.70.50.21⨯⨯=;(2)分甲命中,乙,丙未命中,乙命中,甲,丙未命中,丙命中,乙,丙未命中,三种情况讨论,结合概率乘法和加法公式即可得到答案;(3)采取正难则反的原则,求出其对立事件即三人全未命中的概率,再根据对立事件的概率公式求解即可.【详解】(1)设事件A :甲投篮命中;事件B :乙投篮命中;事件C :丙投篮命中.甲,乙,丙各投篮一次,三人都命中的概率()()()()0.60.70.50.21P ABC P A P B P C ==⨯⨯=.所以甲,乙,丙各投篮一次,三人都命中的概率为0.21.(2)设事件D :恰有两人命中.所以()()P D P ABC ABC ABC =++()()()()()()()()()P A P B P C P A P B P C P A P B P C =++0.40.70.50.60.30.50.60.70.50.44=⨯⨯+⨯⨯+⨯⨯=所以甲,乙,丙各投篮一次,恰有两人命中的概率为0.44.(3)设事件E :至少有一人命中.所以()1()10.40.30.510.060.94P E P ABC =-=-⨯⨯=-=所以甲,乙,丙各投篮一次,至少有一人命中的概率为0.94.21.(1)0.030a =(2)84(3)62z =,237s =【分析】(1)根据每组小矩形的面积之和为1即可求解;(2)由频率分布直方图求第百分位数的计算公式即可求解;(3)根据平均数和方差的计算公式即可求解.(1)解:∵每组小矩形的面积之和为1,∴()0.0050.0100.0200.0250.010101a +++++´=,∴0.030a =.(2)解:成绩落在[)40,80内的频率为()0.0050.0100.0200.030100.65+++⨯=,落在[)40,90内的频率为()0.0050.0100.0200.0300.025100.9++++⨯=,设第75百分位数为m ,由()0.65800.0250.75m +-⨯=,得84m =,故第75百分位数为84;(3)解:由图可知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,故10546620621020z ⨯+⨯==+.设成绩在[)50,60中10人的分数分别为1x ,2x ,3x ,…,10x ;成绩在[)60,70中20人的分数分别为1y ,2y ,3y ,…,20y ,则由题意可得2222121054710x x x ++⋅⋅⋅+-=,2222122066420y y y ++⋅⋅⋅+-=,所以222121029230x x x ++⋅⋅⋅+=,222122087200y y y ++⋅⋅⋅+=,所以()()222222222121012201129230872006237102030s x x x y y y z =++⋅⋅⋅++++⋅⋅⋅+-=+-=+,所以两组市民成绩的总平均数是62,总方差是37.22.(1)2a =或者12a =,证明见解析;(2)()1,+∞;(3)1920.【分析】(1)根据偶函数的定义,结合函数单调性的定义、指数函数的单调性进行求解即可;(2)根据偶函数的性质,结合函数的单调性进行求解即可;(3)利用换元法,结合对勾函数和二次函数的性质分类讨论进行求解即可.【详解】(1) 由函数()()1x x f x k a a -=-+是定义域为R 的偶函数,∴满足()()=f x f x -,即()()11x x x xk a a a k a ---+=+-,11k ∴-=,即2k =,()x x f x a a -∴=+,又()512f =,即152a a -+=,化简为:22520a a -+=,解得:2a =或者12a =,()22x x f x -∴=+,设()12,0,x x ∈+∞且12x x <,则()()12f x f x -()11222222x x x x --=+-+1212112222x x x x =-+-21121222222x x x x x x +-=-+()121212212x x x x +⎛⎫=-- ⎪⎝⎭,由12x x <,得12220x x -<120x x << ,12112x x +∴<,即121102x x +->,()()()212112122102x x x x f x f x +⎛⎫∴-=--< ⎪⎝⎭,()f x \在()0,x ∈+∞单调递增;(2)()f x 是R 上的偶函数,()f x \在()0,x ∈+∞单调递增,在(),0x ∈-∞单调递减.()()240f m f m +--> ,即()()24f m f m +>-,24m m ∴+>-,两边平方得:2244168m m m m ++>+-解得:1m >,实数m 的取值范围为:()1,+∞;(3)由(1)知,()()()()()222221222122x x x x x xg x a a m f x m ---=+-+=+-++将()g x 变形得:()()()()()()2222221222221222x x x x x x x x g x m m ----=+-++=+-++-令22x x t -=+,因为[)1,x ∞∈+,由对勾函数的性质得52t ≥.则原函数化为:()25212,2y t m t t =-+-≥,由题知,()2212y t m t =-+-在5,2t ∞⎡⎫∈+⎪⎢⎣⎭上的最小值为3-,函数()2212y t m t =-+-的对称轴为:()21122m t m -+=-=+,①当1522m +>,即m>2时,()211212322min y m m m ⎛⎫⎛⎫=+-++-=- ⎪ ⎪⎝⎭⎝⎭,解得:32m =-或12m =,均不符合题意,舍去,②当1522m+=,即2m=时,25533523224miny⎛⎫=-⨯-=-≠-⎪⎝⎭,不符合题意,③当1522m+<,即2m<时,()2min55212322y m⎛⎫=-+⨯-=-⎪⎝⎭,解得:1920m=符合题意,所以m的值为19 20 .【点睛】关键点睛:利用换元法,结合对勾函数和二次函数的性质分类讨论是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学复习题(附答案)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),满分150分,考试时间100分钟.姓名_______________班别___________座号_________得分_______(收集设计:卓益声)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1、设集合M = {x | x 2 < 4 }, N = {x|0322<--x x },则集合M ∩ N 等于( )。
A .{2|<x x } B .{x | x > 3} C . {21|<<-x x } D .{32|<<x x }2、下列四个图像中,是函数图像的是( )。
A .(1)B .(1)、(3)、(4)C .(1)、(2)、(3)D .(3)、(4)3、下列函数中,在]0,(-∞上为减函数的是 ( )。
A .21x y -=B .x y 2=C .x y 2-=D .x x y 22+= 4、下面是属于正六棱锥的侧视图的是 ( )。
5、已知两个球的体积之比为1:8 ,则大球与小球的表面积之比为( )。
A .1:2B .2 : 1C .1:4D .4:16、已知a = 7.08.0 , b = 9.08.0 , c = 8.02.1 , 则a 、b 、c 的大小关系是( )。
A .c>a>bB .c>b>aC .a>b>cD .b>a>c 7、已知a = 2log 3 ,那么6log 28log 33-用a 表示是( )。
A .2-aB .25-aC .2)1(3a a +-D .132--a aOyxxyyyOOO(1)(2)(3)(4)8、下列说法正确的是( )。
A .一条直线与一个平面平行,它就和这个平面内的所有直线平行;B .如果一个平面内的无数条直线平行于另一个平面,那么这两个平面平行;C .过空间一点有且只有一条直线和已知平面垂直;D .若平面α上有一条直线垂直于平面β的两条平行直线,则βα⊥ 。
9、直线l 过原点(0,0),且不过第三象限,那么l 的倾斜角α的范围是( )。
A .[0 o ,90 o ]B .[90 o ,180 o ]C .[90 o ,180 o )或α= 0 oD .[90 o ,135 o ]10、一条直线经过点P(1,2),且与两点A(2,3),B(4,-5)的距离相等,则直线l的方程是( )。
A .064=-+y xB . 0723=-+y x 或 064=-+y xC .064=-+y xD . 0732=-+y x 或 064=-+y x 11、圆0222=-+x y x 的圆心到直线x y =的距离是( )。
A .1 B .22C . 3D .212、点(1,-1,2)是空间直角坐标系中的一个点,则此点关于z 轴的对称点的坐标为( )。
A .(-1,-1,-2)B .(1,1,2)C .(1,-1,-2)D .(-1,1,2)第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分;把答案填在答题卷中相应的横线上) 13、函数)34(log 22-+-=x x y 的单调递增区间是_______________________;14、,53,23 ==b a 则=-b a 23_________________________________; 15、经过点(2,3),并且在两轴上的截距相等的直线方程是_____________________________________________________;16、有以下说法:① 若直线1l 与2l 的斜率相等,则1l ∥2l ;②若直线1l 与2l 的斜率均不存在,则1l ∥2l ; ③ 两条直线的斜率互为负倒数,则两直线互相垂直; ④ 若直线1l ⊥2l ,则两直线的斜率互为负倒数;⑤ 斜率均不存在的两条直线不可能垂直,也不可能平行。
其中说法错错误误....的有____________________________________。
姓名_______________班别___________座号_________得分_______一、 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在下面的表格内)二、填空题(本大题共4小题,每小题4分,共16分;把答案填在答题卷中相应的横线上)13、________________________________________ 14、_____________________15、_______________________________________ 16、____________________三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.): 17、(本小题满分12分)求(I )中函数的定义域,计算(II )的值。
(I )2)2x 3(log y 21+-= (II )3log 6log )24(log 22572-+⨯18.(本小题满分12分)证明函数x x x f 2)(3-=是奇函数,并且在),1[+∞上单调递增;19、(本小题满分12分) 直线062=++y m x 与直线023)2(=++-m my x m 没有公共点,求实数m 的值。
20、(本小题满分12分)如图,棱锥V —ABC 中,VO ⊥平面ABC, O ∈CD , VA=VB,AD=BD;证明:CD ⊥AB 且AC=BC 。
21、(本小题满分12分)如图,已知三角形的三个顶点A(-5,0),B(3,-3),C (0,2);求三角形ABC 的面积。
22、(本小题满分14分)22.(本小题满分14分)设函数)x (f y =是定义在+R 上的减函数,并且满足下面三个条件:(1)对任意正数y x 、,都有)y (f )x (f )x y (f +=;(2)当1x >时,0)x (f <;(3)1)3(f -=, (I )求)1(f 、)91(f 的值;(II )如果不等式2)x 2(f )x (f <-+成立,求x 的取值范围.(III )如果存在正数k ,使不等式2)x 2(f )kx (f <-+有解,求正数k 的取值范围.江口中学2004—2005年高一数学复习题(参考答案)二、13、( 1 , 2 ] 14、54 15、05023=-+=-y x y x 或 16、 ①、 ④、 ⑤ 三、 17、(本小题满分12分)求(I )中函数的定义域,计算(II )的值。
(II )3log 6log )24(log 22572-+⨯x x 23-是奇函数,并且在),1[+∞上单调递增; 证明:)上是增函数。
,在所以,;即所以,从而,,所以因为有且对是奇函数。
所以,,有,对的定义域为∞+-=<>->-++>>>>-<≤-++-=---=-<≤+∞∈∀-=-=--=+-=---=-∈∀-=1[2)()()(,0)()(,021,1,1,01),2)(()2(2)()(,1),1[,2)(),()2(2)(2)()(2)(3211221222121222112212122211213123212212133333x x x f x f x f x f x f x x x x x x x x x x x x x x x x x x x x x x x f x f x x x x x x x f x f x x x x x x x f R x R x x x f 19、(本小题满分12分) 直线062=++y m x 与直线023)2(=++-m my x m 没有公共点,求实数m 的值。
解:①当m=0时,直线方程分别化成,06=-=x x 和此时两直线无公共点。
②当时,0≠m 直线方程化成斜截式方程分别为2261mx m y --=和m mx m m y 3232---=,两直线没有公共点,则m m m 3212--=-并且m mm3262-≠-,解得,1-=m综合①②得 m=0 或者 1-=m 。
解:原式=2015142log 2log 2log 3log 3log 2log 2log 4log 2521422225272=++=++=-+++.1)x 2(x max =-,故91k >即为所求范围。
20、(本小题满分12分)如图,棱锥V —ABC 中,VO ⊥平面ABC, O ∈CD , VA=VB,AD=BD;证明:CD ⊥AB 且AC=BC 。
证:BC AC BDC ADC ADC BDC CD CD BD AD ABCD CD AB VCD CD VCD AB AB VO ABC AB ABC VO AB VD o =⇒∆≅∆⇒=∠=∠==⊥⊥⇒⊂⊥⇒⊥⇒⊂⊥⊥⇒==90,,,,BD AD VB,VA 又即平面,平面上平面平面21、(本小题满分12分)如图,已知三角形的三个顶点A(-5,0),B(3,-3),C (0,2);求三角形ABC 的面积。
解:。
,所以的距离到直线点,即所在的直线方程为23173317321||21733183|152803|)2,0(01583)5(3)5(030AB 73)03()]5(3[||2222=⨯⨯=⨯⨯==++⨯+⨯==++----=---=--+--=∆d AB S d AB C y x x y AB ABC 22、(本小题满分14分)22.(本小题满分14分)设函数)x (f y =是定义在+R 上的函数,并且满足下面三个条件:(1)对任意正数y x 、,都有)y (f )x (f )x y (f +=;(2)当1x >时,0)x (f <;(3)1)3(f -=, (I )求)1(f 、)91(f 的值; (II )如果不等式2)x 2(f )x (f <-+成立,求x 的取值范围.(III )如果存在正数k ,使不等式2)x 2(f )kx (f <-+有解,求正数k 的取值范围. 解:(I )令1y x ==易得0)1(f =.而211)3(f )3(f )9(f -=--=+= 且0)1(f )91(f )9(f ==+,得2)91(f =.(II )由条件(1)及(I )的结果得:)91(f )]x 2(x [f <-其中2x 0<<,由函数)x (f 在+R 上的递减性,可得:⎪⎩⎪⎨⎧<<>-2x 091)x 2(x ,由此解得x 的范围是)3221,3221(+-. (III )同上理,不等式2)x 2(f )kx (f <-+可化为91)x 2(kx >-且2x 0<<, 得)x 2(x 91k ->,此不等式有解,等价于min)x 2(x 91k ⎥⎦⎤⎢⎣⎡->。