高中数学模拟试题50篇
2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
高中数学模拟试题(附答案及解析)

高中数学模拟试题(附答案及解析)一、选择题(共10小题)1.(2014•衡阳三模)复数z=1+i,为z的共轭复数,则=()A.﹣2i B.﹣i C.i D.2i2.(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]3.(2014•广西模拟)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.4.(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P 做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f (x)在[0,π]的图象大致为()A.B.C.D.5.(2014•包头一模)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称6.(2014•太原一模)复数的共轭复数是()A.B.C.﹣i D.i7.(2014•广西)已知双曲线C的离心率为2,焦点为F 1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.8.(2014•上海二模)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.39.(2014•重庆)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,]B.(﹣,﹣2]∪(0,]C.(﹣,﹣2]∪(0,]D.(﹣,﹣2]∪(0,]10.(2013•铁岭模拟)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.5二、填空题(共5小题)(除非特别说明,请填准确值)11.(2014•乌鲁木齐二模)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于_________.12.(2014•湖南)如图所示,正方形ABCD与正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则=_________.13.(2014•云南一模)已知圆C过双曲线﹣=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是_________.14.(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为_________.15.(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为_________.三、解答题(共6小题)(选答题,不自动判卷)16.(2014•江西)如图,四棱锥P﹣ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P﹣ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.17.(2014•江西模拟)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.18.(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(2014•天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.20.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.21.(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.参考答案与试题解析一、选择题(共10小题)1.(2014•衡阳三模)复数z=1+i,为z的共轭复数,则=()A.﹣2i B.﹣i C.i D.2i考点:复数代数形式的混合运算.专题:计算题.分析:求出复数z的共轭复数,代入表达式,求解即可.解答:解:=1﹣i,所以=(1+i)(1﹣i)﹣1﹣i﹣1=﹣i故选B点评:本题是基础题,考查复数代数形式的混合运算,考查计算能力,常考题型.2.(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]考点:分段函数的应用.专题:函数的性质及应用.分析:当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.解答:解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.点评:本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.3.(2014•广西模拟)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:取AC的中点O,连接DO,BO,求出三角形DOB的面积,求出AC 的长,即可求三棱锥D﹣ABC的体积.解答:解:O是AC中点,连接DO,BO△ADC,△ABC都是等腰直角三角形DO=B0==,BD=a△BDO也是等腰直角三角形DO⊥AC,DO⊥BO DO⊥平面ABC DO就是三棱锥D﹣ABC的高S△ABC=a2三棱锥D﹣ABC的体积:故选D.点评:本题考查棱锥的体积,是基础题.4.(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.考点:抽象函数及其应用.专题:三角函数的图像与性质.分析:在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.解答:解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.点评:本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.5.(2014•包头一模)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称考点:正弦函数的对称性;正弦函数的单调性.专题:计算题;压轴题.分析:利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.解答:解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.它的对称轴方程可以是:x=;所以A,C错误;函数y=f(x)在(0,)单调递减,所以B错误;D正确.故选D点评:本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.6.(2014•太原一模)复数的共轭复数是()A.B.C.﹣i D.i考点:复数代数形式的混合运算.专题:计算题.分析:复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,然后求出共轭复数,即可.解答:解:复数===i,它的共轭复数为:﹣i.故选C点评:本题是基础题,考查复数代数形式的混合运算,共轭复数的概念,常考题型.7.(2014•广西)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.解答:解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===,故选:A.点评:本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.8.(2014•上海二模)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3考点:棱柱、棱锥、棱台的体积.专题:计算题;压轴题.分析:设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值.解答:解:设底面边长为a,则高h==,所以体积V=a2h=,设y=12a4﹣a6,则y′=48a3﹣3a5,当y取最值时,y′=48a3﹣3a5=0,解得a=0或a=4时,体积最大,此时h==2,故选C.点评:本试题主要考查椎体的体积,考查高次函数的最值问题的求法.是中档题.9.(2014•重庆)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,]B.(﹣,﹣2]∪(0,]C.(﹣,﹣2]∪(0,]D.(﹣,﹣2]∪(0,]考点:分段函数的应用.专题:函数的性质及应用.分析:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),作出两个函数的图象,利用数形结合即可得到结论.解答:解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)和y=g(x)=m(x+1)的图象如图:由图象可知f(1)=1,g(x)表示过定点A(﹣1,0)的直线,当g(x)过(1,1)时,m═此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤,当g(x)过(0,﹣2)时,g(0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当g(x)与f(x)相切时,两个函数只有一个交点,此时,即m(x+1)2+3(x+1)﹣1=0,当m=0时,x=,只有1解,当m≠0,由△=9+4m=0得m=﹣,此时直线和f(x)相切,∴要使函数有两个零点,则﹣<m≤﹣2或0<m≤,故选:A点评:本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法.10.(2013•铁岭模拟)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.5考点:等差数列的前n项和.专题:计算题.分析:先由等差数列前n项和公式求得S k+2,S k,将S k+2﹣S k=24转化为关于k的方程求解.解答:解:根据题意:S k+2=(k+2)2,S k=k2∴S k+2﹣S k=24转化为:(k+2)2﹣k2=24∴k=5故选D点评:本题主要考查等差数列的前n项和公式及其应用,同时还考查了方程思想,属中档题.二、填空题(共5小题)(除非特别说明,请填准确值)11.(2014•乌鲁木齐二模)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.考点:球内接多面体.专题:计算题;压轴题.分析:通过已知体积求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.解答:解:在△ABC中AB=AC=2,∠BAC=120°,可得,由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π点评:本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.12.(2014•湖南)如图所示,正方形ABCD与正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则=.考点:直线与圆锥曲线的关系.专题:计算题.分析:可先由图中的点与抛物线的位置关系,写出C,F两点的坐标,再将坐标代入抛物线方程中,消去参数p后,得到a,b的关系式,再寻求的值.解答:解:由题意可得,,将C,F两点的坐标分别代入抛物线方程y2=2px中,得∵a>0,b>0,p>0,两式相比消去p得,化简整理得a2+2ab﹣b2=0,此式可看作是关于a的一元二次方程,由求根公式得,取,从而,故答案为:.点评:本题关键是弄清两个正方形与抛物线的位置关系,这样才能顺利写出C,F的坐标,接下来是消参,得到了一个关于a,b的齐次式,应注意根的取舍与细心的计算.13.(2014•云南一模)已知圆C过双曲线﹣=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是.考点:双曲线的简单性质.专题:计算题.分析:由双曲线的几何性质易知圆C过双曲线同一支上的顶点和焦点,所以圆C的圆心的横坐标为4.故圆心坐标为(4,±).由此可求出它到双曲线中心的距离.解答:解:由双曲线的几何性质易知圆C过双曲线同一支上的顶点和焦点,所以圆C的圆心的横坐标为4.故圆心坐标为(4,±).∴它到中心(0,0)的距离为d==.故答案为:.点评:本题考查双曲线的性质和应用,解题时注意圆的性质的应用.14.(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2].考点:分段函数的应用;真题集萃.专题:分类讨论;函数的性质及应用.分析:可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.解答:解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2].点评:本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.15.(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为(﹣∞,2].考点:分段函数的应用.专题:函数的性质及应用.分析:分别由f(0)=a,x≥2,a≤x+综合得出a的取值范围.解答:解:当x=0时,f(0)=a,由题意得:a≤x+,又∵x+≥2=2,∴a≤2,故答案为:(﹣∞,2].点评:本题考察了分段函数的应用,基本不等式的性质,是一道基础题.三、解答题(共6小题)(选答题,不自动判卷)16.(2014•江西)如图,四棱锥P﹣ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P﹣ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.考点:二面角的平面角及求法.专题:空间角;空间向量及应用.分析:(1)要证AD⊥PD,可以证明AB⊥面PAD,再利用面面垂直以及线面垂直的性质,即可证明AB⊥PD.(2)过P做PO⊥AD得到PO⊥平面ABCD,作OM⊥BC,连接PM,由边长关系得到BC=,PM=,设AB=x,则V P﹣ABCD=,故当时,V P﹣ABCD取最大值,建立空间直角坐标系O﹣AMP,利用向量方法即可得到夹角的余弦值.解答:解:(1)∵在四棱锥P﹣ABCD中,ABCD为矩形,∴AB⊥AD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴AB⊥面PAD,∴AB⊥PD.(2)过P做PO⊥AD,∴PO⊥平面ABCD,作OM⊥BC,连接PM∴PM⊥BC,∵∠BPC=90°,PB=,PC=2,∴BC=,PM==,BM=,设AB=x,∴OM=x∴PO=,∴V P﹣ABCD=×x××=当,即x=,V P﹣ABCD=,建立空间直角坐标系O﹣AMP,如图所示,则P(0,0,),D(﹣,0,0),C(﹣,,0),M(0,,0),B(,,0)面PBC的法向量为=(0,1,1),面DPC的法向量为=(1,0,﹣2)∴cosθ===﹣.点评:本题考查线面位置关系、线线位置关系、线面角的度量,考查分析解决问题、空间想象、转化、计算的能力与方程思想.17.(2014•江西模拟)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.考点:数列递推式;等比关系的确定.专题:综合题.分析:(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.解答:解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n+1=4a n+2,①则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n+1=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),又b n=a n+1﹣2a n,所以b n=2b n,所以{b n}是﹣1以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)点评:本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.18.(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定;用空间向量求平面间的夹角.专题:空间向量及应用.分析:(1)用线面垂直的性质和反证法推出结论,(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值.解答:解:(1)由三棱锥A﹣BCD及其侧视图、俯视图可知,在三棱锥A﹣BCD中:平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2设O为BD的中点,连接OA,OC于是OA⊥BD,OC⊥BD 所以BD⊥平面OAC⇒BD⊥AC因为M,N分别为线段AD,AB的中点,所以MN∥BD,MN⊥NP,故BD⊥NP假设P不是线段BC的中点,则直线NP与直线AC是平面ABC内相交直线从而BD⊥平面ABC,这与∠DBC=60°矛盾,所以P为线段BC的中点(2)以O为坐标原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,则A(0,0,),M(,O,),N(,0,),P(,,0)于是,,设平面ANP和平面NPM的法向量分别为和由,则,设z1=1,则由,则,设z2=1,则cos===所以二面角A﹣NP﹣M的余弦值点评:本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题.19.(2014•天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(Ⅰ)对f(x)求导,讨论f′(x)的正负以及对应f(x)的单调性,得出函数y=f(x)有两个零点的等价条件,从而求出a的取值范围;(Ⅱ)由f(x)=0,得a=,设g(x)=,判定g(x)的单调性即得证;(Ⅲ)由于x1=a,x2=a,则x2﹣x1=lnx2﹣lnx1=ln,令=t,整理得到x1+x2=,令h(x)=,x∈(1,+∞),得到h(x)在(1,+∞)上是增函数,故得到x1+x2随着t的减小而增大.再由(Ⅱ)知,t随着a的减小而增大,即得证.解答:解:(Ⅰ)∵f(x)=x﹣ae x,∴f′(x)=1﹣ae x;下面分两种情况讨论:①a≤0时,f′(x)>0在R上恒成立,∴f(x)在R上是增函数,不合题意;②a>0时,由f′(x)=0,得x=﹣lna,当x变化时,f′(x)、f(x)的变化情况如下表:x l f′(x)f(x)∴f(x)的单调增区间是(﹣∞,﹣lna),减区间是(﹣lna,+∞);∴函数y=f(x)有两个零点等价于如下条件同时成立:(i)f(﹣lna)>0,(ii)存在s1∈(﹣∞,﹣lna),满足f(s1)<0,(iii)存在s2∈(﹣lna,+∞),满足f(s2)<0;由f(﹣lna)>0,即﹣lna﹣1>0,解得0<a<e﹣1;取s1=0,满足s1∈(﹣∞,﹣lna),且f(s1)=﹣a<0,取s2=+ln,满足s2∈(﹣lna,+∞),且f(s2)=(﹣)+(ln﹣)<0;∴a的取值范围是(0,e﹣1).(Ⅱ)证明:由f (x)=x﹣ae x=0,得a=,设g(x)=,由g′(x)=,得g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,并且,当x∈(﹣∞,0)时,g(x)≤0,当x∈(0,+∞)时,g(x)≥0,x1、x2满足a=g (x1),a=g(x2),a∈(0,e﹣1)及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞);对于任意的a1、a2∈(0,e﹣1),设a1>a2,g(X1)=g(X2)=a i,其中0<X1<1<X2;g(Y1)=g(Y2)=a2,其中0<Y1<1<Y2;∵g(x)在(0,1)上是增函数,∴由a1>a2,得g (X i)>g(Y i),可得X1>Y1;类似可得X2<Y2;又由X、Y>0,得<<;∴随着a的减小而增大;(Ⅲ)证明:∵x1=a,x2=a,∴lnx1=lna+x1,lnx2=lna+x2;∴x2﹣x1=lnx2﹣lnx1=ln,设=t,则t>1,∴,解得x1=,x2=,∴x1+x2=…①;令h(x)=,x∈(1,+∞),则h′(x)=;令u(x)=﹣2lnx+x﹣,得u′(x)=,当x∈(1,+∞)时,u′(x)>0,∴u(x)在(1,+∞)上是增函数,∴对任意的x∈(1,+∞),u(x)>u(1)=0,∴h′(x)>0,∴h(x)在(1,+∞)上是增函数;∴由①得x1+x2随着t的减小而增大.由(Ⅱ)知,t随着a的减小而增大,∴x1+x2随着a的减小而增大.点评:本题考查了导数的运算以及利用导数研究函数的单调性与极值问题,也考查了函数思想、化归思想、抽象概括能力和分析问题、解决问题的能力,是综合型题目.20.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.考点:利用导数研究函数的极值;函数恒成立问题;函数的零点.专题:导数的综合应用.分析:(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h(x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值范围.解答:解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x≥0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b >a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).点评:本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法来解答问题,是难题.21.(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.考点:三角函数中的恒等变换应用;导数的运算.专题:函数的性质及应用;三角函数的求值.分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k (x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k(k>1且k∈N*)时.等式也成立,由①②得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nf n﹣1()+f n()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nf n()+f n﹣1()|=都成立.点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧菁优网 ©2010-2014 菁优网 妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.。
2024高中数学高考高频考点经典题型模拟卷 (50)

一、单选题1. 过点作曲线的两条切线,切点分别为,,则( )
A.B.C.D.2
2. “”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
3. 在△中,角的对边分别是,则=( )
A.B.C.D.
4. 已知集合,,则( ).
A.B.
C.D.
5. 已知非零向量满足,,,则与的夹角为( )
A.B.
C.D
.
6. 已知集合,集合,则( )
A.B.C.D.
7. 函数的部分图象是( )
A.B.
C.D.
8. 已知函数是上的偶函数,且对任意的有,当时,,则( ).
A.11B.5C.D.
9. 已知等差数列,的前项和分别为,,若,则( )
A.B.C.D.
10. 已知在菱形中,,将菱形沿对角线折起,得到三棱锥,且使得棱,则三棱锥
的外接球的表面积为( )A.B.C.D.
11. 已知函数的定义域为,是的导函数,且满足,则不等式的解
集为( )
2024高中数学高考高频考点经典题型模拟卷2024高中数学高考高频考点经典题型模拟卷二、多选题A.B.C.D.
12. 已知,且,为自然对数的底数,则( )
A.B.C.D.
13. 设非零向量,满足,,,则在方向上的投影向量为( )
A.B.C.D.
14. 已知复数是纯虚数(其中为虚数单位,),则的虚部为( )
A.B.C.D.
15. 已知成等差数列,且,则的取值范围是( )
A.
B.
C.
D.
16. 已知向量,满足,,(θ为与的夹角),则的最小值为( )
A.B
.C.1D.2
17. 已知为坐标原点,双曲线的左焦点关于的一条渐近线的对称点恰好在上,若直线交的左半
支于点,则( )A.的渐近线方程为B.的面积为
C.D.是等腰三角形
18. 如图,在多面体中,四边形,,均是边长为1的正方形,点在棱上,则( )
A.该几何体的体积为B
.点在平面内的射影为的垂心
C.的最小值为D
.存在点,使得
19. 设是两个非零向量,若,则下列结论正确的是( )
A.B
.
C.在方向上的投影向量为
D
.
全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)试卷一:基础能力测试一、选择题(每题5分,共50分)1. 若函数 $ f(x) = \sqrt{3x 1} $ 在区间 $[0, 2]$ 上有定义,则 $ x $ 的取值范围是:A. $[0, 1]$B. $[0, 2]$C. $[1, 2]$D. $[1, 3]$2. 已知集合 $ A = \{x | x^2 3x + 2 = 0\} $,则集合 $ A $ 的元素个数是:A. 1B. 2C. 3D. 43. 若 $ a, b $ 是方程 $ x^2 4x + 3 = 0 $ 的两个根,则$ a + b $ 的值是:A. 1B. 2C. 3D. 44. 已知函数 $ f(x) = 2x^3 3x^2 + x $,则 $ f'(1) $ 的值是:A. 2B. 3C. 4D. 55. 若 $ \log_2 8 = x $,则 $ x $ 的值是:A. 2B. 3C. 4D. 56. 已知等差数列 $ \{a_n\} $ 的首项 $ a_1 = 2 $,公差 $ d = 3 $,则第10项 $ a_{10} $ 的值是:A. 29B. 30C. 31D. 327. 若 $ \sin 45^\circ = x $,则 $ x $ 的值是:A. $ \frac{\sqrt{2}}{2} $B. $ \frac{\sqrt{3}}{2} $C. $ \frac{1}{2} $D. $ \frac{1}{\sqrt{2}} $8. 已知函数 $ f(x) = \frac{1}{x} $,则 $ f^{1}(x) $ 的表达式是:A. $ x $B. $ \frac{1}{x} $C. $ x $D. $ \frac{1}{x} $9. 若 $ a^2 = b^2 $,则 $ a $ 和 $ b $ 的关系是:A. $ a = b $B. $ a = b $C. $ a = b $ 或 $ a = b $D. $ a $ 和 $ b $ 无关10. 已知等比数列 $ \{a_n\} $ 的首项 $ a_1 = 1 $,公比 $ q = 2 $,则第5项 $ a_5 $ 的值是:A. 8B. 16C. 32D. 64二、填空题(每题5分,共20分)1. 若 $ x^2 5x + 6 = 0 $,则 $ x $ 的值是 ________。
2025届高三数学新高考模拟练习卷及答案

2025届高三数学新高考模拟练习卷及答案一、选择题(每题5分,共40分)1. 若函数f(x) = x^3 - 6x^2 + 9x + 1在区间(-∞, a)上是减函数,在区间(a, +∞)上是增函数,则实数a的取值范围是()A. a ≤ 1B. 1 < a ≤ 3C. a ≥ 3D. a ≤ 1 或 a ≥ 32. 已知函数g(x) = |x - 2| + |x + 1|,则g(x)的最小值为()A. -3B. 0C. 3D. 43. 设函数h(x) = 2x - 3,若h(x)的图像与直线y = kx + b平行,则k和b的关系是()A. k = 2,b ≠ -3B. k = -2,b ≠ 3C. k = 2,b = -3D. k ≠ 2,b ≠ -34. 设函数p(x) = (x - 1)^2 + 2,若p(x)的图像与直线y = 2x + 3相切,则实数x的值为()A. 1B. 2C. 3D. 45. 若等差数列{an}的前n项和为Sn,且S4 = 16,S8 = 64,则数列的公差d等于()A. 2B. 3C. 4D. 56. 若三角形ABC的面积S = 12,且AB = 4,BC = 6,AC = 8,则角A的正弦值等于()A. 1/2B. 1/3C. 1/4D. 1/67. 已知函数q(x) = x^3 - 3x,若q(x)在区间(-∞, a)上是增函数,在区间(a, +∞)上是减函数,则实数a的取值范围是()A. a ≤ -1B. -1 < a ≤ 0C. a ≥ 0D. a ≤ -1 或 a ≥ 08. 若函数r(x) = |x - 1| - |x + 1|,则r(x)的图像是()A. 抛物线B. 双曲线C. 两条射线D. 两条直线二、填空题(每题5分,共30分)9. 设函数s(x) = (x - 2)^2 + 1,若s(x)的图像与直线y = 2x + c相切,则实数c的值为______。
高三数学试卷模拟题及答案

高三数学试卷模拟题及答案
第一部分:选择题
1.下列函数中,是奇函数的是() A. y=x3+x B. y=2x2−3x C.
y=2x+x D. y=x2−x
答案:A
2.在等差数列 $2, 5, 8, \\ldots$ 中,第n项为a n,则a10=() A. 19
B. 20
C. 21
D. 22
答案:D
3.若 $\\log_2 a = 3$,$\\log_5 b = 2$,则 $\\log_{10}(a^2b)=$ () A.
12 B. 15 C. 18 D. 24
答案:A
4.已知P是(−1,3)点到直线2x−y+1=0的距离,Q是(−2,1)点到
直线x−3y+1=0的距离,则P:Q=() A. 2:1 B. 1:2 C. 3:1 D. 1:3
答案:B
5.函数 $f(x)=\\frac{x}{x-3}$,则f(f(x))的定义域是() A. x eq3 B.
x eq0 C. x eq3且x eq0 D. 全体实数
答案:A
第二部分:解答题
1.已知函数 $f(x)=\\log_ax$,a eq1,求证:
$f(x)+f\\left(\\frac{1}{x}\\right)=0$ 成立的充分必要条件是a=1或a=−1。
(证明过程略)
2.某数列的前n项和S n满足关系式S n=2n2+n,求该数列的通项公
式。
(解答过程略)
3.已知二次函数y=ax2+bx+c的图像过点(1,2),且对称轴为直线
x=2,求a,b,c的值。
(解答过程略)
以上为高三数学试卷模拟题及答案,同学们可以仔细查阅,认真思考,争取取
得好成绩。
高中数学模拟试题及答案

高中数学模拟试题及答案一、选择题(每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母填在题后的括号内。
)1. 若函数\( f(x) = x^2 - 4x + 3 \),则\( f(2) \)的值为()A. 1B. 3C. -1D. -32. 下列不等式中,不正确的是()A. \( 2 > 1 \)B. \( 0 < -1 \)C. \( 3 \leq 3 \)D. \( -4 \geq -5 \)3. 已知集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),则\( A \cap B \)为()A. \( \{1\} \)B. \( \{2, 3\} \)C. \( \{2, 3, 4\} \)D. \( \{1, 2, 3, 4\} \)4. 函数\( y = \log_{2}(x) \)的反函数是()A. \( y = 2^x \)B. \( y = \log_{10}(x) \)C. \( y = \sqrt{x} \)D. \( y = x^2 \)5. 若\( \sin(\alpha) = \frac{1}{2} \),则\( \cos(2\alpha) \)的值为()A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{1}{4} \)D. \( -\frac{1}{4} \)6. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),则\( xy \)的值为()A. \( \frac{1}{5} \)B. \( \frac{1}{25} \)C. \( 5 \)D. \( 25 \)7. 直线\( y = 2x + 1 \)与\( y = -x + 4 \)的交点坐标为()A. \( (1, 3) \)B. \( (3, 1) \)C. \( (-1, 3) \)D. \( (-3, 1) \)8. 函数\( f(x) = x^3 - 3x + 1 \)在\( x = 1 \)处的导数为()A. 1B. -1C. 3D. -39. 圆的方程为\( (x - 2)^2 + (y - 3)^2 = 9 \),则圆心坐标为()A. \( (2, 3) \)B. \( (-2, -3) \)C. \( (0, 0) \)D. \( (3, 2) \)10. 等比数列\( \{a_n\} \)的首项\( a_1 = 2 \),公比\( q = 3 \),则\( a_5 \)的值为()A. 162B. 486C. 729D. 243二、填空题(每小题4分,共20分。
高中高考数学模拟试卷试题含答案.docx

16.有以下几个命 :
①曲x2-(y+1)2=1按a=(-1,2)平移可得曲
(x+1)2-(y+3)2=1
②与直相交,所得弦2
③A、B两个定点,m常数,, 点P的 迹
④若 的左、右焦点分F1、F2,P是 上的任意一点, 点F2关于∠F1PF2的外角平分 的 称点M的 迹是
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位
5.如图,是一程序框图,则输出结果中()
.
精品文档
A.B.
C.D.
6.平面的一个充分不必要条件是()
A.存在一条直B.存在一个平面
C.存在一个平面D.存在一条直
7.已知以F1(-2,0),F2(2,0) 焦点的 与直有且 有一个交点, 的
()
A.B.C.D.
在答题卡上把所选题目对应的题号涂黑.
22.(本小题满分10分)
[几何证明选讲]如图,E是圆内两弦AB和CD的交点, 直线EF//CB,交AD的延长线于F,FG切圆于G,求证:
(1)∽;
(2)EF=FG.
23.[选修4-4:坐标系与参数方程]
已知曲线C:(t为参数),C:(为参数).
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
8.O是平面上一定点,A、B、C是平面上不共 的三个点, 点P足
,p的 迹一定通 △ABC的 ( )
A.外心B.重心C.内心D.垂心
9. {an}是等差数列,从{a1,a2,a3,⋯,a20}中任取3个不同的数,使3个数仍成等差数列, 不同的等差数列最多有 ( )
A.90个B.120个C.180个D.200个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级 __________ 姓名 __________ 分数 __________高中数学模拟试题一一、 填空题:本大题共8小题,每题5分,共40分.1. 给出以下结论:① 命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ② “x =4”是“x 2-3x -4=0”的充分条件;③ 命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④ 命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”. 则其中错误的是________.(填序号)2. 已知函数f (x )=⎩⎨⎧sin 5πx 2,x ≤0,16-log 3x ,x >0,则f (f (33))=________. 3. 连续抛掷两枚骰子分别得到的点数是a ,b ,则函数f (x )=ax 2-bx 在x =1处取得最值的概率是________.4. 设S n 为正项等比数列{a n }的前n 项和.若a 4·a 8=2a 10,则S 3的最小值为________.5. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0,若直线y =k (x +1)上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的取值范围是____________.(第6题) 6. 如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ=________.7. 已知a >0,b >0,则a 2a +b +2b 2b +a的最大值为________. 8. 已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一的零点,则a =________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)如图,在三棱柱ABCA 1B 1C 1中,已知M ,N 分别为线段BB 1,A 1C 的中点,MN 与AA 1所成角的大小为90°,且MA 1=MC . 求证:(1) 平面A 1MC ⊥平面A 1ACC 1;(2) MN ∥平面ABC .已知向量m =(cos α,-1),n =(2,sin α),其中α∈(0,π2),且m ⊥n . (1) 求cos 2α的值;(2) 若sin(α-β)=1010,且β∈(0,π2),求角β的值.设椭圆C :x 22+y 2=1的右焦点为F ,过点F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1) 当l 与x 轴垂直时,求直线AM 的方程;(2) 设O 为坐标原点,求证:∠OMA =∠OMB .已知等差数列{a n}的前n项和为S n,且满足S4=24,S7=63.(1) 求数列{a n}的通项公式;(2) 若b n=2a n+(-1)n·a n,求数列{b n}的前n项和T n.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题二一、 填空题:本大题共8小题,每题5分,共40分.1. 已知复数z 满足(z -2)i =1+i(i 为虚数单位),则复数z 的共轭复数z 在复平面内对应的点位于第________象限.2. 设集合A ={x |y =ln(x 2-3x )},B ={y |y =2x ,x ∈R },则A ∪B =____________.3. 若θ∈(0,π4),且sin 2θ=14,则sin(θ-π4)=________. 4. 已知一个正方体的外接球体积为V 1,其内切球体积为V 2,则V 1V 2的值为________. 5. 记等差数列{a n }的前n 项和为S n .已知a 1=3,且数列{S n }也为等差数列,则a 11=________.6. 在▱ABCD 中,∠BAD =60°,E 是CD 上一点,且AE →=12AB →+BC →,|AB →|=λ|AD →|.若AC →·EB →=12AD → 2,则λ=________. 7. 设函数f (x )=ln x +m x,m ∈R ,若对任意x 2>x 1>0,f (x 2)-f (x 1)<x 2-x 1恒成立,则实数m 的取值范围是__________.8. 已知实数x ,y 满足x 2+y 2=1,则1(x -y )2+1(x +y )2的最小值为________. 二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1) 求cos ∠ADB 的值;(2) 若DC =22,求BC 的值.如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(点E 与点A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1) EF∥平面ABC;(2) AD⊥AC.如图所示的某种容器的体积为90πcm3,它是由圆锥和圆柱两部分连结而成的,圆柱与圆锥的底面圆半径都为r cm.圆锥的高为h1 cm,母线与底面所成的角为45°;圆柱的高为h2 cm.已知圆柱底面造价为2a元/cm2,圆柱侧面造价为a元/cm2,圆锥侧面造价为2a元/cm2.(1) 将圆柱的高h2表示为底面圆半径r的函数,并求出定义域;(2) 当容器造价最低时,圆柱的底面圆半径r为多少?已知等比数列{a n}的前n项和为S n,且2n+1,S n,a成等差数列(n∈N*).(1) 求a的值及数列{a n}的通项公式;(2) 若b n=(2n-1)a n,求数列{b n}的前n项和T n.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题三一、 填空题:本大题共8小题,每题5分,共40分.1. 设集合A =⎩⎨⎧⎭⎬⎫x |14≤2x ≤64,x ∈N ,B ={x |y =ln(x 2-3x )},则A ∩B 的子集的个数是________.2. 设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的__________条件. 3. 已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则双曲线C 的焦距为________.4. 已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n .若对任意的n ∈N *,总有S n T n=3n +14,则a 3b 3=________. 5. 已知在平行四边形ABCD 中,∠BAD =120°,AB =1,AD =2,P 是线段BC 上的一个动点,则AP →·DP →的取值范围是________.(第7题)6. 已知函数f (x )=sin x (x ∈[0,π])和函数g (x )=12tan x 的图象交于A ,B ,C 三点,则△ABC 的面积为________.7. 如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2 的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________. 8. 已知函数f (x )=⎩⎪⎨⎪⎧x 3+x 2+m ,0≤x ≤1,mx +2,x >1,若函数f (x )有且只有两个零点,则实数m 的取值范围是________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1) 若a ∥b ,求x 的值;(2) 记f (x )=a·b ,求f (x )的最大值和最小值以及对应的x 的值.10. (本小题满分14分)在平面直角坐标系xOy 中,圆O :x 2+y 2=4,直线l :4x +3y -20=0.A (45,35)为圆O 内一点,弦MN 过点A ,过点O 作MN 的垂线交l 于点P .(1) 若MN ∥l ,求△PMN 的面积;(2) 判断直线PM 与圆O 的位置关系,并证明.某农场有一块农田,如图,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B 均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1) 用θ分别表示矩形ABCD和△CDP的面积,并确定sin θ的取值范围;(2) 若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1) 求数列{b n }的通项公式;(2) 令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .班级 __________ 姓名 __________ 分数 __________高中数学模拟试题四一、 填空题:本大题共8小题,每题5分,共40分.1. 已知集合A ={x |2≤x <4},B ={x |x >a },若A ∩B ={x |3<x <4},则实数a =________.2. 已知f (x )=ax 5+bx 3+sin x -8,且f (-2)=10,那么f (2)=________.3. 已知sin θ-cos θ=43,θ∈(3π4,π),则s in(π-θ)-cos (π-θ)=________. 4. 记函数f (x )=3-2x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.5. 在三棱锥ABCD 中,E 是AC 的中点,F 在AD 上,且2AF =FD .若三棱锥ABEF 的体积为2,则四棱锥BECDF 的体积为________.6. 在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=4.若等边三角形P AB 的一边AB 为圆C 的一条弦,则PC 的最大值为________.7. 设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则k =1100(a k a k +1)的值为________. 8. 已知函数f(x)=⎩⎪⎨⎪⎧x 2,0<x ≤1,|ln (x -1)|,x >1.若方程f(x)=kx -2有两个不相等的实数根,则实数k 的取值范围是________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在△ABC 中,a =7,b =8,cos B =-17. (1) 求A 的值;(2) 求边AC 上的高.如图,在四棱锥PABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1) 求证:平面PAB ⊥平面PAD ;(2) 若PA =PD =AB =DC ,∠APD =90°,且四棱锥PABCD 的体积为83,求该四棱锥的侧面积.已知函数f(x)=1x-x +a ln x. (1) 讨论f(x)的单调性;(2) 若f(x)存在两个极值点x 1,x 2,求证:f (x 1)-f (x 2)x 1-x 2<a -2.设数列{a n}的前n项和为S n,已知a1=1,S n+1=2S n+n+1(n∈N*).(1) 求数列{a n}的通项公式;(2) 若b n=na n+1-a n,数列{b n}的前n项和为T n,n∈N*,求证:T n<2.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题五一、 填空题:本大题共8小题,每题5分,共40分.1. 欧拉公式e x i =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e -3i 表示的复数在复平面中位于第________象限.2. 某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲、乙不在同一兴趣小组的概率为________.3. 在矩形ABCD 中,AB =2BC =2,现向矩形ABCD 内随机投掷质点P ,则满足P A →·PB→≥0的概率是________.4. 已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b|的最大值与最小值的和为________.(第5题)5. 已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象如图所示,则该函数的解析式是______________.6. 若抛物线x 2=4y 的弦AB 过焦点F ,且AB 的长为6,则弦AB 的中点M 的纵坐标为________.7. 已知数列{a n }满足a 1=0,数列{b n }为等差数列,且a n +1=a n +b n ,b 15+b 16=15,则a 31=________.8. 已知函数f (x )=x (a -1ex ),曲线y =f (x )上存在两个不同的点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是__________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos(B -π6). (1) 求角B 的大小;(2) 设a =2,c =3,求b 和sin(2A -B )的值.如图,在直三棱柱ABCA1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.求证:(1) B1C1∥平面A1DE;(2) 平面A1DE⊥平面ACC1A1.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )=⎩⎪⎨⎪⎧30,0<x ≤30,2x +1 800x -90,30<x <100(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟.试根据上述分析结果回答下列问题:(1) 当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2) 求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1) 求椭圆E 的标准方程;(2) 若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题六一、 填空题:本大题共8小题,每题5分,共40分. 1. 若A ={x ||x |<3},B ={x |2x >1},则A ∩B =________. 2. 电视台组织的中学生知识竞赛,共设有5个版块的试题,主题分别是“立德树人”“社会主义核心价值观”“依法治国理念”“中国优秀传统文化”“创新能力”.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是________.3. 将函数y =3sin(2x -π6)的图象向左平移π4个单位长度,所得图象对应的函数解析式为____________.4. 已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则y +1x的取值范围是________.(第5题)5. 如图,从热气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时热气球的高度是60 m ,则河流的宽度BC =________.6. 已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________.7. 已知 O 为矩形 P 1P 2P 3P 4内的一点,满足OP 1=4,OP 3=5,P 1P 3=7,则OP 2→·OP 4→=________.8. 已知函数f (x )=⎩⎨⎧1-(x -1)2,0≤x <2,f (x -2),x ≥2.若对于正数k n (n ∈N *),直线y =k n x 与函数y =f (x )的图象恰有(2n +1)个不同的交点,则数列{k 2n }的前n 项和为________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)如图,在平行六面体ABCDA 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1.求证: (1) AB ∥平面A 1B 1C ;(2) 平面ABB 1A 1⊥平面A 1BC .已知△ABC的内角A,B,C的对边分别为a,b,c,且c tan C=3(a cos B+b cos A).(1) 求角C;(2) 若c=23,求△ABC面积的最大值.某厂花费2万元设计了某款式的服装.根据经验,每生产1百套该款式服装的成本为1万元,每生产x (百套)的销售额(单位:万元)P (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8,0<x ≤5,14.7-9x -3,x >5.(1) 该厂至少生产多少套此款式服装才可以不亏本?(2) 试确定该厂生产多少套此款式服装可使利润最大,并求最大利润. (注:利润=销售额-成本,其中成本=设计费+生产成本)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点A (0,1).(1) 求椭圆C 的方程;(2) 不经过点A 的直线l 与椭圆C 交于P ,Q 两点,且AP →·AQ →=0,求证:直线l 过定点.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题七一、 填空题:本大题共8小题,每题5分,共40分.1. 已知集合A ={x |x 2-x -2≤0},集合B ={x |1<x ≤3},则A ∪B =____________.2. 已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________.3. 已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≤1,11-x,x >1,则f (f (-2))=________.4. 已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn=________.5. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思如下:有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了________.6. 已知sin α=3sin(α+π6),则tan(α+π12)=________.7. 已知经过点P (1,32)的两个圆C 1,C 2都与直线l 1:y =12x ,l 2:y =2x 相切,则这两圆的圆心距C 1C 2等于________.8. 已知函数f (x )=log 2(ax 2+2x +3),若对于任意实数k ,总存在实数x 0,使得f (x 0)=k 成立,则实数a 的取值范围是________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在长方体ABCDA 1B 1C 1D 1中,AB =BC =EC =12AA 1.求证:(1) AC 1∥平面BDE ; (2) A 1E ⊥平面BDE .已知数列{a n}是公差不为0的等差数列,a2=3,且a3,a5,a8成等比数列.(1) 求数列{a n}的通项公式;(2) 设b n=a n cos a nπ2,求数列{b n}的前2 018项和.为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD 建成生态休闲园,园区内有一景观湖EFG (图中阴影部分).以AB 所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系xOy (如图).景观湖的边界曲线符合函数y =x +1x(x >0)模型.园区服务中心P 在x 轴正半轴上,PO =43百米.(1) 若在点O 和景观湖边界曲线上一点M 之间修建一条休闲长廊OM ,求OM 的最短长度;(2) 若在线段DE 上设置一园区出口Q ,试确定Q 的位置,使通道PQ 最短.如图,在平面直角坐标系xOy中,已知F1,F2分别为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,且椭圆经过点A(2,0)和点(1,3e),其中e为椭圆的离心率.(1) 求椭圆的方程;(2) 过点A的直线l交椭圆于另一点B,点M在直线l上,且OM=MA.若MF1⊥BF2,求直线l的斜率.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题八高中数学模拟试题八一、 填空题:本大题共8小题,每题5分,共40分.1. 若向量a =(cos 10°,sin 10°),b =(cos 70°,sin 70°),则|a -2b|=________.2. 在同一平面直角坐标系中,函数y =sin(x +π3)(x ∈[0,2π))的图象和直线y =12的交点的个数是________.3. 由命题“存在x 0∈R ,使得e|x 0-1|-m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是________.4. 已知圆柱M 的底面圆半径为2,高为6,圆锥N 的底面圆直径和母线长相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为________.5. 在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是________.6. 设定义在R 上的偶函数f (x )在区间(-∞,0]上单调递减.若f (1-m )<f (m ),则实数m 的取值范围是________.7. 设S n 为数列{a n }的前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数.若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,则k 的值为________.8. 已知直线y =kx +2-2k 与曲线y =2x -3x -2交于A ,B 两点,平面上的动点P 满足|P A →+PB→|≤2,则|PO →|的最大值为________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)如图,在正四棱锥VABCD 中,E ,F 分别为棱VA ,VC 的中点.求证: (1) EF ∥平面ABCD ; (2) 平面VBD ⊥平面BEF .10. (本小题满分14分)如图,某公园有三条观光大道AB ,BC ,AC 围成直角三角形,其中直角边BC =200 m ,斜边AB =400 m .现有甲、乙、丙三位小朋友分别在AB ,BC ,AC 大道上嬉戏,所在位置分别记为点D ,E ,F .(1) 若甲、乙都以每分钟100 m 的速度从点B 出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲、乙两人之间的距离;(2) 设∠CEF =θ,乙、丙之间的距离是甲、乙之间距离的2倍,且∠DEF =π3,请将甲、乙之间的距离y m 表示为θ的函数,并求甲、乙之间的最小距离.如图,在平面直角坐标系xOy 中,设P 为圆O :x 2+y 2=2上的动点,过点P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2MQ →.(1) 求证:当点P 运动时,点M 始终在一个确定的椭圆上;(2) 过点T (-2,t )(t ∈R )作圆O 的两条切线,切点分别为A ,B .① 求证:直线AB 过定点(与t 无关);② 设直线AB 与(1)中的椭圆交于C ,D 两点,求证:AB CD ≤ 2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x +t ,x <0,x +ln x ,x >0,其中t 是实数.设A ,B 为该函数图象上的两点,横坐标分别为x 1,x 2,且x 1<x 2.(1) 求f (x )的单调区间和极值;(2) 若x 2<0,函数f (x )的图象在点A ,B 处的切线互相垂直,求x 1-x 2的最大值.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题九高中数学模拟试题九一、 填空题:本大题共8小题,每题5分,共40分.1. 已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是________.3. 如图,在△ABC 中,已知AN →=12AC →,P 是BN 上一点.若AP →=mAB →+14AC →,则实数m 的值是________.(第2题)(第3题)(第4题)4. 如图,正方体ABCDA 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1DEF 的体积为________.5. 已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧2x -y ≥0,x +y -4≥0,x ≤3,则2x 3+y 3x 2y 的取值范围是________. 6. 若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为________.7. 若数列⎩⎨⎧⎭⎬⎫2n (2n -1)(2n +1-1)的前k 项的和不小于2 0182 019,则k 的最小值为________. 8. 在平面直角坐标系 xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若P A →·PB→≤20,则点P 的横坐标的取值范围是________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b sin 2C =c sin B .(1) 求角C ;π3)=35,求sin A的值.(2) 若sin(B-在一张足够大的纸板上截取一个面积为3 600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.(1) 当a=90时,求纸盒侧面积的最大值;(2) 试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1) 求证:k <-12; (2) 设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.求证:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.设等差数列{a n}是无穷数列,且各项均为互不相同的正整数.(1) 设数列{a n}的前n项和为S n,b n=S na n-1,n∈N*.①若a2=5,S5=40,求b2的值;②若数列{b n}为等差数列,求b n.(2) 求证:数列{a n}中存在三项(按原来的顺序)成等比数列.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题十高中数学模拟试题十一、 填空题:本大题共8小题,每题5分,共40分.1. 若复数(a -i)(1-i)(a ∈R )的实部与虚部相等,则实数a =________.2. 在三张奖券中有一、二等奖各一张,另一张无奖,甲、乙两人各抽取一张(不放回),两人都中奖的概率为________.3. 执行下面的流程图,输出的T =________.4. 已知正项等比数列{a n }的前n 项和为S n ,且4a 2=a 4,则S 4a 2+a 5=________. 5. 已知点P (1,22)在角θ的终边上,则sin(2θ+π2)+sin(2θ+2π)=________. 6. 从x 2m -y 2n=1(其中m ,n ∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为________.7. 在平面直角坐标系xOy 中,若直线l :x +2y =0与圆C :(x -a )2+(y -b )2=5相切,且圆心C 在直线l 的上方,则ab 的最大值为________.8. 设函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤0,e x -1,x >0,若函数y =f (x )-2x +t 有两个零点,则实数t 的取值范围是______________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)已知α,β为锐角,tan α=43,cos(α+β)=-55. (1) 求cos 2α的值;(2) 求tan(α-β)的值.如图,在一条海防警戒线上的点A,B,C处各有一个水声监测点,B,C两点到点A的距离分别为20 km和50 km.某时刻,B收到发自静止目标P的一个声波信号,8 s后A,C同时接收到该声波信号,已知声波在水中的传播速度是1.5 km/s.(1) 设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;(2) 求P到海防警戒线AC的距离.如图,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在x 轴上方).(1) 若QF =2FP ,求直线l 的方程;(2) 设直线AP ,BQ 的斜率分别为k 1,k 2.是否存在常数λ,使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由.12. (本小题满分16分)已知函数f(x)=e x-ax2.(1) 若a=1,求证:当x≥0时,f(x)≥1;(2) 若f(x)在(0,+∞)上只有一个零点,求实数a的值.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题十一高中数学模拟试题十一一、 填空题:本大题共8小题,每题5分,共40分.1. 若集合A ={x ∈Z |x 2+x -12<0},B ={x |x <sin 5π},则A ∩B 中元素的个数为________.2. 根据如图所示的伪代码,可知输出的结果S 是________.i ←1While i <6i ←i +2S ←2i +3End WhilePrint S3. 已知首项为负数的等差数列{a n }中,a 5a 4<-1,若S n 取到最小正数,则此时的n =________.4. 在平面直角坐标系xOy 中,双曲线x 2-y 24=1的一条渐近线与准线的交点到另一条渐近线的距离为________.5. 已知约束条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y +3≥0,x ≤a表示的可行域为D ,其中a >1,点(x 0,y 0)∈D ,点(m ,n )∈D .若3x 0-y 0与n +1m的最小值相等,则实数a =________. 6. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线l 恰好是曲线y =x 3-3x 2+22x 在原点处的切线,左顶点到一条渐近线的距离为263,则双曲线的标准方程为__________. 7. 将函数y =3sin(π4x )的图象向左平移3个单位长度,得函数y =3sin(π4x +φ)(|φ|<π)的图象(如图),点M ,N 分别是函数f (x )图象上y 轴两侧相邻的最高点和最低点.设∠MON =θ,则tan(φ-θ)的值为________.8. 已知函数f (x )=x 3-2x +e x -1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2 )≤0,则实数a 的取值范围是________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在△ABC 中,AB =6,AC =32,AB →·AC →=-18.(1) 求BC 的长;(2) 求tan 2B的值.10. (本小题满分14分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1) 求{a n}的通项公式;(2) 求S n,并求S n的最小值.曲线f (x )=x 2-a 2ln x 在点(12,f (12))处的切线斜率为0. (1) 讨论函数f (x )的单调性;(2) 若g (x )=f (x )+12mx 在区间(1,+∞)上没有零点,求实数m 的取值范围.如图,圆柱体木材的横截面半径为1 dm,从该木材中截取一段圆柱体,再加工制作成直四棱柱A1B1C1D1ABCD,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心O在梯形ABCD内部,AB∥CD,∠DAB=60°,AA1=AD,设∠DAO =θ.(1) 求梯形ABCD的面积;(2) 当sin θ取何值时,四棱柱A1B1C1D1ABCD的体积最大?并求出最大值.(注:木材的长度足够长)班级 __________ 姓名 __________ 分数 __________高中数学模拟试题十二高中数学模拟试题十二一、 填空题:本大题共8小题,每题5分,共40分.1. 已知集合A ={x ∈R |log 12(x -2)≥-1},B =⎩⎨⎧⎭⎬⎫x ∈R |2x +63-x ≥1,则A ∩B =________. 2. 设向量a =(2,m ),b =(1,-1),若b ⊥(a +2b ),则实数m =________.3. 已知正五边形ABCDE 的边长为23,则AC →·AE →的值为________.4. 正方形铁片的边长为8 cm ,以它的一个顶点为圆心,一边长为半径画弧,剪下一个顶角为π4的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积等于________cm 3.5. 等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________. 6. 已知sin α=55,α∈(0,π2),tan β=13,则tan(α+2β)=________. 7. 已知a >0,函数f (x )=x (x -a )2和g (x )=-x 2+(a -1)x +a 存在相同的极值点,则a =________.8. 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x <a ,-2x ,x ≥a ,若关于x 的不等式f (x )>4a 在实数集R 上有解,则实数a 的取值范围是____________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为a 23sin A. (1) 求sin B sin C 的值;(2) 若6cos B cos C =1,a =3,求△ABC 的周长.如图,在四棱锥P ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD, AC交BD于点O,锐角三角形P AD所在平面P AD⊥底面ABCD,P A⊥BD,点Q在侧棱PC上,且PQ=2QC.求证:(1) P A∥平面QBD;(2) BD⊥AD.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的离心率为53,点A 的坐标为(b ,0),且FB ·AB =6 2.(1) 求椭圆的方程;(2) 设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若AQ PQ =524sin ∠AOQ (O 为原点),求k 的值.如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路CDEF ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参观线路的费用为f (t )万元,经测算f (t )=⎩⎨⎧5,0<t ≤13,8-1t ,13<t <2.(1) 用t 表示线段EF 的长;(2) 求修建该参观线路的最低费用.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题十三高中数学模拟试题十三一、 填空题:本大题共8小题,每题5分,共40分.(第3题) 1. 已知复数z =2+i 1-i(i 为虚数单位),那么z 的共轭复数为________. 2. 若tan(α-π4)=16,则tan α=________. 3. 执行如图所示的程序框图,若a =2 018,则输出的S =________.4. 设等边三角形ABC 的边长为1,t 为任意的实数,则|AB →+tAC →|的最小值为________.5. 已知函数f (x )=2sin x +1(x ∈[0,2π]),设h (x )=|f (x )|-a ,则当1<a <3时,函数h (x )的零点个数为________.6. 已知函数f (x )=(x 2-2x )sin(x -1)+x +1在x ∈[-1,3]上的最大值为M ,最小值为m ,则M +m =________.7. 已知x >y >0,且x +y ≤2,则4x +3y +1x -y的最小值为________. 8. 设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.若椭圆上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是______________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,过AD 的平面分别与PB ,PC 交于点E ,F .求证:(1) 平面PBC ⊥平面PCD ;(2) AD ∥EF .。