第1节 质谱基本原理与质谱仪
质谱仪工作原理

*
质谱过程
撞击 得到 高速电子 气态分子 阳离子 顺序谱图 质量分析器 定性结构 定量分析
导入
按质荷比m/e
峰强度
峰位置
1
2
3
4
5
6
*
真空系统 进样系统:直接进样和色谱进样 离子源: 电子轰击离子源EI,化学电离源CI, 快原子轰击源FAB,电喷雾源ESI, 大气压化学电离源APCI,激光解吸源LD 质量分析器: 磁式单聚焦和双聚焦、四级杆、飞行时间、离子阱、傅里叶变换离子回旋共振分析器 检测器:光电倍增管 数据处理系统
直流电压Vdc 交流电压Vrf
*
+
+
*
结构: 四根棒状电极,形成四极场 1,3棒: (Vdc +Vrf) 2,4棒:- (Vdc+ Vrf ) 原理: 在一定的Vdc Vrf 下 , 只有一定质量 的离子可通过四极场,到达检测器。 在一定的(Vdc/Vrf)下,改变Vrf 可实 现扫描。 特点: 扫描速度快,灵敏度高 适用于GC-MS
丁酮的质谱图
质谱表 元素图表
*
四、质谱仪的性能指标
质量范围 指所能检测的m/z范围 四极杆质谱 m/z小于或等于2000 磁式质谱 m/z可达到几千 飞行时间质谱 m/z可达到几十万
*
分辨率R 例如:CO+ 27.9949,N2+,28.0061 四极质谱恰好能将此分开. 但是: ArCl+ 74.9312,As+,74.9216 质谱仪把相邻两质量 组分分开的能力
+
+
+
+
+
+
+
-
新版质谱分析与质谱仪ppt课件

①单聚焦磁场分析器
方向聚焦;
相同质荷比, 入射方向不同 的离子会聚; S1
分辨率不高
(m/e)=H2R2/2V
改变V,H实现质
B
量分离和鉴别。 离子源
2021/2/26
磁场
R
S2 收集器
②双聚焦分析器
方向聚焦: 相同质荷比,入 电场
磁场
射方向不同的离子会 聚;
能量聚焦:
+ -
奖 基质辅助 的激光解 吸电离技
术
John Bennet Fenn
约 翰·B·芬
恩 2002年诺 贝尔化学
奖 电喷雾离
子化
2021/2/26
2021/2/26
2021/2/26
质谱基本原理
轰击、分离、收集、检测、记录等
有机分子
分子离子 碎片离子 亚稳离子 同位素离子
…….
2021/2/26
质谱解析
分子离子峰的形成及识别 开裂方式及类型 碎片离子峰 亚稳离子峰 N规律 …….
二、 质谱仪与质谱分析原理
mass spectrometer and mass spectrometry
一、概述 generalization
分子质量精确测定与化 合物结构分析的重要工具;
癸烷烃
第一台质谱仪:1912年;
早期应用:原子质量、同 位素相对丰度等;
40年代:高分辨率质谱仪出现,有机化合物结构分析; 60年代末:色谱-质谱联用仪出现,有机混合物分离分析; 促进天然有机化合物结构分析的发展; 80年代:非挥发性或热不稳定分子的分析进一步促进了MS的发展; 90年代:由于生物分析的需要,一些新的离子化方法得到快速发展。 同位素质谱仪;无机质谱仪;有机质谱仪 。
质谱分析系列PPT课件(第1节基本原理与质谱仪)精选全文

EI源:可变的离子化能量 (10~240eV)
电子能量
电子能量
分子离子增加
碎片离子增加
对于易电离的物质降低电子能量,而对于难电离的物质 则加大电子能量( 常用70eV )。
00:21:06
② 化学电离源(Chemical Ionization,CI):
离子室内的反应气(甲烷等;10~100Pa,样品的 103~105倍),电子(100~240eV)轰击,产生离子,再与试 样分离碰撞,产生准分子离子。
一、概述
generalization
分子质量精确测定与化 合物结构分析的重要工具;
第一台质谱仪:1912年;
早期应用:原子质量、 同位素相对丰度等;
43
29 15
57
71 85 99 113 142
m/z
40年代:高分辨率质谱仪出现,有机化合物结构分析; 60年代末:色谱-质谱联用仪出现,有机混合物分离分析; 促进天然有机化合物结构分析的发展;
(2)渠道式电子倍增器阵列
00:21:06
内容选择:
• 第一节 基本原理与质谱仪
basic principle and mass spectrometer
• 第二节 离子峰的主要类型
main kinds of ion peaks
• 第三节 有机分子裂解类型
cleavage types of organic compounds
同位素质谱仪;无机质谱仪;有机质谱仪;
00:21:06
二、 质谱仪与质谱分析原理
mass spectrometer and mass spectrometry
进样系统
离子源
质量分析器
检测器
1.气体扩散 2.直接进样 3.气相色谱
质谱仪工作原理 ppt课件

2020/12/17
ppt课件
电离室原理 与结构
28
离子生成后,在质谱仪中被电场加速。加速后其动能和 位能相等,即:
1 mv2 zV 2
(1)
其中 m: 离子质量;v: 离子速度;z: 离子电荷;V:
加速电压
2020/12/17
ppt课件
29
当被加速的离子进入磁分析器时,磁场再对离子进行作用,
2V 质谱的基本方程
2020/12/17
ppt课件
30
• 当 R为仪器设置不变时,改变加速电压 或磁场强度,则不同m/z的离子依次通过 狭缝到达检测器,形成质量谱,简称质 谱。
2020/12/17
ppt课件
31
方向聚焦;
相同质荷比,入射方向不同的离子会聚;
分辨率不高
2020/12/17
ppt课件
Rayleigh Limit
Reached
+ +++
+-+--+-- +++
2020/12/17
Neutrals
+
++--++
+
+++ 准分子离子
+ +
+ +
++-- ++
++-- ++
ppt课件
+ 其他离子 试样离子
24
(6)大气压化学电离源 (Atmospheric pressure chemical Ionization, APCI)
一、质谱法概述
质谱分析与质谱仪

质谱分析与质谱仪质谱分析是一种常用的分析技术,它通过质谱仪来研究物质的组成、结构和特性。
本文将介绍质谱分析的基本原理、质谱仪的构成以及一些应用案例。
一、质谱分析的基本原理质谱分析基于物质的离子化和离子的分析。
其基本过程如下:1. 样品离子化:样品通常需要离子化处理,常见的方法包括电子轰击、电离辐射、化学反应等。
2. 离子分离:离子化的物质在质谱仪中通过电场力或磁场力进行分离。
根据离子的质量-电荷比(m/z)的不同,离子被分离并进入不同的通道。
3. 离子检测:离子经过分离后,被引入质谱仪的检测器中进行检测。
常见的检测器包括电子倍增器、光电多器件等。
4. 数据分析:最后,质谱仪会输出一系列的数据,可以通过计算机分析和处理这些数据得到有关样品的信息。
二、质谱仪的构成质谱仪是进行质谱分析的核心设备,它由离子源、质量分析器和检测器三部分构成。
1. 离子源:离子源是将样品中的分子或原子转化为离子的装置。
常见的离子源包括电子轰击离子源(EI)、化学游离离子源(CI)和电喷雾离子源(ESI)等。
2. 质量分析器:质量分析器是将离子根据其质量-电荷比进行分离和测量的部分。
常见的质量分析器包括磁扇形质量分析器(MS)、飞行时间质量分析器(TOF)和离子阱质量分析器(IT)等。
3. 检测器:检测器用于测量和记录质谱仪输出的信号。
常见的检测器包括离子倍增器、光电倍增管和光电多器件等。
三、质谱分析的应用案例质谱分析广泛应用于化学、生物医药、环境监测等领域。
以下列举几个具体的应用案例:1. 药物分析:质谱分析可用于药物的质量控制、药代动力学研究等。
通过质谱分析,可以分析药物的组成、结构和代谢产物,进一步了解药物在人体内的作用和代谢途径。
2. 污染物检测:质谱技术可以用于检测环境中的污染物,如水中的有机污染物、空气中的挥发性有机物等。
通过对样品进行质谱分析,可以确定污染物的种类和浓度,为环境监测和治理提供依据。
3. 食品安全:质谱分析可用于食品中的农药残留、毒素和添加剂等的检测。
人卫第七版分析化学第十五章质谱法

质谱法
仪器分析
离子电离后经加速进入磁场中,其动能 与加速电压及电荷Z有关,即
z为电荷数,e为元电荷,U为加速电压,
m为离子的质量,υ为离子被加速后的运 动速度。
第十五章
质谱法
仪器分析
二、质谱的表示方法 (一)质谱图
以质荷比(m/z)为横坐标,以相对 强度为纵坐标,并将最强的离子峰定为基 峰,强度定为100%,其他离子峰以其对基 峰的相对强度百分值表示。
第十五章
质谱法
仪器分析
EI源的优缺点:
优点:
(1)非选择性电离,只要样品能气化,电离 效率高; (2)应用最广; (3)稳定,操作简便。
缺点:
(1)样品必须能气化,不适宜难挥发、热敏 性的物质; (2)有的化合物在EI方式下分子离子不稳 定,易碎裂, 得不到分子量信息。
第十五章
质谱法
仪器分析
2.化学电离源 (chemical ionization source,CI)
化学电离法是待测物通过气相分子一离子反应来进 行的。核心是质子的转移。 CI源结构(与EI源相似):电离室(离子盒)、灯丝 (锑或钨灯丝)、离子聚焦透镜和一对磁极组成。
第十五章
质谱法
仪器分析
化学电离源常用的反应气是CH4、异 丁烷、NH3、H2O、H2或He等。在高能电子 流的轰击下,反应物(如CH4)首先被电离, 生成一次离子CH3+和CH4+· ,即
第十五章
质谱法
仪器分析
在离子源内,用电加热锑或钨丝到2000oC,产生高速的电子束
第十五章
质谱法
仪器分析
电子轰击法是通用的电离法,是使 用高能电子束从试样分子中撞出一个电 子而产生正离子,即
质谱

质谱的基本原理及质谱仪
质谱中的主要离子
分子离子峰与电离过程 离子开裂类型 基本有机化合物的质谱 质谱解析程序
一、 质谱的基本原理及质谱仪
1.质谱法:将离子按其质荷比(质量/电荷)的不同进 行分离和测定的方法。
基本原理
m 2 Bze r
1 zeV m 2 2
离子生成后,在质谱仪中被电场加速。加速后其动能和位 能相等即:
元素 H C N O S M (%) 100 100 100 100 100 M+1 (%) 0.015 1.119 0.361 0.037 0.8 0.204 4.42 M+2 (%)
Cl
Br
100
100
31.93
97.87
3.碎片离子
p218
一般有机化合物的电离能为7-13电子伏特,质谱中常用的电 离电压为70电子伏特,使结构裂解,产生各种“碎片”离子。
70 60 50 40 30 20 10 0
0 10 20 30 40 50 60 70
MW 142
M-44 M-43 M-CH2CH2 M-H2O M-1 M
80 90 100 110 120 130 140 150
质谱的基本原理及质谱仪
质谱中的主要离子
分子离子峰与电离过程 离子开裂类型 基本有机化合物的质谱 质谱解析程序
C
+ CH3
.
+ CH3
.
+ CO
O m/e 120 2 m* = 92 / 120
m/e 92 = 70.53
5、重排离子
离子经重排产生的新离子。
+ CH2
6、络合离子
一些分子和离子经络合,产生新的离子。
质谱仪工作原理

质量精度是指质量测定的精确程度。 常用相对百分比表示
45
46
• • • •
四极杆分析器 飞行时间分析器 离子阱分析器 回旋共振分析器等
24
(1)磁式质量分析器
磁场
S1
R
S2
离子源
B
收集器
25
仪器原理图
电离室原理 与结构
26
离子生成后,在质谱仪中被电场加速。加速后其动能和 位能相等,即:
1 2 mv zV 2
(1)
其中 m: 离子质量;v: 离子速度;z: 离子电荷; V: 加速电压
A•+ B + ABCD+
碎
片
D• + C +
AB • + CD + C•+ D
+
离
子
分子离子、碎片离子、重排离子、加合离子、同位素离子。 14
EI 源的特点:
电离效率高;应用广泛;操作方便
EI源:可变的离子化能量 (10~240eV,常用70eV )
电子能量 分子离子增加 电子能量 碎片离子增加
质谱表 元素图表
42
四、质谱仪的性能指标
1、质量范围 指所能检测的m/z范围 四极杆质谱 m/z小于或等于2000 磁式质谱 m/z可达到几千 飞行时间质谱 m/z可达到几十万
43
2、分辨率R
质谱仪把相邻两质量
组分分开的能力
M R M
例如:CO+ 27.9949,N2+,28.0061
M R M 27.9949 2500 28.0061 27.9949
11
3、离子源
•电子轰击离子源EI, GC-MS •化学电离源CI, •快原子轰击源FAB, 磁式双聚焦质谱仪 •电喷雾源ESI, LC-MS •大气压化学电离源APCI, •激光解吸源LD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
++
: R1
: R2
+
: R3
: R4
++
:e
(M-R2)+
(M-R1)+
(M-R3)+
M+
Mass Spectrum
2021/3/13
EI 源的特点:
电离效率高,灵敏度高; 应用最广,标准质谱图基本都是采用EI源得到的; 稳定,操作方便,电子流强度可精密控制; 结构简单,控温方便;
EI源:可变的离子化能量 (10~240eV)
第1节 质谱基本原理与质谱仪
一、概述
generalization
分子质量精确测定与化 合物结构分析的重要工具;
第一台质谱仪:1912年;
早期应用:原子质量、 同位素相对丰度等;
43
29 15
57
71 85 99 113 142
m/z
40年代:高分辨率质谱仪出现,有机化合物结构分析; 60年代末:色谱-质谱联用仪出现,有机混合物分离分析; 促进天然有机化合物结构分析的发展; 同位素质谱仪;无机质谱仪;有机质谱仪;
B
离子源
2021/3/13
磁场
R
S2 收集器
②双聚焦分析器
方向聚焦: 相同质荷比,入 电场
磁场
射方向不同的离子会 聚;
能量聚焦:
+ -
相同质荷比,速 度(能量)不同的离子 会聚;
S1 离子源
S2 收集器
质量相同,能量不同的离子通过电场和磁场时,均产生 能量色散;两种作用大小相等,方向相反时互补实现双聚焦;
质谱方程式:m/e = (H02 R2) / 2V 离子在磁场中的轨道半径R取决于: m/e 、 H0 、 V 改变加速电压V, 可以使不同m/e 的离子进入检测器。 质谱分辨率 = M / M (分辨率与选定分子质量有关)
2021/3/13
①单聚焦磁场分析器
方向聚焦; 相同质荷比, 入射方向不同 的离子会聚; S1 分辨率不高
2021/3/13
③ 其他类型质量分析器
双聚焦质谱仪体积大; 色谱-质谱联用仪器的发展及仪器小型化(台式)需要; 体积小的质量分析器:
四极杆质量分析器 飞行时间质量分析器 离子阱质量分析器
体积小,操作简单; 分辨率中等;
原理在第五节色谱-质谱联用仪器介绍;
2021/3/13
3. 检测器
(1)电子倍增管 15~18级;可测出10-17A微弱电流;
(2)渠道式电子倍增器阵列
2021/3/13
最强峰为准分子离子; 谱图简单; 不适用难挥发试样;
+
气体分子
+
试样分子
+ 准分子离子
电子
(M+1)+;(M+17) +;(M+29) +;
2021/3/13
③场致电离源(FI)
电压:7-10 kV;d<1 mm; 强电场将分子中拉出一个电子; 分子离子峰强; 碎片离子峰少; 不适合化合物结构鉴定;
质量分析器(10 -6 Pa ) (1)大量氧会烧坏离子源的灯丝; (2)用作加速离子的几千伏高压会引起放电; (3)引起额外的离子-分子反应,改变裂解模型,谱图复杂化。
2021/3/13
原理与结构 仪器原理图
2021/3/13
电离室原理 与结构
1.离子源
①Electron Ionization (EI)源
2021/3/13
二、 质谱仪与质谱分析原理
mass spectrometer and mass spectrometry
进样系统
离子源
质量分析器
检测器
1.气体扩散 2.直接进样 3.气相色谱
1.电子轰击 2.化学电离 3.场致电离 4.激光
1.单聚焦 2.双聚焦 3.飞行时间 4.四极杆
质谱仪需要在高真空下工作:离子源(10-3 10 -5 Pa )
阳极
+ ++
+ ++
++ +
++ + +
d<1mm 阴极
2021/3/13
2. 质量分析器原理
加速后离子的动能 :
(1/2)m 2= e V = [(2V)/(m/e)]1/2
在磁场存在下,带电离子按曲线轨迹飞行;
离心力 =向心力;m 2 / R= H0 e V 曲率半径: R= (m )/ e H0
ቤተ መጻሕፍቲ ባይዱ
电子能量
电子能量
分子离子增加
碎片离子增加
对于易电离的物质降低电子能量,而对于难电离的物质 则加大电子能量( 常用70eV )。
2021/3/13
② 化学电离源(Chemical Ionization,CI):
离子室内的反应气(甲烷等;10~100Pa,样品的 103~105倍),电子(100~240eV)轰击,产生离子,再与试 样分离碰撞,产生准分子离子。