量子阱和超晶格精选课件
半导体光学11量子阱, 超晶格,量子线, 量子点

比较:
Nipi 结构产生空间间接跃迁,能隙远小 于本征半导体的能隙. 极值点附近的势 能为抛物带(谐振子),因此不论是电 子还是空穴的能级都是等间隔的. 另外,由于n层和p层之间夹着本征半 导体i层,因而电子和空穴的空间重叠 程度小,载流子的寿命长, 这就使得 Nipi结构制作的光电探测仪反应较慢.
▲△无限深势阱
▲波函数 n
r
, k //
V
1 2
exp
i
kx x
ky
y
cos
nz
lz
z
.
另一解为
n
r
, k //
expik//
r n z
V
1 2
exp
i
kx x
ky y
sin
nz
lz
z ,nz为奇数.
能带为
En k //
Enz
2
k
2 //
2me ,h
2
k
2 //
2 2nz2
▲△分类
Ⅰ型:电子和空穴在同一种材料中量子化;
Ⅱ型:电子和空穴在不同种材料中量子化; Ⅲ型:其中一种材料为半金属. ▲△制作 Ⅰ和Ⅱ两种材料晶格常数相近,但禁带不同. Ⅲ-Ⅴ化合物GaAs/ Al1yGay As (对任何y, 两者都具有相同的晶格常数).当y=0.5, GaAs与 Al1yGay As 都是直隙材料. GaAs/
▲一些受到限制的MBE过程被称为原子外 延(ALE)或迁移增强外延(MEE), 该 方法可以将生成层控制到单层程度. ▲MBE中分子束或原子束无碰撞地通过 反应器中抽真空空间,射向衬底表面, 在生长面经物理、化学吸收结合,或再 吸解,该晶体生成过程远离热平衡. ▲相比之下,热壁外延(HWE或HWBE )
量子阱和超晶格 ppt课件

E = E (kz) + ħ2/2m (kx2+ky2)
在xy平面内电子的动能是连续的,
z方向附加周期势场使电子的能
A
量分裂为一系列子能带。
B
不连续点的kz值满足:
k20z20/1=2±/27 n/D,D为超晶格周期。
5
超晶格多量子阱能带结构示意图
多量子阱和超晶格的本质差别在于势垒的宽度:当势垒 很宽时电子不能从一个量子阱隧穿到相邻的量子阱,即 量子阱之间没有相互耦合,此为多量子阱的情况;当势 垒足够薄使得电子能从一个量子阱隧穿到相邻的量子阱, 即量子阱相互耦合,此为超晶格的情况。
2020/12/27
31
4.1 吸收光谱实验
Dingle等研究了上述量子阱中电子从价带束缚态跃迁到导 带束缚态时对应的光吸收实验。
• 阱宽l = 400 nm,量子效应消失,对应于GaAs的本征
吸收光谱;
• 阱宽l = 21 nm和14nm,量子效应显示出来,这些峰
为电子从价带束缚态跃迁到导带束缚态所对应的吸收。
26
GaAs/AlGaAs 异质结的电子能级结构
—— 最接近理想的二维电子系统
2020/12/27
27
为什么说GaAs/AlGaAs 异质结是最接近理想的二维 电子系统?
• 由于GaAs/ AlGaAs 是晶体匹配的材料体系。利用现代分子 束外延生长技术几乎可以获得原子级平整的界面,大大减少了 界面缺陷和界面粗糙度对输运性质的影响。
量子阱宽度小于电子运动的Bloch波长,电子在垂直异质结结面 的方向(z方向)的运动约束到一系列分裂的能级。 设势能
V(x)0
0zW (3-1) z0orzW
有效质量方程分析(前提:势 能在空间缓变,即要求阱宽远 大于晶体的晶格常数)
LED中的量子阱(课堂PPT)

1
多量子阱的位置
2
半导体之间的接触
量子阱材料的选择: 能带的匹配 晶格的匹配
3
4
E=hυ
5
对发射波长的调制
6
量子阱的优点
1 产生的光波长可调 2 复合效率高
3 界面复合低
7
Hale Waihona Puke 单量子阱与多量子阱1 发光量
8
2 量子阱厚度
总阱厚度*
阱间厚度
* 无法将电子高效均匀注入各阱中 ** 壁薄的时候隧道电流作用强烈
* IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 2, MARCH/APRIL 2002 9
谢谢!
10
能带的匹配晶格的匹配45eh6对发射波长的调制7量子阱的优点2复合效率高3界面复合低1产生的光波长可调8单量子阱与多量子阱1发光量92量子阱厚度阱间厚度总阱厚度无法将电子高效均匀注入各阱中壁薄的时候隧道电流作用强烈ieeejournalonselectedtopicsinquantumelectronicsvol
无机有机杂化量子阱超晶格

Appl. Phys. Lett. 95, 173305 2009
进展
性能控制
Appl. Phys. Lett. 95, 173305 2009
进展
与上述类似,有人做了 (C8H13NH3)2PbI4多 量子阱,测试性质很接近。
结论:利用这一类特殊的有机/无机自 组装杂化物的相转换特性,及其光学特 性,可将其应用到光电子设备。
特征
1. 量子限域效应
GaAs/AlGaAs多量子阱的光吸收谱
特征
2. 量子阱中的激子效应
与三维体材料相比,量子阱材料中,电子 和空穴的库仑相互作用得到增强,激子效 应随系统尺寸减小而增加,即使在室温下, 量子阱吸收光谱中也能看到很强的激子吸 收峰。
特征
3. 二维电子气 半导体表面反型层中的电子与势阱的 宽度相当,发生量子尺寸效应,在垂 直方向的运动丧失了自由度,只存在 表面内两个方向的自由度,它的散射 几率比三维电子气小得多,因此迁移 率很高。
提出
2. 实验背景
1969年两位半导体物理学家江崎和朱 兆祥在实验中发现了反常电流-电压特 性,包括负阻效应;1972年用MBE技 术首先生长了GaAlAs超晶格异质结半 导体,并且验证了负阻效应的存在, 同时也验证了二维晶体和三维晶体能 带的差别。
提出
B
A
半导体量子阱的结构示意图
量子阱的能带结构示意图
进展
XRR测试
J. Vac. Sci. Technol. A, Vol. 32, No. 1, Jan/Feb 2014
进展
材料的电学和热电性质
J. Vac. Sci. Technol. A, Vol. 32, No. 1, Jan/Feb 2014
量子阱和超晶格分析

(4)多维超晶格 一维超晶格与体单晶比较具有许多不同的性质,这些特点 来源于它把电子和空穴限制在二维平面内而产生量子力学效应。 进一步发展这种思想,把载流子再限制在低维空间中,可能会 出现更多的新的光电特性。用 MBE 法生长多量子阱结构或单量 子阱结构,通过光刻技术和化学腐蚀制成量子线、量子点。
§4 超晶格量子阱的光学性质
4.1 4.2 4.3 4.4 吸收光谱实验 激子光谱 激子的饱和吸收 室温荧光特性
超晶格光学性质的研究除了传统上的意义之外,超晶格 的光吸收谱,荧光发射谱、激发谱、光反射谱、拉曼光 谱等是研究超晶格电子结构的主要手段,特别是光谱研 究所揭示的超晶格量子阱新颖的光学性质,为新器件原 理提供了有效的实验依据。
Ⅱ型异质结(ΔEc和ΔEv的符号相同),分两种: *ⅡA类超晶格:材料1的导带和价带都比材料2的低,禁带是 错开的。材料1是电子的势阱,材料2是空穴的势阱。电子和 空穴分别约束在两材料中。超晶格具有间接带隙的特点,跃 迁几率小,如GaAs/AlAs超晶格。
ⅡB类超晶格:禁带错开更大,窄带材料的导带底和价带顶 都位于宽带材料的价带中,有金属化现象,如 InAs/GaSb 超晶格。
§3 超晶格量子阱中的新现象
3.1 量子限制效应(quantum confinement effect) 3.2 共振隧穿效应 3.3 超晶格中的微带
3.4 声子限制效应
3.5 二维电子气
3.1 量子限制效应(quantum confinement effect)
量子阱宽度小于电子运动的Bloch波长,电子在垂直异质结结面 的方向(z方向)的运动约束到一系列分裂的能级。 设势能
GaAs/Al0.2Ga0.8As量子阱中不同阱宽下激子吸收光谱。l表示 GaAs阱宽,T=2K。随阱宽的减少呈现台阶形的吸收谱,阱宽 为400nm时阶消失。
半导体物理第九章2

§9.3 异质结在光电子器件中的应用(略,第十章半导体激光器后自学) §9.4 半导体量子阱和超晶格一、基本概念量子阱和超晶格都是利用禁带宽度不同的两种材料对电子的运动形成低维约束,以使其能量状态产生新的量子化。
半导体超晶格的概念是IBM 的日裔科学家江崎和华裔科学家朱兆祥为了开发新的负阻器件于1968年提出,并于1970年首先用砷化镓实现的。
他们认为,如果用两种晶格非常匹配但禁带宽度不同的材料A 和B ,以薄层的形式周期性地交替生长在一起,则其中的电子沿薄层生长方z 的连续能带将会分裂为一些子能带,如图9-13所示。
设两种材料薄层的厚度分别为d 1和d 2,总厚度d =d 1+d 2即为超晶格周期。
由于d 是构成材料晶格常数a 的倍数,构成材料在z 方向上由(±n π/a)所决定的布里渊区将被分裂为若干个小布里渊区,其E z —k z 关系曲线将在这些布里渊区的边界处间断。
例如,若超晶格的周期d 为晶格常数a 的10倍,那么,构成材料的每个布里渊区都将被分割为10个微小的布里渊区。
在每一个微小布里渊区中,超晶格材料的电子能量E z 与波矢k z 的关系是连续变化的函数关系,形成一个能带,称为子能带。
通常把正常晶体的能带变为许多子能带的情况称为布里渊区的折叠。
图中的虚线表示按近自由电子近似得到的一个布里渊区中的抛物线型能带,而实线所代表的超晶格能带明显地为非抛物线型能带。
由连续能带分裂而成的第n 个子能带的E (k ) 关系可表示为kd t E k E cos 2)(n n0-=式中,k 是电子沿z 方向的波矢,限制在布里渊区(-π/d ,π/d )之中;d 是两个薄层的总厚度,即超晶格的重复周期,或称超晶格常数;t n 是能带宽度的量度,2t n 即为该子能带的宽度。
在k 空间,电子的运动要满足上式。
如果沿z 方向加一个外加电场E ,按照半经典理论,电子运动应满足下列方程qE dtdkhπ2-= 在这个电场的作用下,子能带中的电子将作定向运动,并在两次散射之间从电场获取并积累能量。
2015第12课-第10章 半导体超晶格和多量子阱

vo
*Ez 2 2m h2
2 = 2m* (V0 Ez ) h2
-b 0
a
2 2 sin ( b) sin a 2 cos ( b) cosa
cos k (a b) cos kl
H ( E ) cos kl
E
A
允许带
B
禁带
C
D E H F G
问题?
什么是超晶格 超晶格与多量子阱的区别与联系。 超晶格的种类 应变层超晶格 负阻效应 搀杂超晶格
第10章 半导体超晶格和多量子阱
10.1 引言 (10.1.1)超晶格概念 (10.1.2)超晶格结构的定义 (10.1.3)超晶格的种类 10.2 超晶格的能带 10.3 应变层超晶格 10.4 负阻效应 10.6 搀杂超晶格 10.7 超晶格的评价
(10.6)
式中,ai,Gi,hi分别为原材料的晶格常数、刚性系 数、薄层厚度;f为晶格失配度,由f值的正、负可 知应变超晶格属于压缩应变和伸张应变超晶格。
应变对能带产生的两个效应 (1)体积变化引起价带和导带的整体移动。 (2)重轻空穴带发生分裂。
2 应变层超晶格的临界厚度
力学平衡模型
能量平衡模型
10.2 超晶格的能带
超晶格的能带结构
载流子沿薄层生长方向z的连续能带会分裂成一系列子 带。这些能带可以通过选择不同的半导体材料、不同 的材料厚度a和b,而人为地改变。
人造材料 能带工程
其中载流 子的运动
在平行于界面的平面内不受影响 在垂直于界 面的平面内 受材料晶格周期势的影响 受沿z向的人工附加周期 势的影响
AlAs GaAs a b
周期 d=a+b
z 人工晶格
生长 方向
量子阱和超晶格课件

05
量子阱和超晶格的应用前景
量子阱在光电子器件中的应用
光子晶体管
量子阱结构可用于制造光子晶体管,这种器件可以控制光子的流动,从而实现光信号的放大和调制,提高光通信系统 的性能。
发光二极管(LED)
量子阱LED具有更高的发光效率和更好的色彩渲染能力,广泛应用于显示技术和照明领域。
超晶格对量子阱性能的影响
限域效应增强
超晶格结构可以增强量子阱的限 域效应,进一步限制电子的运动 范围,从而影响量子阱的性能。
调制掺杂效应
在超晶格中,不同材料之间的电 荷转移和调制掺杂效应可以对量 子阱中的载流子浓度和分布进行 调控,从而影响量子阱的输运性
质。
应变工程
超晶格中的应变可以传递给量子 阱,通过应变工程对量子阱的性 能进行调控,如改变发光波长、
量子阱和超晶格课件
• 量子阱概述 • 超晶格概述 • 量子阱与超晶格的关系 • 量子阱和超晶格的制备技术 • 量子阱和超晶格的应用前景 • 量子阱和超晶格的最新研究进展
01
量子阱概述
量子阱的定 义
定义
量子阱是一种利用量子力学原理 在纳米尺度上限制电子、光子等 微观粒子的运动,从而改变其物 理性质的人工结构。
精度提升
近年来,研究人员致力于发掘 新型材料用于量子阱的制备, 如铟砷磷、镓砷氮等,以拓展 量子阱在光电子、微电子领域 的应用范围。
低维材料,如二维材料和一维 纳米线等,作为量子阱的构成 元素,在新型量子阱材料的研 发中占据重要地位。它们具有 优异的物理性能和广泛的潜在 应用。
通过改进生长技术、优化生长 条件,实现量子阱材料的高精 度、高质量制备,以满足量子 计算和量子通信等高端应用的 需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可做出比一般Si器件更高速工作的电子器件。
精选ppt
16
(4)多维超晶格 一维超晶格与体单晶比较具有许多不同的性质,这些特点
来源于它把电子和空穴限制在二维平面内而产生量子力学效应。 进一步发展这种思想,把载流子再限制在低维空间中,可能会 出现更多的新的光电特性。用MBE法生长多量子阱结构或单量 子阱结构,通过光刻技术和化学腐蚀制成量子线、量子点。
精选ppt
7
(1)组分调制超晶格
在超晶格结构中,如果超晶格的重复单元是由不同半导 体材料的薄膜堆垛而成,则称为组分超晶格。在组分超晶格 中,由于构成超晶格的材料具有不同的禁带宽度,在异质界 面处将发生能带的不连续。
精选ppt
8
按异质结中两种材料导带和价带的对准情况,江崎把异质 结分为三类:
Ⅰ型异质结: 窄带材料的禁带完全落在宽带材料的禁带中, ΔEc和ΔEv的符号相反。不论对电子还是空穴,窄带材料都是 势阱,宽带材料都是势垒,即电子和空穴被约束在同一材料中。 载流子复合发生在窄带材料一侧。
B
不连续点的kz值满足:
kz =±n/D,D为超晶格周期精。选ppt
5
超晶格多量子阱能带结构示意图
多量子阱和超晶格的本质差别在于势垒的宽度:当势垒 很宽时电子不能从一个量子阱隧穿到相邻的量子阱,即 量子阱之间没有相互耦合,此为多量子阱的情况;当势 垒足够薄使得电子能从一个量子阱隧穿到相邻的量子阱, 即量子阱相互耦合,此为超晶格的情况。
精选ppt
14
(2)掺杂调制超晶格
利用电离杂质中心产生的静电势在晶体中形成周期性变化
的势,例如n-i-n-i结构超晶格。
精选ppt
15
(3)应变超晶格
初期研究超晶格材料时,除了A1xGa1-xAs/GaAs体系以 外,对其他物质形成的超晶格的研究工作不多。 原因:晶格常数相差很大,会引起薄膜之间产生失配位错而 得不到良好质量的超晶格材料。
• 1971年第一个GaAs/AlxGa1-xAs人工周期结材料:
“L. Esaki, L.L.Chang. R.Tsu, 12th Low Temp. Phys. Kyoto, Japan P.551”
• 1972年观察到负微分电导,输运的振荡现象,微带结构。
随后,新颖的物理现象被揭示,新理论被提出,与之相应的高
GaAlAs/GaAs和InGaAsP/InP都属于这一种。
精选ppt
9
Ⅱ型异质结(ΔEc和ΔEv的符号相同),分两种: *ⅡA类超晶格:材料1的导带和价带都比材料2的低,禁带是 错开的。材料1是电子的势阱,材料2是空穴的势阱。电子和 空穴分别约束在两材料中。超晶格具有间接带隙的特点,跃 迁几率小,如GaAs/AlAs超晶格。
EcA
E2
EgA EgB EcB
E1
EvB EvA
多量子阱能带图
∆Ec ∆Ev
精选ppt
E2 E1
超晶格能带图
6
超晶格分类
(1)组分调制超晶格 (2)掺杂调制超晶格 (3)应变超晶格 (4)多维超晶格 (5)非晶态半导体的超晶格 (6)半磁超晶格 (7)渐变能隙超晶格(锯齿状)
超晶格能带结构来源于两种材料禁带的变化,存在内界面。
精选ppt
12
精选ppt
13
(2)掺杂调制超晶格 在同一种半导体中,用交替地改变掺杂类型的方法做成的
新型人造周期性半导体结构的材料。
优点: (1)任何一种半导体材料只要很好 控制掺杂类型都可以做成超晶格。 (2)多层结构的完整性非常好,由 于掺杂量一般较小,所以杂质引 起的晶格畸变也较小。因此,掺 杂超晶格中没有像组分超晶格那 样明显的异质界面。 (3) 掺杂超晶格的有效能隙可以 具有从零到未调制的基体材料能 量隙之间的任何值,取决于对各 分层厚度和掺杂浓度的选择。
精选ppt
10
ⅡB类超晶格:禁带错开更大,窄带材料的导带底和价带顶 都 位 于 宽 带 材 料 的 价 带 中 , 有 金 属 化 现 象 , 如 InAs/GaSb 超晶格。
精选ppt
11
Ⅲ类超晶格:其中一种材料具有零带隙。组成超晶格后,由 于它的电子有效质量为负,将形成界面态。
典型的例子是HgTe/CdTe超晶格。
性能的新型器件被研究和开发。
精选ppt
3
• 直条影区指具有相 近晶格常数但不同 能隙宽度的材料
• 在区内材料原则上 都可组成异质结超 晶格
• 图中的连线是指这 些材料都可形成特 定的合金
低温下具有金刚石、闪锌矿结构半导体
与晶格常数的关系(4.2K)
精选ppt
4
§2 超晶格和量子阱的一般描述
超晶格: Esaki和Tsu(江崎和朱兆祥)在1969年提出了超晶 格概念,设想将两种不同组分或不同掺杂的半导体超薄层A和 B交替叠合生长在衬底上,使在外延生长方向形成附加的晶格
精选p(Esaki), 朱兆祥(Tsu) : “Superlattice and Negative Deferential Conductivity in Semiconductors” ,
周期性地外延生长半导体超晶格:微带结构,布里渊区大
大缩小,负微分电导。
解决方法:当多层薄膜的厚度十分薄时,在晶体生长时反而 不容易产生位错。即,在弹性形变限度之内的超薄膜中,晶 格本身发生应变而阻止缺陷的产生。因此,巧妙地利用这种 性质,可制备出晶格常数相差较大的两种材料所形成的应变 超晶格。
SiGe/Si是典型应变超晶格材料,随着能带结构的变
化,载流子的有效质量可能变小,可提高载流子的迁移率,
周期性。
当取垂直衬底表面方向(垂直方向)为Z轴,超晶格中的电子沿 z方向运动将受到超晶格附加的周期势场的影响,而其xy平面 内的运动不受影响。导带中电子的能量可表示为:
E = E (kz) + ħ2/2m (kx2+ky2)
在xy平面内电子的动能是连续的,
z方向附加周期势场使电子的能
A
量分裂为一系列子能带。
量子阱和超晶格
精选ppt
2015年11月28日
1
半导体超晶格和量子阱
§1 引言 §2 超晶格和量子阱的一般描述 §3 超晶格量子阱中的新现象 §4 超晶格量子阱的光学性质 §6 超晶格和量子阱器件
参考书: “半导体超晶格物理学” 夏建白等,上海科学出版社,1994 “半导体超晶格-材料与物理” 黄和鸾等, 辽宁大学出版社,1991 “半导体异质结物理” 虞丽生,科学出版社,2006