半导体超晶格讲义和量子阱.

合集下载

9.4 半导体超晶格

9.4 半导体超晶格

2
xy
2m
(kx2
k
2 y
)
因为在xy平面内的运动没有受到附加势场的作用,所以电子可
以自由运动。于是,量子阱中的电子运动,可以看做是平行于
两种材料界面的平行面内的准二维运动,这些电子被称为二维
电子气(2DEG),对于空穴,则称为二维空穴气(2DHG)。
电子沿z方向运动:受到附加周期势场的作用,能量是量子化 的,只能取一系列分立的值,即
§9.4 半导体超晶格
概念:半导体超晶格是指由交替生长两种半导体材料薄层组成的 一维周期性结构,且薄层厚度的周期小于电子平均自由程的人造 材料。生长超晶格材料的方法:MBE、MOCVD等。
背景及意义:超晶格的思想是江崎(Leo Esaki)和朱兆祥在1968 年提出的。1973年获Nobel奖。超晶格结构提供了能够进行实 验观察量子效应的物理模型、有技术应用的潜力。
带隙与组分有关:GaAs的带隙宽度为Eg1=1.424eV,Ga1xAlxAs的禁带宽度Eg2与组分有关。 Eg2=Eg1+1.247x
两种材料的禁带宽度之差为 Eg Eg2 Eg1 1.247x
bc Ec
GaAs Ga1-xAlxAs
Ev 图9-28 Ga1-xAlxAs/GaAs的能带图
图9-27 理想超晶格 结构示意图
下面以Ga1-xAlxAs/GaAs为例,对半导体超晶格材料进行简单 介绍。
晶格失配小:x=0时,GaAs的晶格常数为0.56531nm, x=1时,AlAs的晶格常数为0.56622nm,Ga1-xAlxAs的晶 格常数在两者之间。Ga1-xAlxAs与GaAs之间晶格失配小于 0.16%。因而可以制得界面完整性好,缺陷少的超晶格结构。

第二章1续_半导体物理之量子阱基础

第二章1续_半导体物理之量子阱基础

En
2
2me
1/ 3
3 qFS
2
2/3
n
3 4
2/3
FS 表面场,qFS 势能倾斜,n 量子数
0偏压下
正向偏压下
3、量子阱中电子的能量状态
求解—维长方形势阱中电子的能量状态是量子力学中的基本问题,可用克龙尼 克—潘宁(Kroning—Penney)模型或有效质量近似法来求解
x 势阱中的电子波函数应满足薛定鄂(Shrodinger)方程
Ex
En
2
2me*
kx2
2 2
2me*dw2
nx2
8.2-13
在无限深量子阱中运动的电子的总能量
E(n, ky , kz )
En
Et
2 2
2me*dw2
nx2
2
2me*
(k
2 y
kz2 )
(8.2.14)
有限深量子阱U0
2
2
E
2me
(k
2 y
kz2 )
2me
qn2
qna n
22
sin
1
第2章 光电子器件的半导体 物理之量子阱材料基础
目录
1. 历史沿革 2. 基本概念 3. 量子阱中电子的能量状态 4. 二维电子气的台阶状态密度分布 5. 实验验证 6. 应用
1、沿革
• 理论工作 – 将异质结半导体激光器有源区做得十分薄,以致于能够产生量子 效应,会有什么结果呢?
• 美国IBM公司的L.江奇(ESAKI)和朱肇祥于1970年提出。研究了周期 为l00Å的掺杂或组分超晶格中载流子的输运现象,结论是体材料中的 抛物线型能带结构会变成一些被隔开的子能带

高等半导体物理讲义

高等半导体物理讲义

高等半导体物理课程内容(前置课程: 量子力学,固体物理)第一章能带理论,半导体中得电子态第二章半导体中得电输运第三章半导体中得光学性质第四章超晶格,量子阱前言:半导体理论与器件发展史1926 Bloch 定理1931 Wilson 固体能带论(里程碑)1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术得革命,同时也促进了半导体物理研究得蓬勃发展。

从那以后得几十年间,无论在半导体物理研究方面,还就是半导体器件应用方面都有了飞速得发展。

1954半导体有效质量理论得提出,这就是半导体理论得一个重大发展,它定量地描述了半导体导带与价带边附近细致得能带结构,给出了研究浅能级、激子、磁能级等得理论方法,促进了当时得回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。

1958 集成电路问世1959 赝势概念得提出,使得固体能带得计算大为简化。

利用价电子态与原子核心态正交得性质,用一个赝势代替真实得原子势,得到了一个固体中价电子态满足得方程。

用赝势方法得到了几乎所有半导体得比较精确得能带结构。

1962 半导体激光器发明1968 硅MOS器件发明及大规模集成电路实现产业化大生产1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥)* 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理得研究1971 第一个超晶格Al x Ga1x As/GaAs 制备,标志着半导体材料得发展开始进入人工设计得新时代。

1980 德国得V on Klitzing发现了整数量子Hall 效应——标准电阻1982 崔崎等人在电子迁移率极高得Al x Ga1x As/GaAs异质结中发现了分数量子Hall 效应1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移得量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起得激子光学非线性效应,为设计新一代光双稳器件提供了重要得依据。

半导体材料第10讲-超晶格

半导体材料第10讲-超晶格

量子阱的应用
量子阱红外探测器 阱材料的子带中有两个子能带,即基态E1和第一激发态E2 ,在 材料生长过程中利用掺杂型半导体.使子带阱中基态上具有一定的二 维电子密度, 当入射辐射光子能量为hω照射到器件接收面上时,E1 上的电子将被光子激发到E2态,并隧穿势阱壁形成热电子,以致形成 与入射光强度成正比的电信号。 这种新型、快速、灵敏的红外探测器具有灵活性大、响应速度快、 量子效率高、结构简明等优点。量子阱红外探测器还具有材料均匀性 好稳定性好,重复性好及质高价廉等优点,其发展速度特别快。这种 新型量子阱探测器的问世,大大促进了大规模集成、光学逻辑电路、 红外成像技术的发展量子阱红外探测器对红外物理、红外光电子学及 其应用领域带来了革命性的发展。
半导体材料
第八章 III-V族多元合物半导体
四探针法原理 请参考 陈治明,王建农,《半导体器件的材料 物理学基础》,科学出版社,1999年5月第 一版,p: 249-268
8-1 异质结
异质结:两种不同晶体接触处所形成的结。由两种半导体单晶联
结起来构成。可分为同型(NN+,PP +)和异型(PN)两种
超晶格量子阱的一些重要现象和性质即可用二维电子气的态密度 来描述。 通过对二维电子气的态密度的计算,发现二维电子气的态 密度与能级无关。正是这种特性,给超晶格带来了许多方面的应用。
可参考:阎明,”半导体超晶格及其量子阱的原理”,上海海运 学院学报,V0l_21 No.1 Mar.2000,p=102-107

度,从而减少了复合区宽度。

异型异质结可利用改变两侧禁带宽度的相对大小来提高电子或空 穴的注入效率。


同型和异型异质结都能提供一个折射率阶跃,形成光波导的界面

半导体材料第10讲-超晶格

半导体材料第10讲-超晶格
MOVPE反应器中气体流速快,可以迅速改变多元化合物组分和杂质浓度,从 而可以使杂质分布陡峭一些,过渡层薄。 MBE生长速度低(0.1-1nm/s),利用快门可精密地控制掺杂、组分和厚度,是 一种原子级的生长技术,有利于生长多层异质结构
在器件,特别是光电器件的设计和制做中常利用异质结的以下特性:

要想使两种晶格常数不同的材料在原子尺寸范围内达到相互近似匹 配,只有在晶格处于弹性应变状态,即在两种晶格交界面附件的每个 原子偏离其正常位置时才能实现。当这种应变较大时,即存储在晶体 中的应变能量足够大时,将通过在界面处形成位错而释放,所形成的 位错称为失配位错。实验表明,在异质结外延层中,晶格失配引起的 位错密度可达107-108/cm2,甚至达到1010/cm2。如果发光器件的有 源区中有如此高密度的位错,其发光效率将大大降低。
若材料B的价带顶也高于A的价带顶,则该结构同时也是 材料A为空穴势垒,B为空穴势阱的量子阱
由于两种材料的禁带宽度 不同而引起的沿薄层交替生长 方向(z方向)的附加周期势分 布中的势阱称为量子阱。
量子阱中电子与块状晶体 中电子具有完全不同的性质, 即表现出量子尺寸效应,量子 阱阱壁能起到有效的限制作用, 使阱中的载流子失去了垂直于 阱壁方向(z方向)的自由度, 只在平行于阱壁平面(xy面) 内有两个自由度,故常称此量 子系统为二维电子气。
能带突变的应用
能带突变的应用是多方面的: 1、可以产生热电子 2、可形成使电子反射的势垒 3、提供一定厚度和高度的势垒,当势垒很薄时, 电子可以隧穿,势垒较厚时,只有那些能量比势 垒高度大的电子才能越过。 4、造成一定浓度和宽度的势阱,束缚电子于其中, 当势阱宽度小于电子的de broglie波长时,阱中的 电子将处于一系列量子化能级上(即量子势阱)

7.8 半导体超晶格

7.8 半导体超晶格

图7.8.5 横向超晶格器件
7.8.4 二维电子气的能态密度与量子霍尔效应 1. 二维电子气能态密度 如前所述,超晶格半导体附加的周期性引 起电子能谱的附加量子化,即在 z 方向形成一 系列量子能级 E1 ( z), E2 ( z), ,由式(7.8.1)可知, 由于[ 2 /(2m* )](k x2 k y2 ) 形成准连续谱,则相应 z 方 向的每一个能级 E ( z) ,电子的二维运动形成一 个子能带。子能带的态密度可由第4章的方法 求得,只不过这里是二维问题。由在 k// (kx , ky ) 空 间K标度下单位体积的态密度为1/(2π)2 可知, 以 k k k 为半径的 k// 空间圆内所包含的允许 的 k// 的数目为 :
图 7.8.3 超晶格中E-k 关系
图 7.8.4 在周期性晶体场中外加直流 电场以后电子的行为
由此可见,由于在超晶格晶体中引入了附加的一维 周期势场,其中电子的能量将呈现新的量子化现象, 原来晶格周期势场中的能带分裂成一系列子能带。
7.8.3 超晶格的负阻效应及其应用
这种附加量子化效应使得超晶格晶体产生了许许 多多新的物理现象和物理性质,如量子霍尔效应、 负阻效应等。下面简单介绍负阻效应极其应用。 研究表明,当在不同的温度下测量超晶格晶体的 电阻时,将会发现样品的电阻随外加电压变化而变 化。当外加电压增加到某一阀值时,微分电阻的数 值将会发生突变,在某些温度下会出现负阻现象。 过了突变值以后,随着外加电压的增加,电阻的数 值会出现忽大忽小的变化。电阻的这种异常变化是 块状 GaAs、AlAs 的单晶样品所没有的。关于超晶格 晶体的负阻效应可作如下的定性讨论。 图7.8.4给出了电子在直流电场中受到加速作 用以后运动的情况。假定无外电场时,电子处于A

高等半导体物理讲义

高等半导体物理讲义

精品文档高等半导体物理课程内容(前置课程:量子力学,固体物理)第一章能带理论,半导体中的电子态第二章半导体中的电输运第三章半导体中的光学性质第四章超晶格,量子阱前言:半导体理论和器件发展史1926 Bloch 定理1931 Wilson 固体能带论(里程碑)1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术的革命,同时也促进了半导体物理研究的蓬勃发展。

从那以后的几十年间,无论在半导体物理研究方面,还是半导体器件应用方面都有了飞速的发展。

1954半导体有效质量理论的提出,这是半导体理论的一个重大发展,它定量地描述了半导体导带和价带边附近细致的能带结构,给出了研究浅能级、激子、磁能级等的理论方法,促进了当时的回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。

1958 集成电路问世1959 赝势概念的提出,使得固体能带的计算大为简化。

利用价电子态与原子核心态正交的性质,用一个赝势代替真实的原子势,得到了一个固体中价电子态满足的方程。

用赝势方法得到了几乎所有半导体的比较精确的能带结构。

1962 半导体激光器发明1968 硅MOS器件发明及大规模集成电路实现产业化大生产1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥)* 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理的研究1971 第一个超晶格Al x Ga1-x As/GaAs 制备,标志着半导体材料的发展开始进入人工设计的新时代。

1980 德国的V on Klitzing发现了整数量子Hall 效应——标准电阻1982 崔崎等人在电子迁移率极高的Al x Ga1-x As/GaAs异质结中发现了分数量子Hall 效应1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移的量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起的激子光学非线性效应,为设计新一代光双稳器件提供了重要的依据。

第三章半导体超晶格

第三章半导体超晶格

第3章 半导体超晶格3.1 半导体超晶格基本结构3.2 超晶格的应用举例3.1 半导体超晶格基本结构所谓的超晶格,是由几种成分不同或掺杂不同的超薄层周期性地堆叠起来而构成地一种特殊晶体。

超薄层堆叠地周期(称为超晶格地周期)要小于电子的平均自由程,各超薄层的宽度要与电子的德布罗意波长相当。

其特点为在晶体原来的周期性势场之上又附加了一个可以人为控制的超晶格周期势场,是一种新型的人造晶体。

超晶格的分类(一)复合超晶格利用异质结构,重复单元是由组分不同的半导体薄膜形成的超晶格称为复合超晶格,又称为组分超晶格。

按照能带不连续结构的特点可将这个类型超晶格分为四类:第Ⅰ类超晶格、第Ⅱ类错开超晶格、第Ⅱ类倒转型超晶格和第Ⅲ类超晶格。

(1) 第Ⅰ类超晶格(GaAs/AlGaAs)GaAs 材料的见地完全包含在AlGaAs 的能隙之中,电子和空穴都位于窄带隙材料的势阱中v c g E E E ∆+∆=∆x 247.1E g =∆,与Al 的组分x 成正比。

(2) 第Ⅱ类 —— 错开型超晶格(GaSbAs/InGaAs )两个带隙互相错开,一个价带底在另一个价带底的下面。

电子和空穴分别处于两个不同的材料中形成了真实空间的间接带隙半导体(3) 第Ⅱ类 —— 倒转型超晶格(InAs/GaSb )一个导带底下降到另一个价带底之下。

电子和空穴可能并存于同一个能区中,形成电子-空穴系统Ec1与Ec2能量相差一个Es ,前者的导带与后者的价带部分重叠,从而可能发生从半导体到金属的转变(4) 第Ⅲ类超晶格(HgTe/CdTe)宽带隙半导体CdTe 和零带隙半导体HgTe 构成的超晶格。

只有当超晶格的周期小于某一定值时才具有半导体特性,否则具有半金属特性。

超晶格能隙差由最低导带子能带和价带子能带的间距决定,价带能量不连续值近似为零,导带能量不连续值近似等于两种材料能隙之差。

(二)掺杂超晶格利用超薄层材料外延技术(MBE 或MOCVD )生长具有量子尺寸效应的同一种半导体材料时,交替地改变掺杂类型的方法(即一层掺入N 型杂质,一层掺入P 型杂质),即可得到掺杂超晶格,又称为调制惨杂超晶格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档