状态反馈控制器设计(业界精制)

合集下载

现代控制理论实验五、状态反馈控制器设计河南工业大学

现代控制理论实验五、状态反馈控制器设计河南工业大学

河南工业大学《现代控制理论》实验报告专业: 自动化 班级: F1203 姓名: 蔡申申 学号:201223910625完成日期:2015年1月9日 成绩评定:一、实验题目:状态反馈控制器设计二、实验目的1. 掌握状态反馈和输出反馈的概念及性质。

2. 掌握利用状态反馈进行极点配置的方法。

学会用MATLAB 求解状态反馈矩阵。

3. 掌握状态观测器的设计方法。

学会用MATLAB 设计状态观测器。

三、实验过程及结果1. 已知系统u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111100020003.[]x y 3333.02667.04.0= (1)求解系统的零点、极点和传递函数,并判断系统的能控性和能观测性。

A=[-3 0 0;0 2 0;0 0 -1];B=[1;1;1];C=[0.4 0.266 0.3333];[z p k]=ss2zp(A,B,C,0)系统的零极点:z =1.0017-1.9997p =-3-12k =0.9993[num den]=ss2tf(A,B,C,0)num =0 0.9993 0.9973 -2.0018den =1 2 -5 -6系统的传递函数:G1=tf(num,den)G1 =0.9993 s^2 + 0.9973 s - 2.002-----------------------------s^3 + 2 s^2 - 5 s - 6Continuous-time transfer function.Uc=ctrb(A,B); rank(Uc)ans =3满秩,系统是能控的。

Vo=obsv(A,C); rank(Vo)ans =3满秩,系统是能观的。

(2)分别选取K=[0 3 0],K=[1 3 2],K=[0 16 /3 –1/3](实验中只选取其中一个K为例)为状态反馈矩阵,求解闭环系统的零点、极点和传递函数,判断闭环系统的能控性和能观测性。

状态反馈控制器设计

状态反馈控制器设计

第五章 状态反馈控制器的设计题目:系统结构图如下图所示:要求:闭环系统的输出超调量σ≤5%,峰值时间t p ≤0.5s 。

分别求出开环、PID 闭环、状态反馈闭环、PID/状态反馈闭环的单位阶跃响应,并分析相应曲线得出结论。

1.开环系统单位阶跃响应图 1 开环系统仿真模型0.0.0.0.1.1.仿真时间(s )阶跃响应图2 开环系统单位阶跃响应分析:由图中的响应曲线可知开环系统不稳定,通过开环传递函数G K (s )=3211872s s s++也可以判断出开环系统不稳定。

2.闭环传递函数及其单位阶跃响应(1)闭环传递函数G B (s)=32118721s s s +++,特征根分别为λ1=-12.0138,λ2=-5.9722,λ3=-0.0139。

(2)闭环传递函数仿真模型及其单位阶跃响应曲线见图3、图4。

图3 闭环传递函数仿真模型图4 闭环传递函数单位阶跃响应分析:响应曲线表明,系统是稳定的,但是系统的响应时间太长,远达不到要求。

3.加入PID控制器,并进行参数整定后的单位阶跃响应图 5 PID控制仿真模型其中参数设置为:K p =256.8 ,K i =0.2,K d=23.2。

图6 PID 闭环控制输出波形图分析:通过Workspace 数据查询可知峰值时间tp=0.98686s ,最大输出值为1.0485,所以超调量为4.85%,满足要求,峰值时间达不到要求。

4.加入状态反馈控制器的单位阶跃响应图7 状态反馈控制仿真模型其中H1 到H3依次为10000、284.8、96.1。

0.0.0.0.1.-4t i m e(sec)O u t p u t图8 状态反馈控制单位阶跃响应分析:通过Workspace数据查询可知峰值时间tp=0.4492s,最大输出值为1.0449,所以超调量为4.49%,满足性能指标要求。

5.状态反馈/PID控制的单位阶跃响应图9 状态反馈/PID控制仿真模型其中PID参数设置为:K p =1.05 ,K i =0.01,K d=0;状态反馈控制H1 到H3依次为10000、284.8、96.1。

控制器设计中的状态反馈方法研究

控制器设计中的状态反馈方法研究

控制器设计中的状态反馈方法研究引言在控制器设计中,状态反馈方法是一种广泛应用的技术。

它通过实时监测被控对象的状态,将其反馈给控制器,从而实现对被控对象的精准控制。

本文将着重研究控制器设计中的状态反馈方法。

一、状态反馈的原理状态反馈技术是基于被控对象的状态量进行控制的一种方法。

通常,对于某个被控对象,我们需要知道它的状态才能控制它。

获得被控对象的状态可以采用传感器或测量设备等手段进行实时监测。

将获得的状态反馈给控制器后,控制器就能根据当前状态量的信息计算出一个控制信号,并通过执行机构对被控对象进行控制。

这样就实现了对被控对象的精准控制。

二、状态反馈的分类1. 全反馈与局部反馈全反馈是指系统中所有的状态量都被采集到并用于设计控制器,因此也被称为全状态反馈。

全反馈能够有效控制系统,但增加了硬件和软件的复杂度。

局部反馈则只使用系统部分状态信息进行设计,其主要应用于大型系统中,减少成本和提高控制度。

2. 直接反馈与间接反馈直接反馈是指将被控对象的输出量作为反馈信号输入到控制器中,直接进行调节。

间接反馈则是通过测量被控对象状态来计算输出量,进而进行反馈调节。

三、状态反馈的应用1. 电子电气系统的控制在电子电气系统的控制中,状态反馈技术被广泛应用。

例如,在直流电机控制中,通过采集电机电流和角度来实时监测电机状态,从而实现对电机转速和转向的精准控制。

2. 机械工程中的控制在机械工程中,状态反馈技术同样是一种常用技术。

例如,在飞机自动驾驶系统中,通过实时监测飞机状态,将监测结果反馈给控制器,实现对飞机飞行姿态和高度的自动控制。

3. 医疗器械中的应用在医疗器械中,常常需要按照生理状态对人体进行精准控制。

这就需要采用状态反馈技术。

例如,在人工呼吸器控制中,通过实时监测患者的呼吸状态,将监测结果反馈给人工呼吸器,从而实现对患者的呼吸进行精准控制。

结论状态反馈是一种应用广泛的技术,它通过实时监测被控对象的状态,将监测结果反馈给控制器,实现对被控对象的精准控制。

(完整版)状态反馈控制器的设计

(完整版)状态反馈控制器的设计

(完整版)状态反馈控制器的设计上海电⼒学院实验报告⾃动控制原理实验课程题⽬:状态反馈控制器的设计班级:姓名:学号:时间:⼀、问题描述已知⼀个单位反馈系统的开环传递函数为,试搭建simulink 模型。

仿真原系统的阶跃响应。

再设计状态反馈控制器,配置系统的闭环极点在,并⽤simulink 模型进⾏仿真验证。

⼆、理论⽅法分析MATLAB提供了单变量系统极点配置函数acker (),该函数的调⽤格式为K=place ( A,b,p)其中,P为期望闭环极点的列向量,K为状态反馈矩阵。

Acker ()函数时Ackerman 公式编写,若单输⼊系统可控的,则采⽤状态反馈控制后,控制量u=r+Kx 。

对于多变量系统的状态反馈极点配置,MATLAB也给出了函数place (),其调⽤格式为K=place ( A,B,P)状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输⼊端与参考输⼊叠加形成控制量,作为受控系统的输⼊,实现闭环系统极点的任意配置,⽽且也是实现解耦和构成线性最优调节器的主要⼿段。

只要给定的系统是完全能控且能观的,则闭环系统的极点可以通过状态反馈矩阵的确定来任意配置。

这个定理是⽤极点配置⽅法设计反馈矩阵的前提和依据。

在单输⼊,单输出系统中,反馈矩阵有唯⼀解,且状态反馈不改变系统的零点。

三、实验设计与实现1、搭建原系统的sumlink模型并观察其单位阶跃响应原系统sumlink模型原系统单位阶跃响应由原系统单位阶跃响应可知系统不稳定2、⽤极点配置法设计状态反馈控制器①利⽤matlab计算系统的状态空间模型的标准型>> a=[10];b=[1 5 6 0];[A B C D]=tf2ss(a,b)A = -5 -6 01 0 00 1 0B = 1C = 0 0 10③系统能控性矩阵>> uc=ctrb(A,B)uc = 1 -5 190 1 -50 0 1 >> rank(uc) ans = 3 所以系统完全能控③系统能观型矩阵>> vo=obsv(A,C) vo = 0 0 100 10 010 0 0 >> rank(vo) ans = 3 所以系统完全能观所以可以⽤极点配置法设计状态反馈控制器④求解系统反馈矩阵>> p=[-3 -0.5+j -0.5-j];k=acker(A,B,p)k = -1.0000 -1.7500 3.7500 加⼊反馈后的系统闭环极点为:>>sysnew=ss(A-B*k,B,C,D);pole(sysnew)ans = -3.0000-0.5000 + 1.0000i-0.5000 - 1.0000i⑤搭建加⼊反馈控制器后系统的sumlink模型⑥观察新系统的单位阶跃响应四、实验结果分析加⼊反馈控制器后系统的闭环极点在,符合题⽬要求。

现代控制实验状态反馈器和状态观测器的设计

现代控制实验状态反馈器和状态观测器的设计

现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。

状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。

状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。

本文将分别介绍状态反馈器和状态观测器的设计原理和方法。

一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。

其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。

通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。

2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。

常用的设计方法有极点配置法、最优控制法等。

3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。

状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。

4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。

二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。

其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。

2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。

常用的设计方法有极点配置法、最优观测器法等。

3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。

状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。

4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。

现代控制理论5状态反馈控制器的设计2

现代控制理论5状态反馈控制器的设计2
应速度等等 • 系统稳定性的决定因素:系统极点 • 影响动态性能的因素:二阶系统(极点位置),
高阶系统(一对主导极点) • 结论:极点影响系统的稳定性和动态性能。
• 线性系统:
x& Ax Bu
状态反馈:u Kx
闭环系统的状态方程为:
x& (A BK)x
• 需要回答两个问题:
➢在什么条件下,或者说对什么样的系统, 极点配置问题可解,即使得闭环系统具 有给定极点的状态反馈控制器存在性。
• 状态空间模型的线性系统:
状态反馈控制: 闭环系统:
• 输出反馈控制:
x& (A BFC)x Bv
y
Cx
5.1.2 反馈控制的性质
• 在静态反馈下,闭环系统矩阵分别变为:
• 结论:反馈可以改变系统的动态特性。
• 定理5.1.1 状态反馈不改变被控系统的能 控性。
证明方法一;
证明方法二。
K=-[0.3125 0.9375]x
5.3 极点配置
• 5.3.1 问题的提出 • 5.3.2 极点配置可解的条件和方法 • 5.3.3 极点配置状态反馈控制器的设计算

5.3.1 问题的提出
• 系统性能:稳态性能和动态性能 • 稳态性能:稳定性、静态误差 • 动态性能:调节时间、超调量、上升时间、响
解;
✓导出了极点配置状态反馈控制律; ✓极点配置状态反馈控制律是唯一的。
• 例: 考虑系统
设计一个状态反馈控制器,使得闭环系统 的极点分别是-2和-3。
• 例:已知被控系统的传递函数为
设计一个状态反馈控制器,使得闭环系统
的极点为

• 例:已知被控系统为:
0 0 0 1
x& 1 6

第五章状态反馈控制器设计ppt课件

第五章状态反馈控制器设计ppt课件

检验:eig(A-B*K)
极点配置的优点:
可以改善系统的稳定性、动态性能
5.4 跟踪控制器设计
极点配置的优点:改善系统的稳定性、动态性能
那么,对稳态性能、静态误差等的影响?
例 已知被控对象的状态空间模型为
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
如何从能控标准型模型的解导出一般模型的极
点配置控制器。
系统模型
假定该状态空间模型是能控的,则存在线性变换
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
其中
对能控标准型和给定的极点
可得极点配置状态反馈增益矩阵
矩阵P是对称的,
若选取
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
控制器设计转化为以下矩阵方程的求解问题:
(黎卡提矩阵方程)
优点:若对给定的常数,以上矩阵方程有解,
则对任意的
都是系统的稳
例 考虑系统在状态反馈
下的闭环系统
能控能观性。
结论:能控,不能观。
状态反馈使得闭环系统产生了零极点的对消。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
定理5.1.2输出反馈不改变系统的能控能观性。

状态反馈控制器的设计

状态反馈控制器的设计

状态反馈控制器的设计状态反馈控制器是一种常见的控制器设计方法,用于调节系统的动态响应和稳定性。

它通过测量系统的输出和状态,并将这些信息与期望输出进行比较,来计算出控制器的控制输入。

接下来,我将介绍状态反馈控制器的基本原理、设计步骤和两个常见的设计方法。

状态反馈控制器的基本原理是基于系统的状态反馈,即通过系统的状态变量来进行控制。

在状态反馈控制器的设计中,首先需要确定系统的状态方程或状态空间表达式。

状态方程描述了系统的状态变化关系,通常使用微分方程或差分方程表示。

状态空间表达式则是将系统的状态方程转换为矩阵形式,以便于计算和分析。

设计一个状态反馈控制器包括以下步骤:1.系统建模:首先需要建立系统的数学模型,确定系统的输入、输出和状态变量。

这可以通过物理建模、数学建模或实验数据分析等方法来完成。

系统的模型可以是连续时间模型,也可以是离散时间模型。

2.系统稳定性分析:通过分析系统的特征值或极点,判断系统的稳定性。

如果系统的特征值都位于单位圆内或实部小于零,则系统是稳定的。

3.设计目标确定:根据系统的性能要求和目标,确定设计的指标,例如系统的快速响应、稳定性、误差补偿等。

4.控制器设计:根据系统的状态方程和控制目标,使用控制理论和方法,设计控制器的增益矩阵。

常用的设计方法有极点配置法和最优控制方法。

5.系统闭环仿真:将设计好的控制器与系统模型相连,进行闭环仿真,检验系统在不同工况和干扰下的响应性能。

可以通过调整控制器的参数来优化系统的性能。

接下来,我将介绍两种常见的状态反馈控制器设计方法:极点配置法和最优控制方法。

1.极点配置法:该方法通过选择恰当的状态反馈增益矩阵,使系统的极点移动到预定位置。

首先需要确定期望的系统极点位置,然后使用反馈增益矩阵的公式进行计算和调整。

极点配置法的优点是设计简单,但对系统的模型和性能要求较高。

2.最优控制方法:该方法是基于最优控制理论,对系统的控制性能进行优化设计。

最优控制方法通常需要确定一个性能指标,例如系统的能量消耗、误差最小化等,然后使用最优化算法来计算最优的控制器增益矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档