一概率论4
概率论课程第四章

第四章 数字特征前面我们介绍了随机变量及其分布,对于一个随机变量,只要知道了它的分布(分布函数或分布律、分布密度),它取值的概率规律就全部掌握了。
但在实际问题中,一个随机变量的分布往往不易得到,且常常只需知道随机变量的某几个特征就够了。
例如检查棉花的质量时,我们关心的是棉花纤维的平均长度和纤维长度与平均长度的偏差大小,这些数字反映了随机变量的一些特性,我们称能够反映随机变量特征的数字为随机变量的数字特征。
本章将介绍几个最常用的数字特征:数学期望、方差、协方差和相关系数。
第一节 数学期望一、离散型随机变量的数学期望数学期望反映的是随机变量取值的集中位置的特征,能够满足这一要求的自然是随机变量的平均取值,那么这个平均取值如何得到呢?怎样定义,我们先看一个例题例1:全班40名同学,其年龄与人数统计如下:该班同学的平均年龄为:4092115201519118⨯+⨯+⨯+⨯=a8.194092140152040151940118=⨯+⨯+⨯+⨯=若令X 表示从该班同学中任选一同学的年龄,则X 的分布律为于是,X 取值的平均值,即该班同学年龄的平均值为4092140152040151940118)(⨯+⨯+⨯+⨯==a X E8.19==∑ii i p x定义1:设X 为离散型随机变量,其分布律为i i p x X P ==}{, ,2,1=i如果级数 绝对收敛,则此级数为X 的数学期望(或均值),记为 E(X),即 ∑=ii i p x X E )(意义:E(X)表示X 取值的(加权)平均值。
如果级数 不绝对收敛,则称数学期望不存在。
例2:甲、乙射手进行射击比赛,设甲中的环数为X1,乙中的环数为X2,已知 X1和X2的分布律分别为:问谁的平均击中环数高?解:甲的平均击中环数为 E(X1)=8 0.3+9 0.1+10 0.6=9.3 乙的平均击中环数为 E(X2)=8 0.2+9 0.5+10 0.3=9.1 可见E(X1)> E(X2),即甲的平均击中环数高于乙的平均击中环数。
概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =⨯⨯==733103.07.0}3{C P ξ0.0090至少命中3炮的概率, 为1减去命中不到3炮的概率, 为=⨯⨯-=<-=≥∑=-2010103.07.01}3{1}3{i i i i C P P ξξ0.9984因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为=⨯⨯=≤∑=-20101099.001.0}2{i i i iC P ξ0.99993. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此2061.02.08.0}18{}15270{}27015{}270{20182020=⨯⨯==≥=≥=≥=≥∑=-i i i iC P P P P ξξξη4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此∑=-⨯⨯=≤=≤=≤320209.01.0}3{}15.020{}15.0{i i i iC P P P ξξη=0.8675. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率}2{}23{}2|3{≥≥⋂≥=≥≥ξξξξξP P P因事件}3{}2{≥⊃≥ξξ, 因此2}23{≥=≥⋂≥ξξξ因此5312.06083.02852.019.01.0209.019.01.01}{1}2{1}{}2{1}{}2{}{}{}{}2{}3{}2|3{192018222010202202202202203=-=⨯⨯--⨯⨯-==-=-===-===-=====≥≥=≥≥∑∑∑∑∑∑======C i P P i P P i P P i P i P i P P P P i i i i i i ξξξξξξξξξξξξξ6. 抛掷4颗骰子, ξ为出现1点的骰子数目, 求ξ的概率分布, 分布函数, 以及出现1点的骰子数目的最可能值. 解: 因掷一次骰子出现一点的概率为1/6, 则ξ~B (4,1/6), 因此有⎪⎪⎩⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<==⎪⎭⎫ ⎝⎛⨯⨯==∑≤--4140656100)(),4,3,2,1,0(6561}{4444x x C x x F k C k P x k kk k kk kξ或者算出具体的值如下所示: ξ 0 1 2 3 4 P0.48230.38580.11570.01540.0008⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=41439992.0329838.0218681.0104823.000)(x x x x x x x F从分布表可以看出最可能值为0, 或者np +p =(4/6)+1/6=5/6小于1且不为整数, 因此最可能值为[5/6]=0. 7. 事件A 在每次试验中出现的概率为0.3, 进行19次独立试验, 求(1)出现次数的平均值和标准差; (2)最可能出现的次数. 解: 设19次试验中事件A 出现次数为ξ, 则ξ~B (19,0.3), 因此 (1)ξ的数学期望为E ξ=np =19×0.3=5.7 方差为Dξ=np (1-p )=19×0.3×0.7=3.99标准差为997.199.3===ξσξD(2)因np +p =5.7+0.3=6为整数, 因此最可能值为5和6. 8. 已知随机变量ξ服从二项分布, E ξ=12, D ξ=8, 求p 和n . 解: 由E ξ=np =12 (1) 和D ξ=np (1-p )=8 (2) 由(1)得n =12/p , 代入到(2)得 12(1-p )=8, 解出p =(12-8)/12=1/3=0.3333 代回到(1)式得n =12/p =12×3=36 9. 某柜台上有4个售货员, 并预备了两个台秤, 若每个售货员在一小时内平均有15分钟时间使用台秤, 求一天10小时内, 平均有多少时间台秤不够用. 解: 每个时刻构成一n =4的贝努里试验, 且p =15/60=0.25, 因此, 设ξ为每个时刻要用秤的售货员数, 则ξ~B (4, 0.25), 当ξ>2时, 台秤不够用. 因此每时刻台秤不够用的概率为=+⨯⨯=>433425.075.025.0)2(C P ξ0.0508因此10个小时内平均有0.0508×10=0.508个小时台秤不够用. 10. 已知试验的成功率为p , 进行4重贝努里试验, 计算在没有全部失败的情况下, 试验成功不止一次的概率. 解: 设ξ为4次试验中的成功数, 则ξ~B (4,p ), 事件"没有全部失败"即事件{ξ>0}, 而事件"试验成功不止一次"即事件{ξ>1}, 因此要求的是条件概率P {ξ>1|ξ>0}, 又因事件{ξ>1}被事件{ξ>0}包含, 因此这两个事件的交仍然是{ξ>1}, 因此434141}0{1}1{}0{1}0{}1{}0|1{q pq q P P P P P P ---===-=-=-=>>=>>ξξξξξξξ其中q =1-p 11. ξ服从参数为2,p 的二项分布, 已知P (ξ≥1)=5/9, 那么成功率为p 的4重贝努里试验中至少有一次成功的概率是多少?解: 因ξ~B (2,p ), 则必有9/5)1(1)0(1)1(2=--==-=≥p P P ξξ, 解得3/13/213/219/49/51)1(2=-==-=-=-p p p 则假设η为成功率为1/3的4重贝努里试验的成功次数, η~B (4,1/3), 则802.081161321)1(1)0(1)1(44=-=⎪⎭⎫⎝⎛-=--==-=≥p P P ηη12. 一批产品20个中有5个废品, 任意抽取4个, 求废品数不多于2个的概率解: 设ξ为抽取4个中的废品数, 则ξ服从超几何分布, 且有==≤∑=-204204155}2{i i i C C C P ξ0.968 13. 如果产品是大批的, 从中抽取的数目不大时, 则废品数的分布可以近似用二项分布公式计算. 试将下例用两个公式计算, 并比较其结果. 产品的废品率为0.1, 从1000个产品中任意抽取3个, 求废品数为1的概率. 解: 设任抽3个中的废品数为ξ, 则ξ服从超几何分布, 废品数为0.1×1000=100 ===3100029001100}1{C C C P ξ0.2435 而如果用二项分布近似计算, n =3, p =0.1, ξ~B (3,0.1)=⨯⨯≈=2139.01.0}1{C P ξ0.2430近似误差为0.0005, 是非常准确的.14. 从一副朴克牌(52张)中发出5张, 求其中黑桃张数的概率分布. 解: 设ξ为发出的5张中黑桃的张数, 则ξ服从超几何分布, 则)5,4,3,2,1,0(}{5525135213===--i C C C i P i i ξ则按上式计算出概率分布如下表所示: ξ 0 1 2 3 4 5 P0.22150.41140.27430.08150.01070.000515. 从大批发芽率为0.8的种子中, 任取10粒, 求发芽粒数不小于8粒的概率. 解: 设ξ为10粒种子中发芽的粒数, 则ξ服从超几何分布, 但可以用二项分布近似, 其中p =0.8, n =10, 则∑=-⨯⨯=≥10810102.08.0}8{i i i iC P ξ=0.677816. 一批产品的废品率为0.001, 用普哇松分布公式求800件产品中废品为2件的概率, 以及不超过2件的概率. 解: 设ξ为800件产品中的废品数, 则ξ服从超几何分布, 可以用二项分布近似, 则ξ~B (800, 0.001), 而因为试验次数很大废品率则很小, 可以用普阿松分布近似, 参数为 λ=np =800×0.001=0.89526.0!8.0}2{1438.028.0}2{28.08.02=≈≤=≈=∑=--i i e i P e P ξξ 17. 某种产品表面上的疵点数服从普哇松分布, 平均一件上有0.8个疵点, 若规定疵点数不超过1个为一等品, 价值10元, 疵点数大于1不多于4为二等品, 价值8元, 4个以上为废品, 求产品为废品的概率以及产品的平均价值. 解: 设ξ为产品表面上的疵点数, 则ξ服从普哇松分布, λ=0.8, 设η为产品的价值, 是ξ的函数. 则产品为废品的概率为0014.0!8.01}4{1}4{408.0=-=≤-=>∑=-i i e i P P ξξ==≤==∑=-18.0!8.0}1{}10{i i e i P P ξη0.8088==≤<==∑=-428.0!8.0}41{}8{i i e i P P ξη0.1898则产品的平均价值为 Eη = 10×P {η=10}+8×P {η=8}=10×0.8088+8×0.1898=9.6064(元) 18. 一个合订本共100页, 平均每页上有两个印刷错误, 假定每页上印刷错误的数目服从普哇松分布, 计算该合订本中各页的印刷错误都不超过4个的概率. 解: 设ξ为每页上的印刷错误数目, 则ξ服从普哇松分布, λ=2, 则1页印刷错误都不超过4个的概率为 ==≤∑=-402!2}4{i i e i P ξ0.9473而100页上的印刷错误都不超过4个的概率为[]=≤100}4{ξP 0.00445419. 某型号电子管的“寿命”ξ服从指数分布, 如果它的平均寿命E ξ=1000小时, 写出ξ的概率密度, 并计算P (1000<ξ≤1200). 解: 因Eξ=1000=1/λ, 其概率密度为⎪⎩⎪⎨⎧≤>=-0010001)(1000x x ex xϕ0667.0)12001000(2.111000120010001000=-=-=≤<----e e ee P ξ20. ξ~N (0,1), Φ0(x )是它的分布函数, φ0(x )是它的概率密度, Φ0(0), φ0(0), P (ξ=0)各是什么值? 解: 因有 20221)(x ex -=πϕ, ⎰∞--=Φxt dt ex 20221)(π, 因此φ0(x )为偶函数, 由对称性可知Φ0(0)=0.5, 并有πϕ21)0(0=,因ξ为连续型随机变量, 取任何值的概率都为0, 即P (ξ=0)=0.21. 求出19题中的电子管在使用500小时没坏的条件下, 还可以继续使用100小时而不坏的概率?解: 要求的概率为P (ξ>600|ξ>500), 因此905.0}500{}600{}500|600{1.010005001000600===>>=>>---e e eP P P ξξξξ22. 若ξ服从具有n 个自由度的χ2-分布, 证明ξ的概率密度为⎪⎪⎩⎪⎪⎨⎧<≥⎪⎭⎫ ⎝⎛Γ=---022)(21212x x e n x x x nn ϕ称此分为为具有n 个自由度的χ-分布 证: 设ξη=, 则因ξ的概率密度函数为⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫ ⎝⎛Γ=--0221)(2122x x e x n x xn nξϕη的分布函数为)0()()()()()(22>=≤=≤=≤=x x F x P x P x P x F ξηξξη对两边求导得)0(22222)(2)(2121222222>⎪⎭⎫ ⎝⎛Γ=⎪⎭⎫ ⎝⎛Γ==-----x en x en x xx x x x n n x n n ξηϕϕ23. ξ~N (0,1), 求P {ξ≥0}, P {|ξ|<3}, P {0<ξ≤5}, P {ξ>3}, P {-1<ξ<3} 解: 根据ξ的对称性质及查表得: P {ξ≥0}=1-Φ0(0)=0.5 P {|ξ|<3}=2Φ0(3)-1=2×0.99865-1=0.9973 P {0<ξ≤5}=Φ0(5)-0.5=0.5P {ξ>3}=1-Φ0(3)=1-0.99865=0.00135P {-1<ξ<3}=Φ0(3)-Φ0(-1)=Φ0(3)+Φ0(1)-1=0.99865+0.8413-1=0.83995 24. ξ~N (μ,σ2), 为什么说事件"|ξ-μ|<2σ"在一次试验中几乎必然出现?解: 因为)1,0(~N σμξ- 19545.0197725.021)2(2}2{}2|{|0≈=-⨯=-Φ=<-=<-σμξσμξP P因此在一次试验中几乎必然出现.25. ξ~N (10,22), 求P (10<ξ<13), P (ξ>13), P (|ξ-10|<2). 解: 因为)1,0(~210N -ξ6826.018413.021)1(2}1210{}2|10{|0.0668193319.01)5.1(1}5.1210{}13{43319.05.093319.0)0()5.1(}5.12100{}1310{0000=-⨯=-Φ=<-=<-=-=Φ-=>-=>=-=Φ-Φ=<-<=<<ξξξξξξP P P P P P26. 若上题中已知P {|ξ-10|<c }=0.95, P {ξ<d }=0.0668, 分别求c 和d .解: 因为)1,0(~210N -ξ, 则有95.01)2(2}2210{}|10{|0=-Φ=<-=<-cc P c P ξξ 解得975.0295.01)2(0=+=Φc, 查表得,96.12=c得c =3.92 再由5.00668.0)210(}210210{}{0<=-Φ=-<-=<d d P d P ξξ知,0210<-d 因此0668.0)210(1)210(00=-Φ-=-Φdd 即9332.00668.01)210(0=-=-Φd, 查表得5.1210=-d, 解得7310=-=d 27. 若ξ~N (μ,σ2), 对于P {μ-kσ<ξ<μ+kσ}=0.90, 或0.95, 或0.99, 分别查表找出相应的k值.解: 先求P {μ-kσ<ξ<μ+kσ}=0.90对应的k 值. 因)1,0(~N σμξ-, 因此 90.01)(2}{}{0=-Φ=<-=+<<-k k P k k P σμξσμξσμ 即95.0290.01)(0=+=Φk , 查表得k =1.64 同理, 由975.0295.01)(0=+=Φk , 查表得k =1.96 由995.0299.01)(0=+=Φk , 查表得k =2.57 28. 某批产品长度按N (50, 0.252)分布, 求产品长度在49.5cm 和50.5cm 之间的概率, 长度小于49.2cm 的概率.解: 设ξ为产品长度, 则ξ~N (50, 0.252), 且有)1,0(~25.050N -ξ, 则9545.0197725.021)2(2}225.050{}225.0502{}5.505.49{0=-⨯=-Φ=<-=<-<-=<<ξξξP P P0006871.09993129.01)2.3(1)2.3(}25.0502.4925.050{}2.49{00=-=Φ-=-Φ=-<-=<ξξP P29. ξi ~N (0,1)(i =1,2,3), 并且ξ1,ξ2,ξ3相互独立, ∑==3131i i ξξ,∑=-=312)(i i ξξη, 求),cov(,),,cov(1ηξηξξE解: 此题要用到, 两个独立的服从正态分布的随机变量相加后得到的随机变量仍然服从正态分布. 因此, 因为3131,031=⎪⎭⎫ ⎝⎛==∑=i i D D E ξξξ, 则)31,0(~N ξ313131)()cov(2131111==⎪⎭⎫ ⎝⎛==∑=ξξξξξξξE E E i i32313121)cov(2)2()(22222=+⨯-=+-=+-=-ξξξξξξξξξξE E E E i i i i i因此2323)()(312312=⨯=-=⎪⎭⎫ ⎝⎛-=∑∑==i i i i E E E ξξξξη ξξ-i 也服从正态分布, 且有03131)]([),cov(2=-=-=-=-ξξξξξξξξξE E E i i i即ξ与ξξ-i 不相关, 而因为它们服从正态分布, 因此也就是ξ与ξξ-i 相互独立,则ξ与2)(ξξ-i 也相互独立, 则ξ与η中的加和中的每一项相互独立, 当然也与η相互独立, 因此有0),cov(=ηξ, 因为相互独立的随机变量一定不相关.30. (ξ,η)有联合概率密度22)(21,2122ηξζπ+=+-y x e , 求ζ的概率密度.解: 由联合概率密度看出, ξ与η相互独立服从标准正态分布, 则有 ξ2与η2也相互独立且服从自由度为1的χ2-分布, 即ξ2~χ2(1), η2~χ2(1), 因此ζ=ξ2+η2~χ2(2), 即它的概率密度为⎪⎩⎪⎨⎧<>=-00212x x exζϕ即ζ服从λ=1/2的指数分布.。
概率论第4章

19 2012-6-28
例5 甲,乙各自同时向一敌机射击, 已知 甲击中敌机的概率为0.6, 乙击中敌机的 概率为0.5. 求敌机被击中的概率.
20 2012-6-28
解 设A为事件"甲击中敌机", B为事件"乙 击中敌机", C为事件"敌机被击中", 由广 义加法定理知 P(C)=P(AB)=P(A)+P(B)-P(AB) 根据题意可认为A,B事件相互独立, 因此 有 P(AB)=P(A)P(B)=0.60.5=0.3 于是 P(C)=0.6+0.5-0.3=0.8
P( B | A) r m r/n m/n P( AB) P( A)
5 2012-6-28
.
在一般情形下, 如果P(A)>0, 也定义事件 A出现下事件B的条件概率为
P( B | A) P( AB) P( A) , ( P( A) 0)
乘法定理 两事件的积事件的概率等于其 中一事件的概率与另一事件在前一事件出 现下的条件概率的乘积:
正品数 第一台车床加工的零件数 第二台车床加工的零件数 总计 35 50 85 次品数 5 10 15 总计 40 60 100
从这100个零件中任取一个零件, 则"取得的 零件为正品"(设为事件B)的概率为
P( B) 85 100 0.85
3 2012-6-28
正品数 第一台车床加工的零件数 第二台车床加工的零件数 总计 35 50 85
乘法定理可以推广到有限多个事件的情 形. 例如, 对于A,B,C三个事件, 有 P(ABC)=P((AB)C)=P(AB)P(C|AB) =P(A)P(B|A)P(C|AB), (P(AB)>0)
概率论第四章 习题答案

1 ⎛2⎞ 1 DX = EX − ( EX ) = − ⎜ ⎟ = . 2 ⎝ 3 ⎠ 18 1 2 DZ = 4 DX = 4 × = . 18 9
【解毕】
9.在一次拍卖中,两人竞买一幅名画,拍卖以暗标的形式进行,并以最高价成交.设两人 的出价相互独立且均服从(1,2)上的均匀分布,求这幅画的期望成交价. 解:设两人的出价分别为随机变量 X , Y ,则这幅画的期望成交价为 Z = max { X , Y } 由题意知, X 与Y 独立,且 X ∼ U (1, 2); Y ∼ U (1, 2) 先求 Z 的分布函数 当 1 < z < 2 时, F ( z ) = P ( Z £ z ) = P (max { X , Y } £ z ) = P ( X £ z ,Y £ z )
= P( X £ z ) P (Y £ z ) = ( z -1)2
当 z £ 1 时, F ( z ) = 0 ;当 z ³ 2 时, F ( z ) = 1 于是 Z 的密度函数为 f ( z ) = ï í
ì2( z -1),1 < z < 2 ï ï 0, 其它 ï î 5 3
EZ = ò
+¥
3 X .求: ( 1)常数 a, b, c; (2) Ee . 4
【解】 (1)由概率密度的性质知,有
+∞ 2 4
1=
又因为
−∞
∫
f ( x )dx = ∫ axdx + ∫ ( cx + b )dx = 2a + 6c + 2b.
0 2
+∞
2
4
2 = EX =
−∞
∫ xf ( x )dx = ∫ xiaxdx + ∫ x ( cx + b )dx
概率论f1-4

概率论f1-4概率论的基本概念§1-4 等可能概型目录索引等可能概型(古典概型)返回主目录第一章概率论的基本概念等可能概型1. 等可能概型(古典概型)考虑最简单的一类随机试验,它们的共同特点是:样本空间的元素只有有限个;(有限性) 每个基本事件发生的可能性相同。
(等可能性) 我们把这类试验称为等可能概型,考虑到它在概率论早期发展中的重要地位,又把它叫做古典概型。
返回主目录第一章概率论的基本概念等可能概型基本事件的概率:设S ={e1, e2, 。
en }, 由古典概型的等可能性,得P ({e1 }) P ({e2 }) P ({en })又由于基本事件两两互不相容,所以1 P ( S ) P ({e1 }) P ({e2 }) ( P{en }),1 P ({ei }) , n i 1,2, , n.返回主目录第一章概率论的基本概念随机事件的概率:若事件A 包含k 个基本事件,即等可能概型A {en1 , en2 , , enk }则有:k P ( A) P ({eni }) n i 1kA包含的基本事件数即:P ( A) . S中基本事件总数例1 将一枚硬币抛掷三次。
设:事件A1=“恰有一次出现正面”返回主目录第一章概率论的基本概念事件A2 =“至少有一次出现正面”, 求P (A1 ), P (A2 )。
解:根据上一节的记号,E2 的样本空间S2={HHH, HHT, HTH, THH, HTT, THT TTH,TTT},等可能概型n = 8,即S2 中包含有限个元素,且由对称性知每个基本事件发生的可能性相同,属于古典概型。
A1为“恰有一次出现正面”,A1={HTT, THT, TTH},返回主目录第一章概率论的基本概念等可能概型k = 3,k 3 P ( A 1) = = , n 8事件A2=“至少有一次出现正面”,A2={HHH, HHT, HTH, THH, HTT, THT, TTH }k2 = 7 ,k2 7 P ( A 2) = = , n 81 另解: 由于A2 = {T T T}, k A 2 = 1 ,P ( A 2 ) = = , n 8A2k1 7 P ( A2 ) = 1 P ( A2 ) = 1 = . 8 8返回主目录第一章概率论的基本概念等可能概型例2 一口袋装有6 只球,其中4 只白球、2 只红球。
《概率论与数理统计》1-4全概公式

365 400 97 146097
146097 20871 7
20871 52 400 71 P B 400 400
方法二 利用全概公式
A 表示平年,
则 A, A 构成一划分
B 表示有53个星期天
P A 97 400
1 2 P B | A , P B | A 7 7
125 198
注 : 一定要写清事件, 公式 , 不得只写算式.
p 2500 2000 1500 5% 3% 1% 3.3% X 6000 6000 6000
全概率公式和贝叶斯公式是概率论中的两个重要公式,
有着广泛的应用.若把事件Ai 理解为‘原因’, 而把 B理 解为‘结果’ P, 则 B| A 是原因 Ai
为 0.01, 各车间的产品数量分别为2500, 2000, 1500件 . 出厂时 , 三车间的产品完全混合, 现从中任取一产品, 求该 产品是次品的概率. 若已知抽到的产品是次品, 求该产品 是一车间的概率.
解 : 设 Ai 为取到第 i个车间的产品, B为取到次品 由全概率公式得:
P( B) P( Ai ) P( B Ai )
i 1
3
P( A1 ) P( B A1 ) P( A2 ) P( B A2 ) P( A3 ) P( B A3 )
2500 2000 1500 5% 3% 1% 3.3% 6000 6000 6000
由贝叶斯公式得:
P A1 B
P A1 P B A1 P B
P B P BA1 P BA2 P BA3 P A1 P B | A1 P A2 P B | A2 P A3 P B | A3
概率第四定律
概率第四定律,也被称为概率的独立性原理,是指一个事件(A)是否发生对另一个事件(B)发生的概率没有影响。
简单来说,如果两个事件是相互独立的,那么一个事件的发生不会影响另一个事件发生的概率。
例如,假设我们有两个独立的事件:抛掷一枚硬币和掷一颗骰子。
抛掷硬币的结果(正面或反面)不会影响掷骰子得到特定点数(如3点)的概率,反之亦然。
这两个事件就是相互独立的。
请注意,概率的独立性原理是概率论中的一个基本假设,它大大简化了复杂系统的分析。
然而,在实际生活中,许多事件并不是完全独立的,因此在使用这一原理时需要谨慎。
概率论第4章
ò ò
+¥ +¥
- ¥ - ¥
(设该积分绝对收敛) g ( x , y ) f ( x , y ) dxdy .
性质 1 设 c 是常数,则有 E ( c ) = c . 性质 2 设 X 是随机变量,设 c 是常数,则有 E (cX ) = cE ( X ) . 性质 3 设 X ,Y 是随机变量,则有 E ( X + Y ) = E ( X ) + E ( Y ) . (该性质可推广到有限个随机变量 之和的情况) 性质 4 设 X , Y 是相互独立的随机变量,则有 E ( XY ) = E ( X ) E ( Y ) . (该性质可推广到有限 个随机变量之积的情况) 2. 方差 (1)定义 设 X 是随机变量 , E{[ X - E ( X )] } 存在,就称其为 X 的方 差 ,记为 D ( X ) ( 或 Var ( X ) ) ,即
å x p
k =1
k
发散,则称随机变量 X 的数学期望不存在.
(2)连续型随机变量的数学期望 定义 设连续型随机变量 X 的分布密度函数为 f ( x ) ,若积分 学期望或均值.记为 E ( X ) , E ( X ) = 不存在。 (3)随机变量的函数的数学期望 定理 设 Y 为随机变量 X 的函数: Y = g ( X ) (g 是连续函数) ① X 是离散型随机变量,分布律为 p ( X = x k = 1 , 2 , L ;若级数 k = P k ),
r XY = í
, a > 0 ì1 , a < 0 î-1
性质 4 r XY = 1 的充要条件是,存在常数 a, b 使 P {Y = aX + b } = 1 . 事实上相关系数只是随机变量间线性关系其强弱的一个度量, 当 r XY = 1 表明随机变量 X 与 Y 具有线 性关系, r = 1 时为正线性相关, r = -1 时为负线性相关,当 r XY < 1 时,这种线性相关程度就随着 r XY 的减小而减弱,当 r XY = 0 时,就意味着随机变量 X 与 Y 是不相关的. (4)X 与 Y 不相关的充要条件 只要满足以下四个条件之一就可以 ①
概率论4
得:
P{0 X 1,0 Y 2} dx 12e3 x4 y dy 1 e3 1 e8 .
1 2 0 0
也可以直接由联合分布得: P{0 X 1,0 Y 2}
F 1, 2 F 1,0 F 0, 2 F 0,0 1 e3 1 e8 .
FX ( x)
x
f X (t )dt
比较可得X为连续型随机变量,且X的概率密度为:
f X ( x)
f ( x, y)dy
同理可得Y的概率密度为:
fY ( y )
我们称
f ( x, y)dx
f X ( x) fY ( y)
f ( x, y)dy —(X,Y)关于X的边缘概率密度
第六节
随机变量的相互独立性
边缘分布
设二维随机变量(X,Y)的分布函数为 F ( x, y),X与Y 作为单个随机变量的分布函数分别为 FX ( x), FY ( y) ,称
FX ( x), FY ( y)
分别为二维随机变量(X,Y)关于X和关于Y的边缘分布 函数. 问题:联合分布(函数)与边缘分布(函数)有什么关系? 结论:联合分布(函数) 边缘分布(函数) 但当X与Y相互独立时,联合分布(函数)与边缘分布 (函数)可相互确定.
设二维随机变量(X,Y)的分布函数为 F ( x, y),边缘分 布函数[即X与Y的分布函数]为 FX ( x), FY ( y) ,则有
FX ( x) P{X x} P{X x, Y } F ( x, ),
FY ( y) P{Y y} P{X , Y y} F (, y).
概率论第四章习题解答(全)
(0.9)10 (0.9)9 3486 0.3874 0.7361
则需要调整设备的概率
P{Y 1} 1 P{Y } 1 0.7361 0.2639
(3)求一天中调整设备的次数 X 的分布律 由于 X 取值为 0,1,2,3,4。 p 0.2369 ,则 X B (4, 0.2369) 于是
个随机变量,其概率密度为
1 x, 0 x 1500, 15002 1 f ( x) ( x 3000),1500 x 3000, 2 1500 0, 其它
求 E( X ) 解 按连续型随机变量的数学期望的定义有
0 1500
E ( X ) xf ( x)dx xf ( x)dx
X p
2
3
4
9
1 8
5 8
1 8
1 8
所以
1 5 1 1 15 E( X ) 2 3 4 9 。 8 8 8 8 4
(2)因为 Y 的取值为 2,3,4,9 当 Y 2 时,包含的字母为“O”,“N”,故
P{Y 2}
1 C2 1 ; 30 15
当 Y 3 时,包含的 3 个字母的单词共有 5 个,故
P (Ck ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 )
而
P{ X 1} P ( A1 )
1 2
1 1 P{ X 2} P ( A1 A2 ) P ( A2 | A1 ) P ( A1 ) 3 2 1 2 1 1 1 P ( A2 | A1 A2 ) P ( A2 | A1 ) P ( A1 ) , 4 3 2 4 3 一般地,若当 X k 时,盒中共有 k 1 只球,其中只有一只白球,故 P ( X k ) P ( A1 A2 Ak 1 Ak ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 ) 1 k 1 k 2 1 2 1 1 1 k 1 k k 1 4 3 2 k k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页
下一页
返回
例1.4 一张英语试卷,有10道选择填空题,每题有4个 选择答案,且其中只有一个是正确答案.某同学投机取 巧,随意填空,试问他至少填对6道的概率是多大?
解 设B=“他至少填对6道”.每答一道题有两个可能的 结果:A=“答对”及 =“答错”,P(A)=1/4,故 作10道题就是10重贝努里试验,n=10,所求概率为
• 解:设Ai=“事件A在4次独立试验中发生i次” (i=0,1,2,3,4) 由P(Ai)=C4i 0.3i (0.7)4-I ”(i=0,1,2,3,4) P(A0)=0.2401,P(A1)=0.4116, P(A2)=0.2646,P(A3)=0.0756, P(A4)=0.0081,且A0、A1、A2、A3、A4构成 一个完备事件组,又因为 PB A0 0,PB A1 0.4,PB A2 0.6,
解 设需要n门高射炮,A表示飞机被击中,Ai表示 第i门高射炮击中飞机(i=1,2,…,n).则
令1-(1-0.2)n≥0.95,得0.8n≤0.05,可得 n≥14.
即至少需要14门高射炮才有95%以上把握击中飞机.
上一页 下一页 返回
ቤተ መጻሕፍቲ ባይዱ
2、 伯努利试验
上一页
下一页
返回
上一页
下一页
返回
例1.3 设在N件产品中有M件次品,现进行n次有放回 的检查抽样,试求抽得k件次品的概率. 解 由条件,这是有放回抽样,可知每次试验是在相 同条件下重复进行,故本题符合n重贝努里试验的条 件,令A表示“抽到一件次品”的事件.则 P(A)=p=M/N, 以Pn(k)表示n次有放回抽样中,有k次出现次品的概率, 由贝努里概型计算公式,可知
上一页
下一页
返回
• 练习1:一人射击中8环的概率为0.15,中9 环的概率0.25,中10环的概率为0.20.求此 人进行三次射击得到不少于28环的概率。 • 解:设 • A1=“三次射击一次中10环,两次中9环”, A2=“三次射击一次中8环,两次中10环”, A3=“三次射击一次中9环,两次中10环”, A4= “三次射击均中10环”, • B=“三次射击得到不少于28环的成绩”。 • B=A1+A2+A3+A4
2 3 2 2 3 2 2 3 2
PB P A1 P A2 P A3 P A4 0.094
• 练习2进行4次重复独立试验,每次试验中 事件A发生的概率为0.3,如果事件A不发生, 则事件B也不发生;如果事件A发生1次,则 事件B发生的概率为0.4;如果事件A发生2 次,则事件B发生的概率为0.6;如果事件A 发生2次以上,则事件B一定发生。求事件B 发生的概率。 • 练习3 课后作业37、38两题。
第一章 概率论的基本概念
第一节 第二节 第三节 第四节 样本空间、随机事件 概率、古典概型 条件概率、全概率公式 独立性
• 一,事件的独立性 定义1.4 如果事件A发生的可能性不受事件B 发生与否的影响,即PA B P A 则称事件A 对于事件B独立。显然,若A对于B,则事 件B 对于事件A也一定独立,称事件A与事 件B相互独立。 定义1.5 如果n (n>2 )个事件A1, A2,…….An中的任何一个事件发生的可能 性都不受其他一个或几个事件发生与否的 影响,则称A1,A2,…….An相互独立。
• 3部机床中某一部需要照管而另两部不需照 管的概率都是0.2×0.8×0.8=0.128。而“3 部中恰有1部需人照管”用事件E表示,需 要照管的机床可以是这3部中的任意一部, 因此共有三种可能,即 P (E)=C31×0.2×0.82=0.384
例1.2 设高射炮每次击中飞机的概率为0.2,问至少需 要多少门这种高射炮同时独立发射(每门射一次)才能 使击中飞机的概率达到95%以上.
PA B B C A C PA B PB C PA C 2PA B C
• 解:用事件A、B、C分别表示在这段时间 内机床甲、乙、丙不需工人照管。依题意A、 B、C相互独立,并且P(A)=0.9 ,P(B)=0.8 • P(C)=0.85, P ABC 1 P ABC 1 P APB PC 1 0.612 0.388
P Ai 1 PAi i 1 i 1
• 例1.1 甲、乙、丙3部机床独立工作,由一 个工人照管,某段时间内它们不需要工人 照管的概率分别为0.9、0.8、0.85。 • 求在这一段时间内有机床需要人照管的概 率以及机床因无人照管而停工的概率。 • 若这三部机床性能相同,设 P(A)=P(B)=P(C)=0.8,求这段时间 内恰有 一部机床需要人照管的概率。
• 其中A1,A2,A3,A4两两互不相容,且各 次射击是相互独立的。
P A1 C 0.25 0.2 0.0375 P A2 C 0.2 0.15 0.018 P A3 C 0.2 0.25 0.03 P A4 0.2 3 0.008
PB A3 PB A4 1
4 i 0
PB P Ai PB Ai 0.407
独立性的结论
(1)事件A与B独立的充要条件是 P(AB)=P(A)P(B) • (2)若事件A与B独立,则 A与B、A与B、A与B 中的每一对事件都相互独立。 (3)若事件A 1、A2、…. An相互独立,则 n 有 P A1 A2 ...An P Ai
i 1
(4)若事件A 1、A2、…. An相互独立,则 n 有 n