九年级数学上册期中检测卷课件(新版)冀教版

合集下载

2024-2025学年初中数学九年级上册(冀教版)教学课件23.2中位数和众数(第1课时)

2024-2025学年初中数学九年级上册(冀教版)教学课件23.2中位数和众数(第1课时)

已知该小组本次数学测验的平均分是85分,则测验成绩的众
数是( D )
A.80 分
B.85 分
C.90 分
D.80 分和90 分
解析:要确定众数,必须先确定x,
由平均数的概念可知70×1+80×3+90x+100×1 = 85(1+3+x+1),
即410+90x = 425+85x,解得x = 3.
从而可知这组数据中80 和90 出现的次数最多,都是3 次,故众数有
人数
1
1
1
3
6
1 11 1
(1)计算这个公司员工月收入的平均数;
6276
新课导入
问题
下表是某公司员工月收入的资料.
月收 入/元 45 000 18 000 10 000 5 500 5 000 3 400 3 000 1 000
人数
1
1
1
3
6
1 11 1
(2)如果用(1) 算得的平均数反映公司全体员工月收入水平, 你认为合适吗?
知识讲解
2 中位数的特征及意义
1.中位数是一个位置代表值(中间数),它是唯一的. 2.如果一组数据中有极端数据,中位数能比平均数更
合理地反映该组数据的整体水平,不受极端值的影响. 3.如果已知一组数据的中位数,那么可以知道比中位数大和比 中位数小的数各占一半,反映了一组数据的中间水平. 4.中位数的单位与原数据的单位一致.
一半人月工资高于该数值,另一半人月工资低于该数值;中等水 平的含义是中位数.
知识讲解
1 中位数
一般地,将n个数据按大小顺序排列,如果n为奇数,那么把处 于中间位置的数据叫做这组数据的中位数;如果n为偶数,那么把 处于中间位置的两个数据的平均数叫做这组数据的中位数.

冀教版九年级数学上册全套ppt课件

冀教版九年级数学上册全套ppt课件

千米)如下表:
杀伤半 20≤x 40≤x 60≤x
径 数量
<40 8
<60 12
<80 25
这批炮弹的平均杀伤半径是多少千米? 由上表可得出各组数据的组中值分别是30,50,70,90, 30× 8+50× 12+70× 25+90× 5 根据加权平均数公式得 x= 8+12+25+5 =60.8(千米), 因此,这批炮弹的平均杀伤半径大约是60.8千米
中数学考试成绩为80分.
(1)请问他一学期的数学平均成绩是多少? (2)如果期末总评成绩按:平时成绩占20%,期中成绩占 30%,期末成绩占50%计算,那么该同学期末总评数学成 绩是多少? 1 (1)x= (76+90+80)=82(分) 3 (2)x=76×50%+90×20%+80×30%=80(分)
分组 体重 人数 结论
A 30-35
B 35-40 32
C 40-45
偏瘦
正常
偏胖
11.(12分)体育委员在统计了全班同学 60秒跳绳的次
数后,绘制了下面两幅统计图,根据图中信息,求全班 同学60秒平均跳绳大约多少次?
全班同学60秒跳绳的平均次数是(70×4%+90×8% +110×40%+130×24%+150×14%+170×8%+ 190×2%)÷(4%+8%+40%+24%+14%+8%+ 2%)=123.6(次)
23.1平均数与加权平均数(1)
知识梳理
1.一般地,我们把n个数x1,x2,„,xn的和与n的比,
算术平均数 平均数 记作 叫做这n个数的______________ ,简称__________ x,读作“x拔”. 2.一组数据里的各个数据的重要程度不一定相同,在 计算它们的平均数时,往往给每个数据一个“权”,由

冀教版2020九年级数学上册期中模拟基础达标测试题1(附答案详解)

冀教版2020九年级数学上册期中模拟基础达标测试题1(附答案详解)

冀教版2020九年级数学上册期中模拟基础达标测试题1(附答案详解) 1.若五箱苹果的质量(单位:)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是( )A .18和18B .19和18C .20和18D .20和19 2.某校八年级共有500名学生,为了了解这些学生的视力情况,随机抽査了40名学生的视力,对所得数据进行整理.若数据在4.8~5.0这一小组的频率为0.4,则可估计该校八年级学生视力在4.8~5.0范围内的人数有( )A .300B .200C .150D .163.用配方法解方程()x x 250--=时,可将原方程变形为( )A .2(x 1)6-=B .2(x 1)6+=C .2(x 1)5-=D .2(x 2)5-= 4.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是2S 甲=1.2,2S 乙=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )A .乙比甲稳定B .甲比乙稳定C .甲和乙一样稳定D .甲、乙稳定性没法对比5.如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm 2, 圆柱高为3m ,圆锥高为2m 的蒙古包,则需要毛毡的面积是( )A .29)πm 2B .40πm 2C .21)πm 2D .55πm 26.下列命题正确的是( )A .过弦的中点的直线平分弦所对的弧B .平分弦的直径垂直于弦C .弦所对的两条弧中点的连线必过圆心D .过圆心的直线必垂直平分弦 7.如图,一次函数y=kx+b 的图象与反比例函数m y x =的图象都经过点A(−2,6)和点B(n,-4),则不等式kx+b≤m x 的解集为( ) A .x<-2或x≥3B .-2≤x <0或x≥3C .-2≤x <0或0<x≤3D .x≤-2或0<x≤38.如图,护林员在离树8m 的A 处测得树顶B 的仰角为45°,已知护林员的眼睛离地面的距离AC 为1.6m ,则树的高度BD 为( )A .8mB .9.6mC .(4+1.6)mD .(8+1.6)m 9.如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ y 轴,分别交函数11(0)k y x x =>和()220k y x x=<的图像于点P 和Q ,连接OP ,OQ ,则下列结论:①10k >;20k <;②112POM S k =;③2OM MQ k ⋅=;④点P 与点Q 的横坐标相等;⑤POQ 的面积是()1212k k -,其中判断正确的是( )A .①⑤B .①②⑤C .①②③⑤D .①②③④⑤ 10.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( ) A .42件 B .45件 C .46件 D .50件11.已知线段b 是线段a 、c 的比例中项,且1a cm =,4c cm =,那么b =____cm . 12.如图,Rt △ABC 的直角边BC 在x 轴正半轴上,斜边AC 上的中线BD 反向延长线交y 轴负半轴于E ,双曲线y =k x(x>0)的图象经过点A ,若S △BEC =8,则k =_____.13.已知一组数据:x,10,12,6的中位数与平均数相等,则x的值是__________.14.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标(1,0),顶点A的坐标为(0, 2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C 的坐标为__________15.如图,在三角形ABC中,∠BAC=90°,AB=3cm,AC=4cm,BC=5cm,将三角形ABC沿直线BC向右平移3cm得到三角形DEF,DE交AC于G,连接AD,则下列结论:①ED⊥DF;②AG=125cm;③CE=3cm;④点D到线段AC的距离是2cm.其中结论正确结论的序号是_____.16.如图,在平行四边形ABCD中,AB<AD,∠C=150°,CD=8,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为_____.17.如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE•HB=4-22,BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD=2AM;④若BE平分∠DBC,则正方形ABCD 的面积为4,其中结论正确的是______(填序号)18.已知线段a=4,b=9,则a,b的比例中项线段长等于________.19.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AG:GF的值是_______.20.如图,矩形ABCD的顶点A、C在平面直角坐标系的坐标轴上,AB=4,CB=3,点D与点A关于y轴对称,点E、F分别是线段DA、AC上的动点(点E不与A、D 重合),且∠CEF=∠ACB,若△EFC为等腰三角形,则点E的坐标为______.21.2232x xx -+=22.某校在苏州园林研学时,校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60.已知A点的高度AB为3米,台阶AC的坡度为1:3(即:1:3AB BC=),且,,B C E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).23.为了解全区3000名九年级学生英语听力口语自动化考试成绩的情况,随机抽取了部分学生的成绩(满分30分且得分均为整数),制成下表:分数段(x 分分)0≤x ≤1819≤x ≤21 22≤x ≤24 25≤x ≤27 28≤x ≤30人数 10 15 35 112 128 (1)填空:①本次抽样调查共抽取了 名学生;②学生成绩的中位数所在的分数段是 ;③若用扇形统计图表示统计结果,则分数段为0≤x ≤18的人数所对应扇形的圆心角为 °;(2)如果将25分以上(含25分)定为优秀,请估计全区九年级考生成绩为优秀的人数.24.如图1,点O 是正方形ABCD 的中心,点E 是AB 边上一动点,在BC 上截取CF BE =,连结OE ,OF .初步探究:在点E 的运动过程中:(1)猜想线段OE 与OF 的关系,并说明理由.深入探究:(2)如图2,连结EF ,过点O 作EF 的垂线交BC 于点G .交AB 的延长线于点I .延长OE 交CB 的延长线于点H .①直接写出EOG ∠的度数.②若2AB =,请探究BH BI ⋅的值是否为定值,若是,请求出其值;反之,请说明理由25.计算:11()2tan 452sin 60273-+-+.26.(1)解方程x 2﹣x ﹣1=0.(2)在实数范围内分解因式x 2﹣x ﹣1的结果为_____. 27.解方程:① 2(x+3)2 = -3x-9② 2x 2-12x+5=0(配方法)28.为更好地践行“绿水青山就是金山银山”的理念,近年来,我县开展农村绿色电站建设。

最新冀教版九年级数学上册期中考试(全面)

最新冀教版九年级数学上册期中考试(全面)

最新冀教版九年级数学上册期中考试(全面) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 3.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =6.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a+b >0;③b 2﹣4ac >0;④a ﹣b+c >0,其中正确的个数是( )A .1B .2C .3D .49.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于( )A .63米B .6米C .33米D .3米10.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.因式分解:a 3-ab 2=____________.3.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.4.在锐角三角形ABC 中.BC=32,∠ABC=45°,BD 平分∠ABC .若M ,N 分别是边BD ,BC 上的动点,则CM +MN 的最小值是__________.5.如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A 在第一象限,反比例函数y =k x(x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是__________.6.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是__________.三、解答题(本大题共6小题,共72分)1.解方程:22142x x x +=--2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x =的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,(图1,图2),四边形ABCD 是边长为4的正方形,点E 在线段BC 上,∠AEF=90°,且EF 交正方形外角平分线CP 于点F ,交BC 的延长线于点N, FN ⊥BC .(1)若点E 是BC 的中点(如图1),AE 与EF 相等吗?(2)点E 在BC 间运动时(如图2),设BE=x ,△ECF 的面积为y . ①求y 与x 的函数关系式;②当x 取何值时,y 有最大值,并求出这个最大值.5.动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A 佩奇,B 乔治,C 佩奇妈妈,D 佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A 佩奇的概率为 ;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.6.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、A4、C5、C6、C7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、a (a+b )(a ﹣b )3、22()1y x =-+ 4、45、836、2三、解答题(本大题共6小题,共72分)1、x=-32、(1)k >34;(23、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭4、(1)AE=EF ;(2)①y=-12x 2+2x (0<x <4),②当x=2,y 最大值=2.5、(1)14;(2)1126、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x ;50﹣x .(3)每件商品降价25元时,商场日盈利可达到2000元.。

2024-2025学年初中数学九年级上册(冀教版)教学课件25.2平行线分线段成比例(第一课时)

2024-2025学年初中数学九年级上册(冀教版)教学课件25.2平行线分线段成比例(第一课时)

计算
A1 A2 A2 A3
,
B1B2 B2 B3
,你有什么发现?
A1A2 2 1 , A2 A3 4 2 4 B1B2 5 1 . B2B3 4 5 4
A1A2 B1B2 . A2 A3 B2B3
知识讲解
(2) 将l2向下平移到如下图的位置,直线m,n与直线l2还成 立吗?如果将l2 平移到其他位置呢?
1.如图,已知l1∥l2∥l3,下列比例式错误的是( D )
A. —AC—= —BD— CE DF
B. A—C—= —BD— AE BF
C. CA—EE—=—DBF—F D. A—E—=—BD—
BF AC
AB
l1
C
D
l2
E
F
l3
随堂训练
2.如图,已知l1∥l2∥l3,AC=4,,CE=6,BD=3,则DF=( B )
BF BD+DF=3+ 9 = 15 22
课堂小结
平行线分线段成比例基本事实:
两条直线被一组平行线所截,截得 的对应线段成比例.
BC
(3)AC
EF DF
简称“下比全”等于“下比全”
知识讲解
例 如图所示,在正方形网格图中,每个正方形的边长
均为1,若AB=BC,则DE和EF之间有什么关系?为什么?
解:DE=EF.
理由如下:
∵AD∥BE∥CF,∴ AB DE .
BC EF
∵AB=BC,∴ DE ,1
EF
∴DE=EF.
随堂训练
32 22
35 25
知识讲解
(3)在平面上任意作三条平行线,用它们截两条直线, 截得的线段成比例吗?
归纳:
平行线分线段成比例基本事实:

最新冀教版九年级数学上册期中考试(完美版)

最新冀教版九年级数学上册期中考试(完美版)

最新冀教版九年级数学上册期中考试(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .155.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根7.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.观察下列图形,是中心对称图形的是( )A .B .C .D .10.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A .33B .6C .4D .5二、填空题(本大题共6小题,每小题3分,共18分)1.计算:273-=__________.2.分解因式:ab 2﹣4ab+4a=________.3.若n 边形的内角和是它的外角和的2倍,则n =__________.4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =__________度.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图.在44⨯的正方形方格图形中,小正方形的顶点称为格点.ABC ∆的顶点都在格点上,则BAC ∠的正弦值是__________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x -=--2.先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.3.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.4.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.5.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、A6、B7、B8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、a(b﹣2)2.3、64、455、6、三、解答题(本大题共6小题,共72分)1、3x2、3.3、(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),4、(1)略(2)略5、(1)40,补图详见解析;(2)108°;(3)16.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。

九年级数学上册 第二十三章 数据分析 单元测试卷(冀教版 2024年秋)

九年级数学上册第二十三章数据分析单元测试卷(冀教版2024年秋)一、选择题(每题3分,共36分)1.(母题:教材P14练习T1)一组数据3,6,9,4,12,5,3的中位数是() A.6B.5C.4D.3 2.[2024·沧州泊头期中]已知x1,x2,…,x n的平均数为2,则3x1-2,3x2-2,…,3x n-2的平均数是()A.9B.4C.3D.23.下列说法中,正确的是()A.一组数据的众数一定只有一个B.一组数据的众数是6,则这组数据中出现次数最多的数据是6C.一组数据的中位数一定是这组数据中的某一个数据D.一组数据中的最大的数据增大时,这组数据的中位数也随之增大4.人们为了估计鱼塘里有多少条鱼,用了统计学中的一个办法:先从鱼塘捕捞200条鱼,给每条鱼都做上标记,然后放回鱼塘中,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞200条鱼,发现其中10条有标记,那么你估计鱼塘里大约有鱼()A.1000条B.2000条C.3000条D.4000条5.制鞋厂准备生产一批男皮鞋,经抽样(120名中年男子),得知所需鞋号和人数如下表所示:鞋号/cm20222324252627人数815202530202并求出鞋号的中位数是24cm,众数是25cm,平均数约是24cm,下列说法正确的是()A.因为需要鞋号为27cm的人数太少,所以鞋号为27cm的鞋可以不生产B.因为平均数约是24cm,所以这批鞋可以一律按24cm的鞋生产C.因为中位数是24cm,所以24cm的鞋的生产量应占首位D.因为众数是25cm,所以25cm的鞋的生产量应占首位6.(母题:教材P15习题A组T2)济南某中学足球队的18名队员的年龄分布情况如下表所示:年龄/岁12131415人数3564这18名队员年龄的众数和中位数分别是()A.13岁,14岁B.14岁,14岁C.14岁,13岁D.14岁,15岁7.某出租车公司共有A,B,C三种型号的出租车若干台,其中A型号的出租车成本为8万元/台,B型号的出租车成本为10万元/台,C型号的出租车成本为12万元/台,A,B,C三种型号的出租车各占10%,30%,60%,则该出租车公司的所有出租车的平均成本为()万元/台.A.11.2B.9C.10D.11 8.[2023·丹东]某校拟派一名跳高运动员参加一项校际比赛,对4名跳高运动员进行了多次选拔比赛,他们比赛成绩的平均数和方差如下表:甲乙丙丁平均数/cm169168169168方差 6.017.3 5.019.5根据表中数据,要从中选择一名平均成绩好,且发挥稳定的运动员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁9.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.4,4B.3,4C.4,3D.3,3 10.在一次献爱心捐款活动中,八(2)班50名同学捐款金额情况统计如图所示,则在这次捐款活动中,该班同学捐款金额的众数和中位数分别是()A.20元,10元B.10元,20元C.10元,10元D.10元,15元11.如图是甲、乙两同学五次数学测试成绩的折线统计图.比较甲、乙的成绩,下列说法正确的是()A.甲的平均分高,成绩稳定B.甲的平均分高,成绩不稳定C.乙的平均分高,成绩稳定D.乙的平均分高,成绩不稳定12.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一名同学的年龄登记错误,将14岁写成了15岁.经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13B.a<13,b<13C.a>13,b<13D.a>13,b=13二、填空题(每题3分,共12分)13.[2023·郴州]为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分,则该参赛队的最终成绩是________分.14.已知一组数据x1,x2,…,x n的方差是s2,则新的一组数据ax1+1,ax2+1,…,ax n+1(a为非零常数)的方差是____________(用含a和s2的式子表示).15.一组数据2,3,6,8,x的众数是x,其中x x-4>0,-7<0的整数解,则这组数据的中位数可能是________.16.[2024·石家庄第八十一中学期中]在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则加入的这个数为________,x的值为________.三、解答题(第17~20题每题14分,第21题16分,共72分) 17.[2024·石家庄第二十三中学月考]为了倡导“全民阅读”,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成统计图表如下:类别家庭藏书m本学生人数A0≤m≤3016B30<m≤60aC60<m≤9050D m>9070根据以上信息,解答下列问题:(1)共抽样调查了________名学生,a=________;(2)在扇形统计图中,“D”对应扇形的圆心角为________;(3)若该校有2000名学生,请估计全校学生中家庭藏书超过60本的人数.18.[2023·青岛]今年4月15日是我国第八个“全民国家安全教育日”.为增强学生国家安全意识、夯实国家安全教育基础,某市举行国家安全知识竞赛.竞赛结束后,发现所有参赛学生的成绩(满分100分)均不低于60分.小明将自己所在班级学生的成绩(用x表示)分为四组:A组(60≤x<70),B组(70≤x<80),C组(80≤x<90),D组(90≤x≤100),绘制了如下不完整的频数直方图和扇形统计图.根据以上信息,解答下列问题:(1)补全频数直方图;(2)扇形统计图中A组所对应的圆心角的度数为________°;(3)把每组中每名同学的成绩用这组数据的中间值(如A 组:60≤x <70的中间值为65)来代替,试估计小明所在班级的平均成绩;(4)小明根据本班成绩,估计全市参加竞赛的所有8000名学生中会有800名学生成绩低于70分,实际只有446名学生的成绩低于70分.请你分析小明估计不准确的原因.19.某班举办了主题为“致敬航天人,共筑星河梦”的演讲比赛.由学生1,学生2,老师,班长一起组成四人评委团,对演讲者现场打分,满分10分.图①是甲、乙两名同学演讲得分的不完整折线图,已知二人得分的平均数都是8分.(1)班长给乙同学的打分是________分,补全折线图;(2)在参加演讲的同学中,如果某同学得分的方差越小,则认为评委对该同学演讲的评价越一致.请通过计算推断评委对甲、乙两名同学中谁的评价更一致;(已求得甲同学得分的方差为s 2甲=14×[(9-8)2+(7-8)2+(9-8)2+(7-8)2]=1)(3)要在甲、乙两名同学中选出一人参加年级的演讲比赛.按照扇形统计图(图②)中各评委的评分占比,分别计算两人各自的最后得分,得分高的能被选中.请通过计算判断谁被选中.20.某商贸公司从20名销售员中随机抽取10名销售员上月完成的销售额情况如下:销售额(万元)34567816销售员人数(人)1132111(1)求上月10名销售员平均每人完成的销售额;(2)为了提高大多数销售员的积极性,管理者准备实行“每天定额销售,超额有奖”的措施,如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?21.“秋风响,蟹脚痒”,秋天正是食蟹好时节.在某市的一处螃蟹养殖区,某蟹农在今年五月中旬向自家蟹塘投放蟹苗1200只,为赶在食蟹旺季前上市销售,该蟹农于九月中旬在蟹塘随机试捕了四次,获得如下数据:数量/只平均每只蟹的质量/g第一次试捕4171第二次试捕5168第三次试捕5170第四次试捕6171(1)求四次试捕中平均每只蟹的质量;(2)若蟹苗的成活率为75%,请估计在九月中旬试捕期间,该蟹塘中螃蟹的总质量为多少千克?(3)若第三次试捕的螃蟹的质量(单位:g)分别为169,170,a,174,168.求a的值及该次试捕所得螃蟹的质量数据的方差.答案一、1.B2.B【点拨】∵x1,x2,…,x n的平均数为2,∴1n(x1+x2+…+x n)=2,∴1n(3x1-2+3x2-2+…+3x n-2)=3×1n(x1+x2+…+x n)-2=3×2-2=4,故选B.3.B【点拨】A.若几个数据出现的频数都是最多的且相同,此时众数就是这多个数据,故选项不符合题意;B.一组数据的众数是6,则这组数据中出现次数最多的数据是6,故选项符合题意;C.一组数据的中位数不一定是这组数据中的某一个数据,故选项不符合题意;D.一组数据中的最大的数据增大时,这组数据的中位数可能不变,也可能增大,故选项不符合题意.故选B.4.D5.D【点拨】A.需要鞋号为27cm的鞋的人数太少,所以鞋号为27cm的鞋可以少生产,不是不生产,故错误.B.不符合实际情况,故错误.C.哪个号的鞋的生产量占首位,要看需要的人数是否占首位,与中位数无关,故错误.D.因为众数是25cm,所以25cm的鞋的生产量应占首位,故正确.故选D.6.B【点拨】∵这18名队员中,14岁的最多,有6人,∴这18名队员年龄的众数是14岁.∵将这18名队员的年龄排序后位于中间的分别是14岁、14岁,∴这18名队员年龄的中位数是(14+14)÷2=14(岁).7.D8.C9.D10.C【点拨】这组数据的中位数是排序后第25,26个数据的平均数,由条形统计图知排序后第25,26个数据分别为10,10,所以这组数据的中位数为10+102=10,即该班同学捐款金额的中位数是10元.这组数据中出现次数最多的是10,所以这组数据的众数为10,即该班同学捐款金额的众数是10元,故选C.11.D【点拨】⎺x乙=100+85+90+80+955=90(分),⎺x甲=85+90+80+85+805=84(分),∵90>84,∴乙的平均分高;s2乙=50,s2甲=14,∵50>14,∴乙的成绩不稳定,故选D.12.A二、13.9314.a2s215.3或616.6;1【点拨】从小到大排列的五个数x,3,6,8,12的中位数是6,∵再加入一个数,这六个数的中位数与原来五个数的中位数相等,∴加入的这个数是6.∵这六个数的平均数与原来五个数的平均数相等,∴15(x+3+6+8+12)=16(x+3+6+6+8+12),解得x=1.故答案为6,1.三、17.【解】(1)200;64【点拨】共抽样调查了50÷25%=200(名)学生,a=32%×200=64.(2)126°【点拨】70200×360°=126°.(3)50+70200×2000=1200(人).答:估计全校学生中家庭藏书超过60本的人数为1200人.18.【解】(1)班级人数:10÷25%=40(人),B组人数:40-4-10-18=8(人).补全频数直方图如图所示:(2)36【点拨】扇形统计图中A组所对应的圆心角的度数为360°×440=36°.(3)由题意得,4×65+8×75+10×85+18×9540=85.5(分).答:估计小明所在班级的平均成绩为85.5分.(4)小明抽取的样本不具有随机性,不符合取样要求.19.【解】(1)8【点拨】设班长打分为x 分,依题意得,8+9+7+x4=8,解得x =8,∴班长给乙同学的打分是8分.补全折线图如图所示:(2)∵s 2乙=14×[(8-8)2+(9-8)2+(7-8)2+(8-8)2]=12,s 2甲=1,∴s 2乙<s 2甲,∴评委对乙同学的评价更一致.(3)由题意知,甲:9×35%+7×20%+9×20%+7×25%=8.1(分),乙:8×35%+9×20%+7×20%+8×25%=8(分).∵8.1>8,∴甲被选中.20.【解】(1)上月10名销售员平均每人完成的销售额为3×1+4×1+5×3+6×2+7×1+8×1+16×110=6.5(万元).(2)由题意可得,中位数为5+62=5.5(万元),众数为5万元.由上述数据可知,当选择中位数时有5人不达标,选择众数时有2人不达标,选择平均数时有7人不达标,∴选择中位数作为“定额”.21.【解】(1)171×(4+6)+(168+170)×54+5+5+6=170(g).答:四次试捕中平均每只蟹的质量为170g.(2)170×1200×75%=153000(g)=153kg.答:该蟹塘中螃蟹的总质量约为153千克.(3)169+170+a+174+168=170×5,解得a=169.s2=2×(169-170)2+(170-170)2+(174-170)2+(168-170)25=4.4.即a的值为169,该次试捕所得螃蟹的质量数据的方差为4.4.。

冀教版九年级数学上册期中测试卷及答案【完美版】

冀教版九年级数学上册期中测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.33.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为()A.3B.23C.33D.434.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20 B.2 C.2或﹣20 D.1 25.已知a m=3,a n=4,则a m+n的值为()A.7 B.12 C.D.6.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.22﹣2 C.22+2 D.227.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A →B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣110.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是__________.2.因式分解:3222x x y xy +=﹣__________. 3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m =2+1.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF ∽△DEC ;(2)若AB=8,33AE 的长.4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、C5、B6、B7、B8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、()2x x y -3、k <44、10.5、-36、 1三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)二次函数的表达式为:213222y x x =--;(2)4;(3)2或2911.5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)35元/盒;(2)20%.。

2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(冀教版)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:冀教版九年级上册。

5.难度系数:0.65。

第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在某市体育中考期间,在运动技能测试“排球垫球”项目中,某市直中学有8位学生的垫球数分别为39,53,55,48,52,53,48,48.这组数据的中位数和众数分别是()A .50,48B .52,48C .52,53D .48,482.甲、乙、丙、丁四名同学参加科技知识竞赛,他们平时测验成绩的平均分相同,方差分别是21.7S =甲,2 2.4S =乙,20.5S =丙,24S =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.若38m n =,则m n n +的值是( )A .118B .311C .113D .8114.如图,河坝横断面迎水坡AB 的坡度是,坝高BC =,则坡面AB 的长度是( )A .B .6mC .D .9m5.如图,AB 为O e 的直径,点C ,D 在圆上,若64D Ð=°,则BAC Ð的度数为( )A .64°B .34°C .26°D .24°6.将方程21010x x -=+利用配方法转化为()25x c -=的形式,则c 的值为( )A .24B .25C .26D .1007.下表是小明填写的综合实践活动报告的部分内容,请你借助小明的测量数据,计算河流的宽度AB .题目测量河流宽度AB目标示意图测量数据1.5m BC =,10m BD =, 1.8mDE =则AB =( )m A .20B .30C .40D .508.已知菱形OABC 在平面直角坐标系中如图放置,点C 在x 轴上,若点A 的坐标为(3,4),经过点A 的双曲线交BC 于点D ,则OAD △的面积为( )A .8B .9C .10D .129.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则AOBÐ的正弦值是( )A B C .13D .1210.如图,直线y kx =与双曲线my x =相交于点A 和B ,已知点A 的坐标为()4,1,则不等式m kx x³的解集为( )A .4x ³B .04x <£C .4x ³或4x £-D .4x ³或40x -£<11.如图,A 、B 、C 、D 均为圆周上十二等分点,若用直尺测量弦CD 长时,发现C 点、D 点分别与刻度1和4对齐,则A 、B 两点的距离是( )A .B .C .D .612.在矩形ABCD 中,已知45AB AD ==,,点E 为BC 上一点,连接AE 并延长交DC 的延长线于点F ,连接DE ,若2DEC BAE Ð=Ð,则EF 的长为( )A .B .C .3D .513.关于x 的方程22240x mx m -+-=的两个根1x ,2x 满足1223x x =+,且12x x >,则m 的值为( )A .3-B .1C .3D .914.如图,当反比例函数()0ky x x=>的图象L 将矩形ABCD 的内部(不含边界)的横、纵坐标都为整数的点分成数量相等的两部分,则k 的取值范围为( )A .1215k <<B .1014k <<C .410k <<D .1516k <<15.某数学兴趣小组借助无人机测量一条河流的宽度BC .如图,无人机在P 处测得正前方河流的点B 处的俯角DPB a Ð=,点C 处的俯角45DPC Ð=o ,点A ,B ,C 在同一条水平直线上.若45m AP =,tan 3a =,则河流的宽度BC 为( )A .30mB .25mC .20mD .15m16.如图,已知A ,B ,C 为O e 上的三点,且2120AC BC ACB ==Ð=°,.点P 从点A 出发,沿着逆时针方向运动到点B ,连接CP 与弦AB 相交于点D ,当ACD V 为直角三角形时,弧AP 的长为( )A .2pB .12πC .23p 或12πD .2p 或43p第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.如图,在O e 中,AM 是O e 的直径,8AM =,点B 是 AM 的中点,点C 在弦AB 上,且AC =D 在 AB 上,且CD OB ∥,则CD 的长为.18.如图①所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ED DC--运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s ,设P ,Q 同时出发t 秒时,BPQ V 的面积为2cm y .已知y 与t 的函数关系图象如图②(曲线OM 为抛物线的一部分),则:(1)cos ABE Ð= ;(2)当t = 时,ABE QBP ∽△△.19.如图,点(3,0)A ,(0,4)B ,连接AB ,点D 为x 轴上点A 左侧的一点,点E ,F 分别为线段AB ,线段BO上的点,点B ,D 关于直线EF 对称.(1)若DE AO ^,则四边形BEDF 的形状是 ;(2)当AD 最长时,点F 的坐标为 .三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)解方程:(1)22125x x -+=;(2)()()3222x x x +=+.21.(本小题满分9分)某校九年级男生进行了“引体向上”测试,每班随机抽取的人数相同,成绩分为“优秀”“良好”“及格”“不及格”四个等级,其中相应等级的得分分别为10分、8分、6分、4分.小聪将九(1)班和九(2)班的成绩整理并绘制了如图所示的不完整的统计图表.班级平均数众数中位数方差九(1)班7.6——8 3.84九(2)班8.410—— 3.84请你根据所给的信息解答下列问题:(1)请补充完成条形图和统计分析表;(2)若九(2)班少统计了一个学生“优秀”的成绩,则此次统计的数据中不受影响的是______(选填“平均数”“众数”“中位数”);(3)请你从两个方面分析出哪个班的男生“引体向上”成绩更好些.22.(本小题满分9分)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:AF AB =;(2)点G 是线段AF 上一点,满足,FCG FCD CG Ð=Ð交AD 于点H .①求证:AH CH DH GH ×=×;②若2,6AG FG ==,求GH 的长.23.(本小题满分10分)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15°,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)如图2,张亮站在摄像头前水平距离100cm 的点G 处,恰好能被识别(头的顶部在仰角线AD ), 求张亮的身高约是多少厘米;(2)夕夕身高136cm ,头部高度为18cm ,踮起脚尖可以增高3cm ,此时夕夕能被识别吗?请计算说明.(精确到0.1cm ,参考数据:sin150.26cos150.97°»°»,,tan150.27°»)24.(本小题满分10分)如图1,一汤碗的截面是以AB 为直径的半圆O (碗体厚度忽略不计),放置于水平桌面MN 上,碗中装有一些液体(图中阴影部分),其中液面截线∥CD MN .已知液面截线CD 宽8cm ,液体的最大深度为2cm .(1)求汤碗直径AB 的长;(2)如图2,在同一截面内,将汤碗(半圆O )沿桌面MN 向右作无滑动的滚动,使液体流出一部分后停止,再次测得液面截线CD 减少了2cm .①上述操作后,水面高度下降了多少?②通过计算比较半径12AB 和流出部分液体后劣弧 CD 的长度哪个更长.(参考数据:3tan 374°=)25.(本小题满分12分)如图,已知在平面直角坐标系中,矩形ABCD 的边AB x ∥轴,AD y ∥轴,点A 的坐标为(2,1),43AB AD ==,.(1)求直线BD 的解析式;(2)已知双曲线()0ky k x =>与折线ABC 的交点为E ,与折线ADC 的交点为F .①连接CE ,当3BCE S =V 时,求该双曲线的解析式,并求出此时点F 的坐标;②若双曲线()0ky k x =>与矩形ABCD 各边和对角线BD 的交点个数为3,请求k 的取值范围.26.(本小题满分13分)在ABC V 中,45A Ð=°,AC =D 为AB 边上一动点,45CDF Ð=°,DF 交BC 边于F .探究:如图1,若AC BC =,(1)当ACD V 与BDF V 全等时,求AD 的长;(2)当CDF V 为等腰三角形时,求CF 的长.延伸:如图2,若90DCF Ð=°,E 为BD 上一点,且45DEF Ð=°,(3)小东经过研究发现:“当点D 在AB 边上运动时,DE 的长度不变,是个定值.”你认为小东的结论是否正确,如果正确,请求出这个定值;如不正确,说明理由(4)若BF =sin B 的值.。

冀教版九年级数学上册期中考试题(完整)

冀教版九年级数学上册期中考试题(完整) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:2x 3﹣6x 2+4x =__________.3.函数132y xx=--+中自变量x的取值范围是__________.4.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD=__________.5.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=.3.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、C7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x (x ﹣1)(x ﹣2).3、23x -<≤4、30°5、40°6、49三、解答题(本大题共6小题,共72分)1、1x =23、(1)略;(24、(1)略;(2)AC 的长为5. 5、(1)30;(2)①补图见解析;②120;③70人.6、(1)4元或6元;(2)九折.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档