《多边形的内角和》说课稿(何琴)
11.3.2多边形的内角和说课稿

11.3.2多边形的内角和说课稿一、说教材本文为《11.3.2多边形的内角和》,在初中数学课程中具有重要作用和地位。
它是学生在学习了三角形、四边形的内角和的基础上,对多边形内角和概念进行拓展和深化的内容。
本节主要内容包括:多边形内角和的定义、计算公式及其推导过程,通过实际操作和例题分析,让学生更好地理解多边形的内角和性质,提高学生的空间想象能力和逻辑思维能力。
(1)作用与地位:多边形的内角和是几何学中的基础概念,对于培养学生的空间观念和逻辑思维具有重要作用。
它是连接平面几何与立体几何的桥梁,为后续学习多面体的内角和、表面积和体积等内容打下基础。
(2)主要内容:本节课主要围绕多边形的内角和展开,包括以下小节内容:1. 多边形内角和的定义;2. 多边形内角和的计算公式;3. 多边形内角和的推导过程;4. 应用多边形内角和解决实际问题。
二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解多边形内角和的定义,掌握多边形内角和的计算公式;(2)通过实际操作和推导过程,培养学生的空间想象能力和逻辑思维能力;(3)能够运用多边形内角和的性质解决实际问题,提高学生的应用能力;(4)激发学生对几何学的兴趣,培养学生的探究精神。
三、说教学重难点(1)重点:多边形内角和的定义、计算公式及其推导过程。
(2)难点:多边形内角和的推导过程,以及运用多边形内角和解决实际问题。
在教学过程中,要注意引导学生理解多边形内角和的定义,突破推导过程的难点,同时注重培养学生的空间想象能力和逻辑思维能力,为解决实际问题打下基础。
四、说教法在教学《11.3.2多边形的内角和》这一课时,我计划采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色:1. 启发法:- 通过提出问题引导学生思考,例如:“一个三角形的内角和是多少?四边形的内角和又是多少?那么五边形、六边形呢?它们之间是否存在某种规律?”- 利用学生已知的三角形和四边形的内角和知识,启发学生发现多边形内角和的规律。
多边形的内角和说课稿

多边形的内角和说课稿课题:多边形的内角和尊敬的各位评委、老师你们好!今天我说课的内容是,义务教育课程标准实验教材人教版数学七年级下册,第七章第3.2节——多边形的内角和。
我将在新课程理念的指导下从教材分析、教法与学法分析、教学过程、教学评价及板书设计五个方面来阐述我对本节课的理解与设计:一、教材分析(一)教材的地位与作用本节课主要是在三角形内角和知识基础上的拓广和发展,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,对发展学生的空间观念和几何直觉有很大的帮助。
通过本课的学习,不仅可以发展学生探索和归纳能力,而且有助于帮助学生进一步体会从简单到复杂、从特殊到一般的转化思想。
综上所述,本节无论是知识的传承,还是能力的发展、思维的训练,都有着承上启下的作用。
(二)教学目标:新课改的精神在于以学生发展为本,能力培养为重,根据数学课程标准的课程目标、课程内容、课程要求以及本节课的内容与结构,结合本章实际情况,我确定了本节课教学目标如下:知识目标掌握多边形内角和公式,并能用公式解决一些问题。
能力目标通过探索多边形内角和公式,尝试用不同的角度寻求解决问题的方法,并能有效的解决问题情感目标通过猜想、推理等数学活动,感受数学活动充满着探索,以及数学结论的确定性,提高学生学习热情。
(三)教学重点与难点重点:多边形内角和公式的探索和应用。
难点:多边形内角和公式的推导;转化思想的渗透。
二、教法与学法分析为充分调动学生学习的积极性,变被动学习为主动学习,突出重点突破难点,已达到本节课所设立的教学目标,我再从教法和学法上谈一谈:本课主要采用直观演示、引导发现和活动探究相结合的教学方法,并充分利用多媒体教学手段。
通过以上教学方法的整合发挥,提高课堂效率。
本节课还采用,动手实践,自主探究和合作交流的学习方法,通过让学生动手实践操作,促进学生的全面发展。
教学方法和学法的应用,充分体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。
7.3《多边形的内角和》说课稿

《多边形的内角和》说课材料尊敬的领导、同行们:今天我说课的题目是《多边形的内角和》,现就教材情况、教学方法的选择、学生学习方法的指导、教学流程等作以下说明:一、教材分析:1.教材的地位和作用:本节课为第七章第三节,起着承上启下的作用。
在内容上,从三角形的内角和到多边形的内角和。
再将多边形内角和应用于平面镶嵌、环环相扣、层层递进,这样编排易于激发学生学习的兴趣,适合学生的认知特点。
2.教学重点:探索多边形内角和公式。
3.教学难点:探索多边形内角和时,如何把多边形转化为三角形。
二、教学目标分析:1.知识目标:了解多边形内角和公式以及运用公式进行有关计算。
2.能力目标:(1)通过测量、类比、推理等数学活动,探索多边形内角和公式,感受数学思考过程中的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化为三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3.情感目标:在自主探究,合作交流过程中,让学生感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情和合作意识。
三、教学设计说明:根据新课程理念和教材分析,为实现教学目标,本节课在教学方法遵循“以学生为本,以情景激发兴趣,以循序渐进构建知识,力求让学生参与知识的发现过程,从而促进学生发展,以培养学生发散思维和解决问题的能力为目标”的原则,运用“引导发现法”,采用先进的多媒体教学手段进行教学,组织学生参与“猜想——动手操作——探究——归纳”的课堂活动,来探索新知识,获得新知识,在教学中还注重培养学生的团队精神和合作意识,从而使素质教育落到实处。
四、教法选择说明:1. 我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。
多边形的内角和(第一课时)说课稿

多边形的内角和(第一课时)说课稿施秋红一.说教材1.教材的地位和作用从教材的编排上,本节课作为第七章第三节,起着承上启下的作用。
在内容上,从三角形内角和到四边形内角和到多边形内角和环环相扣,再将多边形内角和公式应用于平面镶嵌,层层递进,知识间的联系性比较强,特别是教材中设计了一些:“想一想”“试一试”“做一做”等内容,体现了课改的精神。
在编写意图上,编者有意从简单的几何图形入手,让学生经历探索、猜想、归纳等过程,发展了学生的合情推理能力。
易于激发学生的学习兴趣,很适合学生的认知特点。
通过这节课的学习,可以培养学习探索与归纳能力,体会到从简单到复杂,从特殊到一般的数学方法和转化的数学思想。
2.教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:[知识与技能] 掌握多边形的内角和公式,并能熟练运用。
[过程与方法](1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
(3)通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。
[情感态度与价值观]通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,体验数学充满探索和创造,从而提高学生的学习热情。
3.教学重点和难点重点:探索多边形内角和公式。
难点:在探索多边形内角和时,如何把多边形转化成三角形。
二.说教法数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我进行了这样的教法设计:采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。
整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。
多边形的内角和说课稿

多边形的内角和说课稿一、引言多边形是几何学中的重要概念,它由多个边和角组成。
在本次说课中,我将重点介绍多边形的内角和相关概念。
通过本节课的学习,学生将能够理解多边形的内角和的计算方法,并能够应用所学知识解决与多边形内角和相关的问题。
二、教学目标1. 知识与技能:a. 掌握多边形的定义和内角的概念;b. 理解多边形内角和的计算方法;c. 能够应用所学知识解决多边形内角和的问题。
2. 过程与方法:a. 通过教师讲解、示例演示和学生练习相结合的方式,引导学生理解内角和的计算方法;b. 通过小组合作、讨论和展示的方式,培养学生合作能力和表达能力;c. 通过解决实际问题的方式,培养学生的应用能力和解决问题的能力。
3. 情感态度与价值观:a. 培养学生对几何学的兴趣和好奇心;b. 培养学生合作学习的意识和团队精神;c. 培养学生解决问题的积极态度和创新思维。
三、教学重难点1. 教学重点:a. 多边形的定义和内角的概念;b. 多边形内角和的计算方法。
2. 教学难点:a. 引导学生理解多边形内角和的计算方法;b. 培养学生应用所学知识解决相关问题的能力。
四、教学过程1. 导入(5分钟)a. 引入多边形的概念,让学生回顾多边形的定义;b. 提问:你们知道什么是多边形?请举例说明。
2. 讲解多边形的内角和(15分钟)a. 通过示意图,让学生观察多边形的内角;b. 引导学生发现多边形内角和的规律:n边形的内角和等于180°×(n-2);c. 通过具体例子,让学生运用公式计算多边形的内角和。
3. 学生练习与合作(20分钟)a. 将学生分成小组,每一个小组完成一道多边形内角和的计算题目;b. 学生相互讨论,合作解决问题,并记录解题过程;c. 鼓励学生展示自己的解题思路和答案,促进学生之间的交流与合作。
4. 拓展与应用(15分钟)a. 提供一些实际问题,要求学生运用所学知识解决;b. 学生个别或者小组完成拓展问题,鼓励学生思量和创新。
《多边形的内角和》的说课稿(精选9篇)

《多边形的内角和》的说课稿(精选9篇)《多边形的内角和》的篇1一、教材分析1、教学内容“多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。
2、本章及本节的地位与作用本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。
本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础,公式的运用还充分地体现了图形与客观世界的密切联系。
3、重点与难点多边形内角和的公式及公式的推导和运用是本节课的重点;因为公式的得出可以用多种不同的方法推导,所以我确定本节课的难点是如何引导学生通过自主学习,探索多边形内角和的公式。
二、教学目标根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:①识别多边形的顶点、边、内角及对角线;②理解多边形内角和公式的推导过程;③掌握多边形内角和公式的内涵及其运用。
能力目标:①培养学生类比归纳、转化的能力;②培养学生观察分析、猜想和概括的能力。
思想情感目标:通过体会数学图形的美感,提高审美能力,树立认识数学来源于生活,又服务于实践的观点。
三、教法分析在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察————分析————猜想————概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。
学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。
教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。
四、过程设计1、创设问题情境,引入新课我是这样设计问题的:在一个平面内,把一个三角形的三个顶点固定,一边套上橡皮筋往外拉成一条折线,该折线与三角形的另外两边围成一个什么图形?再把橡皮筋的一边又往外拉,再固定,又围成什么图形?……不断地向外拉,结果围成什么图形?如果上述情况不是往外拉而是往里推,那是什么图形?在学生的回答中引出主题:今天我们来学习多边形的有关知识。
《多边形内角和》说课稿

《多边形内角和》说课稿(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职业道德、时事政治、政治理论、专业基础、说课稿集、教资面试、综合素质、教案模板、考试题库、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as professional ethics, current affairs and politics, political theory, professional foundation, lecture collections, teaching interviews, comprehensive qualities, lesson plan templates, exam question banks, other materials, etc. Learn about different data formats and writing methods, so stay tuned!《多边形内角和》说课稿《多边形内角和》说课稿一、说教材《多边形内角和》是北师大版八年级下册第六章第四节的内容,多边形内角和公式反映了多边形的要素之一—“角”之间的数量关系,它是多边形的基本性质。
《多边形内角和》说课稿

《多边形内角和》说课稿一、说教材《多边形内角和》是中学数学教学中的重要内容,它位于几何学的核心部分,是学生在学习了三角形内角和的基础上,对多边形内角和性质进行探究的课程。
本文在教材中的作用和地位主要体现在以下几方面:1. 拓展知识层面:通过学习多边形内角和,使学生能够从三角形的内角和推广到一般多边形的内角和,增强学生对几何图形的观察和分析能力。
2. 培养逻辑思维:本节课通过引导学生利用已学知识推导多边形内角和公式,培养学生的逻辑思维和推理能力。
3. 应用数学方法:通过解决多边形内角和的问题,让学生学会运用数学方法解决实际问题,提高学生的数学应用能力。
主要内容:1. 多边形的定义及性质:回顾多边形的定义,了解多边形的基本性质,为后续学习多边形内角和打下基础。
2. 多边形内角和公式的推导:引导学生从三角形的内角和出发,通过观察、分析、归纳,推导出多边形内角和的一般性公式。
3. 多边形内角和公式的应用:运用所学的公式解决实际问题,提高学生的实际操作能力。
二、说教学目标学习本课需要达到以下教学目标:1. 知识与技能目标:掌握多边形内角和的定义,能够运用公式计算多边形的内角和。
2. 过程与方法目标:通过观察、分析、归纳,培养学生的逻辑思维和推理能力;学会运用数学方法解决实际问题。
3. 情感态度与价值观目标:激发学生对几何学的兴趣,培养学生积极探究、主动学习的良好习惯。
三、说教学重难点本节课的教学重难点主要包括:1. 多边形内角和公式的推导:如何引导学生从已知的知识点出发,通过观察、分析、归纳,推导出多边形内角和的一般性公式。
2. 多边形内角和公式的应用:在实际问题中,如何选择合适的方法和技巧运用所学的公式进行计算。
四、说教法在本节课的教学过程中,我将采用以下几种教学方法,旨在突出我的教学特色和亮点:1. 启发法:- 通过提出问题引导学生思考,激发学生的好奇心和求知欲。
例如,我会提出“三角形的内角和是180°,那么四边形的内角和是多少?”这样的问题,让学生在思考中自然过渡到多边形内角和的探究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《7.3.2多边形内角和》说课稿
钦州市浦北外国语学校何琴
各位评委、各位老师:
大家好!我是钦州市浦北外国语学校的何琴老师,我今天说课的内容是新人教版《数学》七年级(下册)、第七章《三角形》的第三节《多边形的内角和》的第二课时,下面我将从以下六个方面对本次说课内容作说明。
一、教材分析
1、教材的地位和作用
本节课在内容上起着承上启下的作用,它是在三角形、长方形、正方形的内角和的基础上的拓广和发展,是从特殊到一般的深化,它与下一课时多边形的外角和一脉相承,还是后面学习平面镶嵌的基础,也是今后学习空间几何的基础。
这样的编排容易激发学生的学习兴趣,符合学生的认知特点。
学生在探索的过程中体验到从简单到复杂,从特殊到一般的转化思想及类比的思想,从而感受到数学探究活动的魅力。
根据新课标的要求和本课的内容特点我确定以下教案目标及重、难点。
2、教案目标:
【知识与技能】掌握多边形的内角和公式,并能熟练运用。
【数学思考】
(1)通过猜想-转化-类比-归纳等活动探索多边形的内角和公式,进一步发展学生的合情推理意识和主动探究的习惯,提高了语言表达能力。
(2)通过把多边形转化成三角形,让学生体会到转化思想在几何中的运用,还让学生体会到从特殊到一般的认识问题的方法。
【解决问题】通过探索多边形内角和公式,让学生尝试从不同的角度
寻求解决问题的方法,并能有效的解决问题。
【情感态度】通过猜想、推理等数学活动,感受数学活动充满着探索与智慧、以及数学结论的确定性,提高了学生的学习热情。
3、教案重点和难点
【重点】多边形内角和公式的探索。
【难点】如何把多边形转化成三角形来探索多边形的内角和。
二、学情分析
1、学生的年龄特点和认知特点:七年级学生思维活跃,求知欲强,容易接受新鲜事物,对于传统的课堂教案方式比较厌倦,本节课采取教师引导下的自主探究方法,符合学生的认知特点,容易调动学生的学习积极性,满足学生的学习愿望。
2、本节课之前学生对三角形、长方形、正方形的内角和已经有了一定的理解和认识。
估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。
三、教法和学法分析
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定以下教法和学法:
1.教案方法:
根据本节课的教案目标、教材内容的特点,我采用启发式、探索式教案方法,意在帮助学生通过观察,自己动手,从实践中获得知识。
整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教案活动的组织者、引导者,而学生才是学习的主体。
2.学习方法:
引导学生采取猜想→验证→归纳和交流、类比等学习方法,以教会学生学习,并使学生在自主探索和合作交流中理解和掌握本节课的内容。
四、说教案流程
1、环节一:创设情景、引入新课
问题1:把一个四边形纸片剪去一个角后会得到一个什么图形呢?学生得到五边形、四边形和三角形之后,让学生通过回顾知道三角形的内角和是180度。
(从学生熟悉的情境入手引入新知识,引导学生分析可能的每一种情况,根据不同剪法得出不同结论。
)
问题2:那任意一个四边形、一个五边形、甚至更多边形的内角和又是多少度呢?学生的回答中引出本课学习内容:多边形的内角和。
2、环节二:合作交流、探索新知
回顾:正方形、长方形的内角和是多少度呢? (学生积极动脑回顾并回答,目的是建立与学生的已有知识的联系,有助于后继问题的解决。
也易于学生接受。
)
活动1:
猜一猜:围绕“任意四边形的内角和等于多少度?”(这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。
)
议一议:你是怎样得到的?你能找到几种方法?(这个环节学生通过小组讨论可能出现“度量”、“剪拼”、“作辅助线”等方法。
然后让学生表述出将四边形分割成三角形的多种方法,让学生体验数学活动充满探索,体验解决问题策略的多样性。
)
想一想:让学生观察添加辅助线的这些方法有什么共同点?(学生积极思考,大胆发言,教师给予适当的评价和鼓励。
教师在学生回答的基础上小结:这些方法都是从平面上一点出发和各顶点相连,把四边形的问题转化为三角形的问题,再利用三角形内角和求得四边形内角和,这是数学
学习中的一种常用转化的思想方法。
)
活动2:
做一做:选择你认为最好的一种分割方法求任意五边形、六边形、七边形的内角和等于多少度?(让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,体会由简单到复杂,由特殊到一般的思想方法。
)
活动3:
想一想:n 边形的内角和是多少?
启发学生分组讨论、归纳分析已探究到的五、六、七边形的内角和方法,自己从中发现规律,让学生体会从特殊到一般的思考问题的方法。
3、环节三:应用新知,尝试练习
为了使学生达到对知识的巩固与应用,我设计以下练习,让学生运用所学公式解决问题并巩固、理解、记忆公式。
⑴八边形的内角和等于多少度?
⑵一个多边形的内角和等于1440度,那么这个多边形是 几边形?
⑶如果一个四边形的一组对角互补,那么另一组对角有什么关系?
⑷求下列图形中的x 的值:
⑸(拓展探究)已知一个多边形,它的内角和等于五边形的内角和的2倍,求这个多边形的边数.
⑹(拓展探究)为了迎接2012年伦敦奥运会,小明想设计一个内角和为2012度的多边形,请问小明的想法能实现吗?为什么?(引导学生利用多边形的内角和公式解释小明的设想能否实现。
让学生感受到数学的x °
120°
150°2x °x °140°x °
趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。
)
4、环节四:归纳总结,反思升华
⑴归纳总结:请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯。
通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识。
⑵布置作业:课本 P84-85:习题7.3复习巩固:2、5
五、板书设计
最后,我的板书设计力求简洁明了,便于学生观察比较、归纳总结,,突出本堂课的重难点,及主要的思想方法。
附板书设计:
六、评价分析
1、通过课堂中学生展示自己对所学的内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师多层面了解了学生。
2、通过对学生参与教案活动的程序、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特想法
课题:
7.3.2多边形的内角
和
n 边形的内角和=(n-
2) ·180° (n ≥3的正整数)
或结论给予鼓励性评价。
我的说课到此结束,谢谢大家。